1

=Pi-L

Exercise Set VI, Algorithms 11 2024

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

In class we saw that Karger’s min-cut algorithm implies that an undirected graph has at most
(g) minimum cuts. Show that this result is tight by giving a graph with n vertices and (’;)
minimum cuts.

Solution: Consider the graph consisting of a single cycle with n vertices and thus n edges.
Removing any two edges result in a minimum cut. There are (g) ways of selecting the two edges
to remove and hence Karger’s result is tight.

Change Karger’s algorithm so that it also works for edge-weighted graphs. Also adapt the analysis
to prove that it still returns any min cut (S*, S*) with probability at least 1/(). (Hence, edge-
weighted graphs also have at most (g) min cuts.)

Solution: Instead of selecting the edge to contract in each iteration uniformly at random. Now
select an edge proportional to its weight we.

To show that this idea indeed makes sense, we observe that Claim 1 from the notes of
Lecture 12 still holds: the probability that we select an edge in E(S*, S*) to contract is at most
2/n.

Indeed, let k = ZeeE(S*vy)w(e) be the weight of the min cut and w(E) = > .pw(e)
denotes the total weight of the edges. The probability that we select an edge in the min cut
E(S*,5%) is B}

* Tw)] —
Ple € E(S*,5%)] = m

Now similar to the hand-shake lemma we have

S w(3(v)) = 2 w(E)

veV

where d(v) denotes the edges adjacent to v and w(d(v)) is the weight of §(v). We also have that
w(d(v)) >k
since k is the weight of the mincut. Therefore,

> w(dw) =2-w(E)>k-n=wE)>k-n/2.
veV

This means

Page 1 (of 4)

Algorithms Il e Autumn 2024
Michael Kapralov and Ola Svensson

Hence, we have that the probability to contract an edge in E(S*, S*) is at most 2/n.

The analysis now continues in the exact same manner as in the unweighted case. We observe
that even in a weighted graph, when we contract an edge (u,v) the size of the minimum cut
does not decrease. Then, let, A; be the event that the edge picked in step 4 of the loop is not in
E(S*,5%). We need to lower bound P[Aj, Aa, ..., A,_2]. By Bayes rule we have,

P[A1, ..., An_s] = P[A1]P|Ao| A1]P[A5| Ay, As) ... PlAp_o| Ay, As, ..., An_s).

From the above, we have that, for all 7,

P[A1|A1, - ,Al',l]

v
—_

Therefore,

PlA1,..., Aps] > (1—Z> (1—7131)--'(1‘2)

n—2 n—3 n—4 1
n n—-1 n—-2"3

Consider an n-by-n bipartite graph G = (X UY, F) and let A be the adjacency matrix where
Tij if {’L,j} ekl
0 otherwise
replace each z;; by a random number and check whether det(A) # 0 to see whether G has a
perfect matching. A beautiful alternative approach was introduced by a very influential paper
by Mulmuley, Vazirani, and Vazirani’87 who considered isolating weight functions.

we have A;; = (as in Lecture 13). In that lecture, we saw that we could

3a A weight function w : E — N is isolating if the min-weight perfect matching is unique.
Show that if w is isolating then

det(/l) # 0 < G has a perfect matching,
where A is the matrix obtained from A by replacing each variable z, by 2%(€).

Solution: By the definition of determinant we have

det(A) = Y sen(o) [[Ao
i=1

O'eSn

where S, is the permutation group on n elements and sgn(o) is the sign of the permutation o
(here it only matters that it is £1). Notice that nonzero terms in the above sum correspond
to permutations o for which each {i,0(i)} is an edge in G — i.e., to matchings. From this it is
already clear that if G has no perfect matchings, then det(fl) = 0. Let us prove the converse.
Note that each such nonzero term is equal to £[[;", Aw(i) = + [, 2v0e@) = £ow)

where M = {{i,o(i)} : i = 1,...,n} is the matching corresponding to o. Therefore

det(A) = > sgn(M)2w M)
M : matching in G

where sgn(M) € {—1,1}.

Page 2 (of 4)

Algorithms Il e Autumn 2024
Michael Kapralov and Ola Svensson

Now, if w is isolating, then there is a matching My such that for each other matching M # M,
we have w(Mg) < w(M). Therefore the corresponding term £2*(0) will not cancel out with
any other term +2%(M) (because the latter term is a multiple of 2@(Mo)+1: in other words, det(/l)
is nonzero even modulo 2*)). Thus det(A) # 0.

3b (*) In this exercise, we prove the “Isolation Lemma”. Show that if we form the weight func-
tion w by letting, for each edge e independently, w(e) be a random number in {1,...,2|E|},
then the probability that w is isolating is at least 1/2.

