
Exercise Set IV, Algorithms II 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 (homework problem from previous year) Randomized rounding. Consider the standard linear
programming relaxation of Set Cover that we saw in class. We gave a randomized rounding
algorithm for the Set Cover problem. Use similar techniques to give an algorithm that, with
probability at least a positive constant, returns a collection of sets that cover at least 90% of the
elements and has cost at most a constant factor larger than the LP solution.

Solution: Using Claim 7 and Corollary 8 from the Lecture 7 notes, the expected cost of collection
C after d executions of Step 3 of the algorithm for set cover given in Lecture 7 notes is at most
d · LPOPT .

Let Xi be a random variable corresponding to the event whether i-th element is covered by
the output C or not. Specifically, let Xi = 1 if the given constraint is not satisfied (therefore
given element is not covered) and Xi = 0 if it is satisfied (therefore the element is covered) after
d executions of Step 3. Let X denote the total number of constraints that are not satisfied.
Therefore we write,

X = X1 +X2 + · · ·+Xn.

From Claim 9 in the Lecture 7 notes, we know that the probability that a constraint remains
unsatisfied after a single execution of Step 3 is at most 1

e . In addition, from the first step in the
proof of Claim 10, the probability that a constraint is unsatisfied after d executions of Step 3 is
at most 1

ed
. In other words, we have in our notation that

P(Xi = 1) ≤ 1

ed
.

Since each Xi is a Bernoulli random variable, we can write their expectation as

E(Xi) ≤
1

ed
.

We want to bound the probability that more than 10 % of the elements are not covered
(which also means less than 90 % of the elements are covered). We can use Markov’s Inequality
to write,

Page 1 (of 4)

Algorithms II • Autumn 2024
Michael Kapralov and Ola Svensson



P
(
X ≥ n

10

)
≤ E(X)

n/10

=
E(X1) + E(X2) + · · ·+ E(Xn)

n/10

≤
n · 1

ed

n/10

=
10

ed
.

Lastly, similar to Claim 11 in the lecture notes, we will bound the probability of bad events
(namely, the cost is high or less than 90 % of elements are covered). Firstly, we found that
expected cost after d executions is at most d · LPOPT . We can write using Markov’s Inequality
that,

P(cost ≥ 5d · LPOPT ) ≤
1

5
.

Secondly, we bound the probability of event that less than 90 % of elements are covered. We
did it above and showed that probability that more than 10 % of the elements are not covered is
at most 10

ed
. In the worst case, these bad events are completely disjoint. Therefore, the probability

that no bad event occurs is at least 1 − 1
5 −

10
ed

> 1
2 for some large constant d. Therefore, the

algorithm, with probability at least 1
2 , will return a collection of sets that cover at least 90 % of

the elements and has cost at most 5dLPOPT ≤ 5dOPT.

2 (* ) Consider the LP-rounding algorithm for Set Cover that works as follows:

1. Solve the LP relaxation to obtain an optimal solution x∗.

2. Return the solution {S : x∗S > 0}, i.e., containing all sets with a positive value in the
fractional solution.

Use the complementarity slackness conditions to prove that the algorithm is an f -approximation
algorithm, where f is the frequency (i.e., the maximum number of sets that any element belongs
to).

Solution: Let y be an optimal dual solution. By complementary slackness we have that for each
set S, either x∗s = 0 or

∑
e∈S ye = c(S). Let us now compute the cost of our algorithm. The cost

of the algorithm is
∑

S:x∗
S>0 c(S). By complementarity slackness we get that∑

S:x∗
S>0

c(S) =
∑

S:x∗
S>0

∑
e∈S

ye ≤
∑
S

∑
e∈S

ye =
∑
e∈U

ye
∑
S3e

1 ≤
∑
e∈U

f · ye.

We also know that (since y is a feasible dual solution)
∑

e∈U ye ≤ OPT . Therefore the cost of
the above algorithm is at most f ·OPT .

Page 2 (of 4)

Algorithms II • Autumn 2024
Michael Kapralov and Ola Svensson



3 Consider the following grumpy commuters problem. There are n persons. Each person i =
1, . . . , n has to choose a path from his/her home to work from a set Pi of potential paths (in
an underlying graph with n vertices that models the road network). In addition, person i has a
personal preference of paths modeled with a cost function ci : Pi → R+. The goal is to select
paths p1 ∈ P1, p2 ∈ P2, . . . , pn ∈ Pn (one for each person) so that

1. The paths p1, . . . , pn are edge-disjoint (the commuters are grumpy and do not want to
share roads).

2. The total cost c1(p1) + c2(p2) + · · ·+ cn(pn) is minimized.

3a Write an exact integer linear program for the grumpy commuters problem.

