
Exercise Set V, Algorithms II 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 In this exercise we consider the Hedge algorithm and use the same notation as in the lecture
notes. The average [external] regret of Hedge is defined as∑

t≤T ~p
(t) · ~m(t) −mini

∑
t≤T m

(t)
i

T

i.e., how much we “regret”, on average over the days, compared to the best single strategy i.

1a If you knew the number of days T in advance, how would you set the parameter ε of Hedge
to minimize the average external regret?

1b (*) Even if you do not know T in advance, describe a strategy that achieves roughly the
same average external regret as in the case when T is known.

Hint: There is no need to redo the analysis from scratch. For example, you could consider
restarting the algorithm each time you get to a day t of the form 4i.

Solution:

1a By Theorem 16.2 from the lecture notes, the average external regret is at most

R(ε) :=
lnN

εT
+ ε.

Minimizing this over ε, we get

ε =

√
lnN

T
and R(ε) = 2

√
lnN

T
.

1b We proceed as in the hint. More precisely, we divide the time period [1, T] into phases
where the i-th phase has length 4i (except the last phase, which could be shorter) – that
is, into phases [1, 4], [5, 20], [21, 84], etc. We restart the algorithm at the beginning of each
such phase, by resetting all weights to 1 and setting ε = εi =

√
lnN
2i

.

Now let us analyze the regret. (We assume for simplicity that the last, k-th phase also has
full length 4k.) For each phase i we have that the average regret is at most 2

√
lnN
2i

. Thus
the total regret in phase i is at most 2 · 2i ·

√
lnN . The average regret over all phases (i.e.

over the time T =
∑k

i=1 4
i ≈ 4k+1/3) is thus at most∑k

i=1 2 · 2i ·
√
lnN

T
≈ 2 · 2k+1 ·

√
lnN

T
≈ 2 ·

√
3 ·
√
T ·
√
lnN

T
= 2
√
3 ·
√

lnN

T
.

Page 1 (of 4)

Algorithms II • Autumn 2024
Michael Kapralov and Ola Svensson

2 Suppose you are using the Hedge algorithm to invest your money (in a good way) into N different
investments. Every day you see how well your investments go: for i ∈ [N] you observe the change
of each investment in percentages. For example, change(i) = 20% would mean that investment
i increased in value by 20% and change(i) = −10% would mean that investment i decreased in
value by 10%.

How would you implement the “adversary” at each day t so as to make sure that Hedge gives
you (over time) almost as a good investment as the best one? In other words, how would you
set the cost vector ~m(t) each day?

Solution: Recall that, in the Hedge algorithm we learned in class, the total loss over time is
upper bounded by

∑T
t=1m

t
i +

lnN
ε + εT .

In the case of investments, we want to do almost as good as the best investment. Let gti be
the fractional change of the value of i’th investment at time t. I.e., gti = (100 + change(i))/100,
and pt+1

i = pti · gti . Thus, after time T , pT+1
i = p1i

∏T
t=1 g

t
i . To get an analogous bound to that of

the Hedge algorithm, we take the logarithm. The logarithm of the total gain would be
∑T

t=1 ln g
t
i .

To convert this into a loss, we multiply this by −1, which gives a loss of
∑T

t=1(− ln gti). Hence,
to do almost as good as the best investment, we make our cost vectors to be mt

i = − ln gti .
Now, from the analysis of Hedge algorithm in the lecture, it follows that for all i ∈ [N],

T∑
t=1

p
(t)
i ·m

(t) ≤
T∑
t=1

m
(t)
i +

lnN

ε
+ εT.

Taking the exponent in both sides, We have that

exp

(
T∑
t=1

p
(t)
i ·m

(t)

)
≤ exp

(
T∑
t=1

m
(t)
i +

lnN

ε
+ εT

)
T∏
t=1

exp(p
(t)
i ·m

(t)) ≤ exp(lnN/ε+ εT)
T∏
t=1

exp(mt
i)

T∏
t=1

∏
i∈[N]

(1/gti)
p
(t)
i ≤ exp(lnN/ε+ εT)

T∏
t=1

(1/g
(t)
i)

Taking the T -th root on both sides, T∏
t=1

∏
i∈[N]

(1/gti)
p
(t)
i

(1/T)

≤ exp(lnN/εT + ε)

(
T∏
t=1

(1/g
(t)
i)

)(1/T)

.

This can be interpreted as the weighted geometric mean of the loss is not much worse than the
loss of the best performing investment.

3 Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Consider the following linear program with n variables:

maximize cTx

subject to Ax = b

x ≥ 0

Show that any extreme point x∗ has at most m non-zero entries, i.e., |{i : x∗i > 0}| ≤ m.