(Hint: for each edge e, consider ae = minpse w(M \ {e}) and Be = minyze w(M). What
is the probability that ae + w(e) = Be?)

Solution: Note that o, + w(e) = (minps. w(M) — w(e)) + w(e) = minys. w(M). Let us
suppose that w is not isolating. Then there exists an edge e which belongs to some min-
weight perfect matching but not to every min-weight perfect matching.lﬂ For such an edge
e, miny s w(M) = miny g w(M), ie., ac +w(e) = Be. So

P[w not isolating] < P

J{ae +w(e) = 56}] < Plac +w(e) = Be.

But

1
Plac +w(e) = fc] = Plw(e) = fe —ac] < 57

since both 8. and a. are independent of w(e)P| So P[w not isolating] < 1/2.

In this exercise, we are going to analyze a beautiful and simple randomized algorithm for the 2-
SAT problem (due to Papadimitriou’91l). Recall that in the 2-SAT problem we have n variables
T1,T2,...,Ty, and m clauses Cy,...,C,,, where each clause is the disjunction of two literals.
Examples of possible clauses are x; V xj,) V -2y and so on. The goal is to find a truth
assignment to the n variables so that all clauses are satisfied (if one exists).

The algorithm we are going to analyze is ingenious and simple:

1. Select uniformly at random a truth assignment 7.
2. Repeat the following for at most O(n?) steps (or until we find a satisfying assignment):

Select an unsatisfied clause Cy with variables x;, x;.

!There are two different matchings M # M’ which both have minimum weight w(M) = w(M'). Pick any edge
e in their symmetric difference.
2For die-hard fans of formality (and conditional expectations):
Plwe = fe — ae] = E[Xw.=p.a.]
= E[E[w.=p.—aclw(e’) : €' € B\ {e}]
) 1/(2|E|) if Be —ae € {1727~-~72|E|}
0 otherwise
<E[1/(2E])]
=1/(2|E])

where conditionally on w(e’) : ¢ € E \ {e} we have that 8. — . is a constant (i.e., it is a function of only
w(e’) : €’ € E\ {e} and not of w(e)).

Page 3 (of 4)

Algorithms Il e Autumn 2024
Michael Kapralov and Ola Svensson

Select one of the variables z; and z; with equal probability.

Update 7 by flipping the truth assignment of the selected variable, i.e., set it to true
if it was false and vice versa.

In the following, we assume for simplicity that there is a satisfying truth assignment 7* (where
7} denotes the Boolean value of variable z;). (If there is no such truth assignment we cannot
find one so there is nothing to prove.)

For a truth-assignment 7, define dist(7*,) as the number of variables/coordinates where m; # 7}
(this is called the Hamming distance). Let m = n', 7% ... be the truth-assignments generated
by the algorithm and let d; = dist(7*, 7%). Note that as the algorithm only changes one variable
in the truth assignment in each iteration, we have d;+1 = d; + A; where A; € {—1,1}. Prove
that for any

Pr[A; = —1] > 1/2.

Once this is established, we can view the algorithm as a random walk on {0,1,2,...,n} that
always goes to the left (to a smaller number) with probability at least 1/2. It is known that such
a random walk will reach 0 with high probability after O(n?) many steps. (Show this if you feel
that you are up for a challenge.)

Solution: Let us first prove Pr[A; = —1] > 1/2. To that end, consider 'th step of our algorithm
and let Cy be the clause with variables z;, z; that our algorithm chooses to modify. Since this
clause in not satisfied, in any satisfying truth assignment 7* at least one of z; or x; should be
different from their current value. Therefore, the variable that our algorithm chooses to flip at
least with probability 1/2 is flipped to its value in 7*. So Pr[A; = —1] > 1/2.

In what follows, we argue that our algorithm indeed finds a satisfying assignment. To see that
the algorithm reaches 0 with high probability. Notice that if there is any sequence Ag, Apy1, Ay
with n more —1’s than 1’s then we have reached 0. We show that the sequence Ay, Ag, ... A2
has n more —1’s than 1’s with constant probability. The statement then follows by doing a
(constant) multiple of cn? many iterations and interpreting them as independent sequences. To
see that Ay, Ao, ..., A2 has n more —1’s than 1’s with constant probability notice that in the
worst-case we have that Pr[A; = —1] = Pr[A; = 1] = 1/2. Assume that for the analysis as this
will upper bound the probability that we are interested in. If we let X = Zfﬁ A; Then the
probability of interest is

Pr[X < -—nj.

Now notice that n is smaller than the standard deviation of ¢n? coin flips. Indeed the variance
of cn? unbiased +1 coin flips is en?. So this probability happens with constant probability (Here
one has to be more careful and use the Binomial distribution).

Page 4 (of 4)

Algorithms Il e Autumn 2024
Michael Kapralov and Ola Svensson

