

Exercise Set VI, Algorithms II 2024

These exercises are for your own benefit. Feel free to collaborate and share your answers with other students. Solve as many problems as you can and ask for help if you get stuck for too long. Problems marked * are more difficult but also more fun:).

These problems are taken from various sources at EPFL and on the Internet, too numerous to cite individually.

1 In class we saw that Karger's min-cut algorithm implies that an undirected graph has at most $\binom{n}{2}$ minimum cuts. Show that this result is tight by giving a graph with n vertices and $\binom{n}{2}$ minimum cuts.

Solution: Consider the graph consisting of a single cycle with n vertices and thus n edges. Removing any two edges result in a minimum cut. There are $\binom{n}{2}$ ways of selecting the two edges to remove and hence Karger's result is tight.

2 Change Karger's algorithm so that it also works for edge-weighted graphs. Also adapt the analysis to prove that it still returns any min cut $(S^*, \overline{S^*})$ with probability at least $1/\binom{n}{2}$. (Hence, edge-weighted graphs also have at most $\binom{n}{2}$ min cuts.)

Solution: Instead of selecting the edge to contract in each iteration uniformly at random. Now select an edge proportional to its weight w_e .

To show that this idea indeed makes sense, we observe that Claim 1 from the notes of Lecture 12 still holds: the probability that we select an edge in $E(S^*, \overline{S^*})$ to contract is at most 2/n.

Indeed, let $k = \sum_{e \in E(S^*, \overline{S^*})} w(e)$ be the weight of the min cut and $w(E) = \sum_{e \in E} w(e)$ denotes the total weight of the edges. The probability that we select an edge in the min cut $E(S^*, \overline{S^*})$ is

$$P[e \in E(S^*, \overline{S^*})] = \frac{k}{w(E)}$$

Now similar to the hand-shake lemma we have

$$\sum_{v \in V} w(\delta(v)) = 2 \cdot w(E)$$

where $\delta(v)$ denotes the edges adjacent to v and $w(\delta(v))$ is the weight of $\delta(v)$. We also have that

$$w(\delta(v)) \ge k$$

since k is the weight of the mincut. Therefore,

$$\sum_{v \in V} w(\delta(v)) = 2 \cdot w(E) \ge k \cdot n \Rightarrow w(E) \ge k \cdot n/2.$$

This means

$$P[e \in E(S^*, \overline{S^*})] = \frac{k}{w(E)} \le \frac{k}{nk/2} = \frac{2}{n}$$

Page 1 (of 4)

Hence, we have that the probability to contract an edge in $E(S^*, \overline{S^*})$ is at most 2/n.

The analysis now continues in the exact same manner as in the unweighted case. We observe that even in a weighted graph, when we contract an edge (u, v) the size of the minimum cut does not decrease. Then, let, A_i be the event that the edge picked in step i of the loop is not in $E(S^*, \overline{S^*})$. We need to lower bound $P[A_1, A_2, \ldots, A_{n-2}]$. By Bayes rule we have,

$$P[A_1, \dots, A_{n-2}] = P[A_1]P[A_2|A_1]P[A_3|A_1, A_2] \dots P[A_{n-2}|A_1, A_2, \dots, A_{n-3}].$$

From the above, we have that, for all i,

$$P[A_i|A_1,\ldots,A_{i-1}] \ge 1 - \frac{2}{n-i+1}.$$

Therefore,

$$P[A_1, \dots, A_{n-2}] \geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \dots \left(1 - \frac{2}{3}\right)$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \dots \frac{1}{3}$$

$$= \frac{2}{n(n-1)} = 1/\binom{n}{2}.$$

- 3 Consider an *n*-by-*n* bipartite graph $G = (X \cup Y, E)$ and let A be the adjacency matrix where we have $A_{ij} = \begin{cases} x_{ij} & \text{if } \{i,j\} \in E \\ 0 & \text{otherwise} \end{cases}$ (as in Lecture 13). In that lecture, we saw that we could replace each x_{ij} by a random number and check whether $\det(A) \neq 0$ to see whether G has a perfect matching. A beautiful alternative approach was introduced by a very influential paper by Mulmuley, Vazirani, and Vazirani'87 who considered *isolating weight functions*.
 - 3a A weight function $w: E \to \mathbb{N}$ is isolating if the min-weight perfect matching is unique. Show that if w is isolating then

$$\det(\hat{A}) \neq 0 \Leftrightarrow G$$
 has a perfect matching,

where \hat{A} is the matrix obtained from A by replacing each variable x_e by $2^{w(e)}$.