Hint: what happens if the columns corresponding to non-zero entries in x∗ are linearly dependent?

(If you are in a good mood you can prove the following stronger statement: x∗ is an extreme point
if and only if the columns of A corresponding to non-zero entries of x∗ are linearly independent.)

Page 2 (of 4)

Algorithms II • Autumn 2024
Michael Kapralov and Ola Svensson

Solution: Without loss of generality, index x∗ so that x∗1, . . . , x∗k > 0 and x∗k+1, . . . , x
∗
n = 0. Also

let a1, a2, . . . , ak denote the columns of A corresponding to the nonzero variables x∗1, . . . , x∗k.
We start by showing that if a1, . . . , ak ∈ Rm are linearly dependent then x∗ is not an extreme

point. This implies that “any extreme point x∗ has at most m non-zero entries, i.e., |{i : x∗i >
0}| ≤ m” since no more than m vectors can be linearly independent in the m-dimensional space
Rm.

Since we assume a1, . . . , ak to be linearly dependent we can write
∑k

i=1 λiai = 0 for some
scalars λi that are not all equal to 0. Now it is easy to verify that for a small enough ε > 0,

y :=



x∗1
...
x∗k
x∗k+1
...
x∗n


+ ε ·



λ1
...
λk
0
...
0


and z :=



x∗1
...
x∗k
x∗k+1
...
x∗n


− ε ·



λ1
...
λk
0
...
0


are both feasible solutions to the linear program and x∗ = y+z

2 and thus x∗ is not an extreme
point.

We now complete the proof of the good mood problem by showing that if x∗ is not an extreme
point, then a1, . . . , ak are linearly dependent. If x∗ is not an extreme point, then there is a vector
y ∈ Rn \ {0} such that x∗ + y is feasible and x∗ − y is feasible. By simple rewriting, Ax = b and
A(x+ y) = b imply Ay = 0, i.e.,

∑n
i=1 aiyi = 0. By the nonnegativity constraints, we must have

yi = 0 for all i > k (for suppose that yi > 0 and x∗i = 0; then either x∗ − y or x∗ + y would need
to be negative on coordinate i and thus infeasible). Hence we have that

∑k
i=1 aiyi = 0, which

shows that the vectors a1, . . . , ak are linearly dependent.
In the proofs above we used that x∗ is not an extreme point (i.e., it can be written as a convex

combination of other feasible vectors) if and only if it can be written as a convex combination
of two other feasible vectors. The proof here is as follows: suppose that x∗ =

∑n
i=1 λiyi for

λ1, ..., λn > 0,
∑

i λi = 1 and y1 6= x∗. Then we can rewrite

x∗ =

n∑
i=1

λiyi = λ1y1 +

n∑
i=2

λiyi = λ1yi + (1− λ1) ·

(
n∑
i=2

λi
1− λ1

yi

)

which is a convex combination of two other feasible points. The point
∑n

i=2
λi

1−λ1 yi is feasible as
a convex combination of feasible points (note that

∑n
i=2 λi = 1− λ1).

4 Consider the following quadratic programming relaxation of the Max Cut problem on G = (V,E):

maximize
∑
{i,j}∈E

(1− xi)xj + xi(1− xj)

subject to xi ∈ [0, 1] ∀i ∈ V

Show that the optimal value of the quadratic relaxation actually equals the value of an optimal
cut. (Unfortunately, this does not give an exact algorithm for Max Cut as the above quadratic
program is NP-hard to solve (so is Max Cut).)

Hint: analyze basic randomized rounding.

Page 3 (of 4)

Algorithms II • Autumn 2024
Michael Kapralov and Ola Svensson

Solution: We give a rounding algorithm that gives a cut x∗ (an integral vector) of expected value
equal to the value of an optimal solution x to the quadratic program. The rounding algorithm is
the basic one: set x∗i = 1 with probability xi and x∗i = 0 with probability 1− xi. The expected
value of the objective function is then

∑
i,j E

(
(1− x∗i)x∗j + x∗i (1− x∗j)

)
=
∑

(i,j)∈E(1− xi)xj +
xi(1−xj) by independence of the variables x∗i and x

∗
j . Thus the expected value after rounding is

the optimal value of the quadratic relaxation. But as no integral cut can have larger value than
the relaxation, the value of the obtained cut x∗ must always equal the value of the fractional
solution x. It follows that the optimal value of the quadratic relaxation equals the value of an
optimal cut.

Page 4 (of 4)

Algorithms II • Autumn 2024
Michael Kapralov and Ola Svensson