3b (*) Give a randomized rounding algorithm that returns a set of paths p1 ∈ P1, p2 ∈
P2, . . . , pn ∈ Pn satisfying:

1. The total cost c1(p1) + c2(p2) + · · · + cn(pn) is at most a constant factor times the
cost of the optimal value of the LP-relaxation.

2. Each edge is used by at most 100 · log n/ log log n paths.

You may assume that the underlying graph has n vertices.

Hint: for the analysis (of the second condition) the following specialized Chernoff bound1

will be useful: Let X1, . . . , Xn be n independent random variables taking values in {0, 1}.
If E[X1 + · · ·+Xn] ≤ 1, then

Pr[X1 + · · ·+Xn > 100 · log n/ log log n] < 1

n3
.

Solution: We first define an exact integer linear program for the grumpy commuters problem.
We have a variable xij for each person i = 1, . . . , n and each path pj ∈ Pi. The intuition is that
xij should take value 1 if person i chooses the path pj ∈ Pi, and 0 otherwise. Let E be the set
of edges in the graph.

minimize
n∑

i=1

∑
pj∈Pi

ci(pj)xij

subject to
n∑

i=1

∑
pj∈Pi:e∈pj

xij ≤ 1 ∀e ∈ E∑
pj∈Pi

xij = 1 ∀i = 1, . . . , n

xij ∈ {0, 1} ∀i = 1, . . . , n, pj ∈ Pi.

Since we do not know how to solve integer programs in polynomial time, we relax the last
constraint to 0 ≤ xij ≤ 1. Therefore we get a polynomial size linear program so we can solve
it in polynomial time as well. We will explain an algorithm such that the expected cost of its
solution is equal to the cost of the optimum LP solution and with probability at least 1− 1/n it
gives a feasible solution (uses each edge at most 100 · log n/ log log n times). The former implies,
by Markov’s inequality, that the cost of the returned solution is at most 4OPTLP with probability

1Chernoff bounds are an extremely useful tool for proving concentration of sums of independent random
variables taking values in {0, 1}. We will revisit them later in the course.

Page 3 (of 4)

Algorithms II • Autumn 2024
Michael Kapralov and Ola Svensson



at least 3/4. Therefore the probability that something goes wrong (the solution is too costly –
more than 4OPTLP – or infeasible) is at most 1/4 + 1/n < 1/3. This is called a Monte Carlo
algorithm.2

Let us design such an algorithm. To this end, let x∗ be the optimal value of the above LP. For
each player i = 1, . . . , n pick one of the paths in Pi with probability proportional to x∗ij (make
this pick independently for each player). Let the selected collection of paths be t = (t1, ..., tn).
Let us first analyze the expected cost of this algorithm:

expected cost of t =
n∑

i=1

∑
pj∈Pi

ci(pj)x
∗
ij = cost of x∗ = OPTLP .

Now let us compute the probability that t uses any edge more than 100 · log n/ log log n times.
Consider any edge e and let Xi be a random variable which is 1 if e ∈ ti and zero otherwise for
1 ≤ i ≤ n. Then

E[Xi] =
∑

pj∈Pi:e∈pj

x∗ij .

Therefore,

E[X1 + · · ·+Xn] =

n∑
i=1

∑
pj∈Pi:e∈pj

x∗ij ≤ 1

by the LP constraint. The variables Xi are independent, because the path of each player was
sampled independently. Therefore, by the Chernoff bound from the hint, we get that the proba-
bility of using this edge more than 100 log n/ log log n times is at most 1/n3. Since the underlying
graph has n vertices, it has at most n2 edges, and so the probability of violating any edge is at
most 1/n (using a union bound).

2However, if something does go wrong, we can actually detect it (it is easy to compare the cost of the returned
solution to the LP optimum and to count the number of times each edge is taken) and then rerun the algorithm.
By doing so, we get a so-called Las Vegas algorithm, which always gives a good solution, but its running time is
polynomial in expectation (and, in this case, with very high probability as well).

Page 4 (of 4)

Algorithms II • Autumn 2024
Michael Kapralov and Ola Svensson