Solution: By the definition of determinant we have

$$\det(\hat{A}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n \hat{A}_{i,\sigma(i)}$$

where S_n is the permutation group on n elements and $\operatorname{sgn}(\sigma)$ is the sign of the permutation σ (here it only matters that it is ± 1). Notice that nonzero terms in the above sum correspond to permutations σ for which each $\{i, \sigma(i)\}$ is an edge in G – i.e., to matchings. From this it is already clear that if G has no perfect matchings, then $\det(\hat{A}) = 0$. Let us prove the converse.

Note that each such nonzero term is equal to $\pm \prod_{i=1}^n \hat{A}_{i,\sigma(i)} = \pm \prod_{i=1}^n 2^{w(i,\sigma(i))} = \pm 2^{w(M)}$ where $M = \{\{i,\sigma(i)\}: i=1,...,n\}$ is the matching corresponding to σ . Therefore

$$\det(\hat{A}) = \sum_{M \text{ : matching in } G} \operatorname{sgn}(M) 2^{w(M)}$$

where $sgn(M) \in \{-1, 1\}.$

Page 2 (of 4)

Now, if w is isolating, then there is a matching M_0 such that for each other matching $M \neq M_0$ we have $w(M_0) < w(M)$. Therefore the corresponding term $\pm 2^{w(M_0)}$ will not cancel out with any other term $\pm 2^{w(M)}$ (because the latter term is a multiple of $2^{w(M_0)+1}$; in other words, $\det(\hat{A})$ is nonzero even modulo $2^{w(M)}$). Thus $\det(\hat{A}) \neq 0$.

3b (*) In this exercise, we prove the "Isolation Lemma". Show that if we form the weight function w by letting, for each edge e independently, w(e) be a random number in $\{1, \ldots, 2|E|\}$, then the probability that w is isolating is at least 1/2.

(Hint: for each edge e, consider $\alpha_e = \min_{M \ni e} w(M \setminus \{e\})$ and $\beta_e = \min_{M \not\ni e} w(M)$. What is the probability that $\alpha_e + w(e) = \beta_e$?)

Solution: Note that $\alpha_e + w(e) = (\min_{M \ni e} w(M) - w(e)) + w(e) = \min_{M \ni e} w(M)$. Let us suppose that w is not isolating. Then there exists an edge e which belongs to some min-weight perfect matching but not to every min-weight perfect matching.¹ For such an edge e, $\min_{M \ni e} w(M) = \min_{M \not\ni e} w(M)$, i.e., $\alpha_e + w(e) = \beta_e$. So

$$P[w \text{ not isolating}] \le P\left[\bigcup_{e} \{\alpha_e + w(e) = \beta_e\}\right] \le \sum_{e} P[\alpha_e + w(e) = \beta_e].$$

But

$$P[\alpha_e + w(e) = \beta_e] = P[w(e) = \beta_e - \alpha_e] \le \frac{1}{2|E|}$$

since both β_e and α_e are independent of w(e).² So $P[w \text{ not isolating}] \leq 1/2$.

4 In this exercise, we are going to analyze a beautiful and simple randomized algorithm for the 2-SAT problem (due to Papadimitriou'91). Recall that in the 2-SAT problem we have n variables x_1, x_2, \ldots, x_n and m clauses C_1, \ldots, C_m , where each clause is the disjunction of two literals. Examples of possible clauses are $x_i \vee x_j$, $x_k \vee \neg x_\ell$ and so on. The goal is to find a truth assignment to the n variables so that all clauses are satisfied (if one exists).

