
Exercise Set XII, Advanced Algorithms 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually. The problems are not ordered with respect to difficulty.

1 Let M be the normalized adjacency matrix of a d-regular undirected graph G = (V,E). In class,
we proved that the maximum eigenvalue equals 1.

Show that the maximum absolute value of an eigenvalue is at most 1. That is, for any
eigenvalue λ of M , we have |λ| ≤ 1.

Solution: Let x be any eigenvector of M and let λ be the corresponding eigenvalue. Let
y = λx =Mx, and let i ∈ V be such that |x(i)| is maximized. Then

|(λx)i| = |y(i)| =

∣∣∣∣∣∣
∑

(i,j)∈E

x(j)

d

∣∣∣∣∣∣ ≤
∑

(i,j)∈E

∣∣∣∣x(j)d
∣∣∣∣ ≤ ∑

(i,j)∈E

∣∣∣∣x(i)d
∣∣∣∣ = |x(i)|,

which gives |λ| ≤ 1.

2 Let M be the normalized adjacency matrix of a d-regular undirected graph G = (V,E) that is
connected. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of M . Show that λn = −1 if and only if
G is bipartite.

(Hint: to show λn = −1, we only need to find a vector x such that Mx = −x.)

Solution: First, let’s assume that G is bipartite, V = V1 ∪V2. We consider the vector x defined
by:

xi =

{
1 if i ∈ V1
−1 if i ∈ V2

Since every vertex in V1 has its neighbors in V2, and conversely, we haveMx = −x. Therefore,
−1 is an eigenvalue forM and it has to be the smallest, since the absolute value of every eigenvalue
of M is bounded by 1 (see last exercise). Hence λn = −1.

We now assume λn = −1 and we consider an eigenvector x associated with λn. Let xi = D
be the largest component of x in absolute value. Since (Mx)i = −xi is the average of the value
of the d neighbours of i, it means that those neighbors have to be associated with the value −D.
The same goes for the neighbors of the neighbors of i which have to be associated with the value
D. Since the graph is connected, we can extend the reasoning to every vertex.

We just proved that each component of x is either D or −D. Let V1 = {i : xi = D} and
V2 = {i : xi = −D}. We also proved that every neighbor of a vertex in V1 has to be in V2, and
conversely. Therefore, G is bipartite with V = V1 ∪ V2.

Page 1 (of 4)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

3 In spectral graph theory, a popular matrix is the (normalized) Laplacian matrix. Its definition
(for d-regular graphs) is as follows. Let M be the normalized adjacency matrix of a d-regular
undirected graph G = (V,E). The normalized Laplacian matrix is L = I −M .

3a Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of M . Show that 1−λ1 ≤ 1−λ2 ≤ . . . ≤ 1−λn
are the eigenvalues of L.

Solution: Let vi be the eigenvector of M , with eigenvalue λi, hence Mvi = λivi. Also note that
Ivi = vi. Thus we have

Lvi = (I −M)vi = Ivi −Mvi = vi = λivi = (1− λi)vi.

Thus, vi is the eigenvector of M , with the eigenvalue 1− λi

3b One reason for the popularity of the normalized Laplacian matrix is because its quadratic
form x>Lx highlights the connection between cuts and eigenvectors. Indeed, verify the
following identity

x>Lx =
1

d

∑
{i,j}∈E

(x(i)− x(j))2 .

Notice that if x ∈ {0, 1}n, then the above identity says that x>Lx equals the number of
edges cut by the set S = {i : x(i) = 1} normalized by 1

d .

Solution: Recall that M = 1
dA with A being the d adjacency matrix of G. Let x ∈ Rn be a

function on the vertices of G = (V,E). Then

x>Lx = x>(I −M)x = x>
(
I − 1

d
A

)
x = x>x− 1

d
(x>Ax)

=
∑
u∈V

x(u)2 − 1

d

∑
u∈V

x(u)
∑

v:{u,v}∈E

x(v)

=
1

d

∑
u∈V

dx(u)2 −
∑
u∈V

∑
v:{u,v}∈E

x(u) · x(v)


=

1

d

∑
u∈V

∑
v:{u,v}∈E

(
x(u)2 − x(u) · x(v)

)
=

1

d

∑
{u,v}∈E

(x(u)2 + x(v)2 − 2x(u) · x(v))

=
1

d

∑
{u,v}∈E

(x(u)− x(v))2 .