The algorithm we are going to analyze is ingenious and simple:

- 1. Select uniformly at random a truth assignment π .
- 2. Repeat the following for at most $O(n^2)$ steps (or until we find a satisfying assignment):

Select an unsatisfied clause C_{ℓ} with variables x_i, x_j .

$$P[w_e = \beta_e - \alpha_e] = \mathbb{E}[\chi_{w_e = \beta_e - \alpha_e}]$$

$$= \mathbb{E}[\mathbb{E}[\chi_{w_e = \beta_e - \alpha_e}] | w(e') : e' \in E \setminus \{e\}]$$

$$= \mathbb{E}\left[\begin{cases} 1/(2|E|) & \text{if } \beta_e - \alpha_e \in \{1, 2, ..., 2|E|\} \\ 0 & \text{otherwise} \end{cases}\right]$$

$$\leq \mathbb{E}[1/(2|E|)]$$

$$= 1/(2|E|)$$

where conditionally on $w(e'): e' \in E \setminus \{e\}$ we have that $\beta_e - \alpha_e$ is a constant (i.e., it is a function of only $w(e'): e' \in E \setminus \{e\}$ and not of w(e)).

Page 3 (of 4)

¹There are two different matchings $M \neq M'$ which both have minimum weight w(M) = w(M'). Pick any edge e in their symmetric difference.

²For die-hard fans of formality (and conditional expectations):

Select one of the variables x_i and x_j with equal probability.

Update π by flipping the truth assignment of the selected variable, i.e., set it to true if it was false and vice versa.

In the following, we assume for simplicity that there is a satisfying truth assignment π^* (where π_i^* denotes the Boolean value of variable x_i). (If there is no such truth assignment we cannot find one so there is nothing to prove.)

For a truth-assignment π , define dist (π^*, π) as the number of variables/coordinates where $\pi_i \neq \pi_i^*$ (this is called the *Hamming distance*). Let $\pi = \pi^1, \pi^2, \ldots$ be the truth-assignments generated by the algorithm and let $d_i = \text{dist}(\pi^*, \pi^i)$. Note that as the algorithm only changes one variable in the truth assignment in each iteration, we have $d_{i+1} = d_i + \Delta_i$ where $\Delta_i \in \{-1, 1\}$. Prove that for any i

$$\Pr[\Delta_i = -1] \ge 1/2.$$

Once this is established, we can view the algorithm as a random walk on $\{0, 1, 2, ..., n\}$ that always goes to the left (to a smaller number) with probability at least 1/2. It is known that such a random walk will reach 0 with high probability after $O(n^2)$ many steps. (Show this if you feel that you are up for a challenge.)

Solution: Let us first prove $\Pr[\Delta_i = -1] \ge 1/2$. To that end, consider i'th step of our algorithm and let C_ℓ be the clause with variables x_i, x_j that our algorithm chooses to modify. Since this clause in not satisfied, in any satisfying truth assignment π^* at least one of x_i or x_j should be different from their current value. Therefore, the variable that our algorithm chooses to flip at least with probability 1/2 is flipped to its value in π^* . So $\Pr[\Delta_i = -1] \ge 1/2$.

In what follows, we argue that our algorithm indeed finds a satisfying assignment. To see that the algorithm reaches 0 with high probability. Notice that if there is any sequence $\Delta_k, \Delta_{k+1}, \Delta_\ell$ with n more -1's than 1's then we have reached 0. We show that the sequence $\Delta_1, \Delta_2, \ldots, \Delta_{cn^2}$ has n more -1's than 1's with constant probability. The statement then follows by doing a (constant) multiple of cn^2 many iterations and interpreting them as independent sequences. To see that $\Delta_1, \Delta_2, \ldots, \Delta_{cn^2}$ has n more -1's than 1's with constant probability notice that in the worst-case we have that $\Pr[\Delta_i = -1] = \Pr[\Delta_i = 1] = 1/2$. Assume that for the analysis as this will upper bound the probability that we are interested in. If we let $X = \sum_{i=1}^{cn^2} \Delta_i$ Then the probability of interest is

$$\Pr[X \leq -n]$$
.

Now notice that n is smaller than the standard deviation of cn^2 coin flips. Indeed the variance of cn^2 unbiased ± 1 coin flips is cn^2 . So this probability happens with constant probability (Here one has to be more careful and use the Binomial distribution).