4 Let G = (V,E) be a d-regular undirected graph G = (V,E). In this problem we shall analyze
the lazy random walk on G:

• With probability 1/2: we stay at the current vertex

• With remaining probability 1/2: we go to a random neighbor (out of d possibilities).

Page 2 (of 4)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

4a Show that the smallest eigenvalue of the matrix corresponding to a lazy random walk is at
least 0.

Solution:

• Let p be the current distribution over vertices and let q be the distribution after taking
one random step.

• In a lazy random walk:

– with probability 1/2: we don’t move so the distribution doesn’t change: q = Ip.

– with probability 1/2: we take a random step as in the normal random walk: q =Mp,
where M is the normalized adjacency matrix.

• Hence the matrix corresponding to random walk is 1
2 · I +

1
2 ·M . Let λ be an arbitrary

eigenvalue and let v be the corresponding eigenvector of this matrix. Then we have

(12 · I +
1
2 ·M)v = λ · v ⇒M · v = (2λ− 1) · v,

and thus, 2λ− 1 is an eigenvalue of M . Since all eigenvalues of M are at least −1, we have
that 2λ− 1 ≥ −1⇒ λ ≥ 0.

Some questions related to any subject of the course

5 Given a graphG = (V,E) and an integer k, design a randomized algorithm that returns a coloring
c : V → {1, . . . , k} such that in expectation at least

(
1− 1

k

)
-fraction of the edges are correctly

colored. An edge e = {u, v} is correctly colored if it is not monochromatic, i.e., c(u) 6= c(v).

Solution: The randomized algorithm is simple: give each vertex one of the k colors indepen-
dently and uniformly at random. We say that an edge {u, v} ∈ E is satisfied if u and v have a
different color. To compute the expected number of satisfied edges, we introduce for each e ∈ E
a random variable Xe which is set to one if e is satisfied and zero else. First, we compute the
probability that Xu,v = 1:

Pr(Xu,v = 1) = 1− Pr(u and v have the same color) = 1− 1

k

We can now simply compute the expected number of satisfied edge using linearity of expectation:

E[number of satisfied edges] =
∑
e∈E

E[Xe] = |E| ·
(
1− 1

k

)

6 Consider the matching problem in general graphs. Suppose that you are given a black-box
polynomial-time algorithm A which, given a graph, returns TRUE if the graph has a perfect
matching and NO otherwise1 Explain how to use A in order to, in polynomial time,

a find a perfect matching in a graph,

b find a maximum cardinality matching in a graph.
1For example, the algorithm obtained by calculating the determinant of the Tutte matrix that we saw in class.

Page 3 (of 4)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

Solution: a) The following algorithm might not be the most efficient but its correctness is easy
to establish and it is polynomial:

Find perfect matching given G = (V,E) that has a perfect matching

1. While |E(G)| > |V |/2:

(a) find e ∈ E(G) such that A(G− e) = TRUE

(b) G← G− e

2. Return E(G)

Notice that since a perfect matching touches all the vertices exactly once, it must have |V |/2
edges. Thus, if |E(G)| > |V |/2 then there must exists some removable e ∈ E. Also, notice that
G having a perfect matching is a loop invariant guaranteed by the oracle. Thus our algorithm
returns a perfect matching and runs in time polynomial (provided that A runs in time polyno-
mial too).

b) We’re going to allow for gradually worse matching in G by adding more and more vertices
that are connected to everything in G and thus can "remove" some vertex from a matching. For
sake of simplicity of notation let us assume that n the number of vertices is even.

Find a maximum cardinality matching in G = (V,E)

1. For i = 0, 2, 4, . . . , n:

(a) Let Gi be G where we have added i vertices and connected those to every v ∈ V
(b) If A(Gi) = TRUE then let M be a perfect matching of Gi given by the previous

algorithm. Return E ∩M .

The above algorithm works with the following simple observation: For each i = 0, 2, 4, . . . , n,
G has a matching of size n−i

2 if and only if Gi has a perfect matching. If n is odd, then simply
iterate for i = 1, 3, . . . , n (it makes sense to start at i = 1, there is no perfect matching for an
odd number of vertices).

Page 4 (of 4)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

