
Exercise Set III, Algorithms II
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. This exercise set contains many problems. So solve as many
problems as you can and ask for help if you get stuck for too long. Problems marked * are
more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 (*) Consider an undirected graph G = (V,E) and let s 6= t ∈ V . Recall that in the min s, t-cut
problem, we wish to find a set S ⊆ V such that s ∈ S, t 6∈ S and the number of edges crossing
the cut is minimized. Show that the optimal value of the following linear program equals the
number of edges crossed by a min s, t-cut:

minimize
∑
e∈E

ye

subject to y{u,v} ≥ xu − xv for every {u, v} ∈ E
y{u,v} ≥ xv − xu for every {u, v} ∈ E

xs = 0

xt = 1

xv ∈ [0, 1] for every v ∈ V

The above linear program has a variable xv for every vertex v ∈ V and a variable ye for every
edge e ∈ E.

Hint: Show that the expected value of the following randomized rounding equals the value of the
linear program. Select θ uniformly at random from [0, 1] and output the cut S = {v ∈ V : xv ≤ θ}.

Solution: Let OPT be the number of edges that cross a minimum s, t-cut, and let OPTLP be
the value of the given LP. To show that OPT = OPTLP , we show that OPTLP ≤ OPT and
OPTLP ≥ OPT .

Firstly let’s prove that OPTLP ≤ OPT . Suppose that S is an optimal cut s, t-cut. We have
s ∈ S and t 6∈ S. We will create a solution for the LP problem whose value equals cut size
defined by S and E \ S. Set xu = 0 for all u ∈ S, and xv = 1 for all v 6∈ S. Furthermore define

ye =

{
1 if e ∈ δ(S)
0 otherwise.

Clearly
∑

e ye = |δ(S)| = OPT . It remains to prove that the assignment to the variables
{xv}v∈V , {ye}e∈E is feasible:
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• Consider any edge {u, v}. We need to verify that y{u,v} ≥ xu − xv and y{u,v} ≥ xv − xu.
In other words, that y{u,v} ≥ |xu − xv|.

– If {u, v} ∈ δ(S) then one of the vertices are in S and one is outside. Say u ∈ S and
v 6∈ S. Then

1 = y{u,v} = |0− 1| = |xu − xv| .

– If {u, v} 6∈ δ(S) then either xu = xv = 0 (both are in S) or xu = xv (both are outside
S). In either case |xu − xv| = 0 and so the constraint y{u,v} = 0 = |xu − xv| is again
verified (with equality).

• xs = 0 and xt = 1. Moreover, we have xv ∈ {0, 1} ⊆ [0, 1] for every v ∈ V .

This finishes one part of the proof - there is an assignment to the variables such that the LP
outputs OPT . This means that OPTLP is at most OPT , in other words OPTLP ≤ OPT .

Now let’s prove that OPTLP ≥ OPT . Suppose that ({x∗v}v∈V , {y∗e}e∈E) is an optimal solution
to the LP. Consider the following randomized rounding: select θ ∈ (0, 1) uniformly at random
and let S = Sθ = {v ∈ V : x∗v ≤ θ}. Let’s analyze this rounding algorithm.

It is clear that we always output a feasible cut since x∗s = 0 and x∗t = 1. This tells us that
for every θ ∈ (0, 1) the associated Sθ is a valid solution and so OPT ≤ δ(Sθ). We thus have

OPT ≤ Eθ∈[0,1][|δ({v : x∗v ≤ θ}|)].

We will now complete the proof by showing that the above expectation is at most OPTLP . Let’s
introduce a new random variable Xe,θ that indicates if an edge is cut:

Xe,θ =

{
1 if e ∈ δ(Sθ)
0 otherwise.

Then the expectation above equals

Eθ∈[0,1]

[∑
e∈E

Xe,θ

]
=
∑
e∈E

Eθ∈[0,1] [Xe,θ]

Let’s analyze Eθ∈[0,1] [Xe] = Prθ∈[0,1][e is cut in Sθ] for a specific edge e = {u, v} ∈ E. In the
case when x∗u ≤ x∗v, the edge e is cut if and only if x∗u ≤ θ ≤ x∗v. The other case is analogous. It
follows that

Pr
θ∈[0,1]

[X{u,v},θ] =

{
Prθ∈[0,1][θ ∈ [x∗u, x

∗
v]] if x∗u ≤ x∗v

Prθ∈[0,1][θ ∈ [x∗v, x
∗
u]] if x∗u > x∗v

= |x∗u − x∗v| .

Now since the LP guarantees that y∗{u,v} ≥ |x
∗
u − x∗v|, we have∑

{u,v}∈E

Eθ∈[0,1]
[
X{u,v},θ

]
=

∑
{u,v}∈E

|x∗u − x∗v| ≤
∑
{u,v}∈E

y∗{u,v} = OPTLP .

It follows that
OPT ≤ Eθ∈[0,1][|δ({v : x∗v ≤ θ}|)] ≤ OPTLP

and this finishes the proof.
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2 (*) Consider the linear programming relaxation for minimum-weight vertex cover:

Minimize
∑
v∈V

xvw(v)

Subject to xu + xv ≥ 1 ∀{u, v} ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

In class, we saw that any extreme point is integral when considering bipartite graphs. For general
graphs, this is not true, as can be seen by considering the graph consisting of a single triangle.
However, we have the following statement for general graphs:

Any extreme point x∗ satisfies x∗v ∈ {0, 12 , 1} for every v ∈ V .

Prove the above statement.

Solution: Consider an extreme point x∗, and suppose for the sake of contradiction that x∗

is not half-integral, i.e., that there is an edge e such that x∗e 6∈ {0, 12 , 1}. We will show that
x∗ is a convex combination of feasible points, contradicting that x∗ is an extreme point. Let
V + = {v : 1

2 < x∗v < 1} and V − = {v : 0 < x∗v <
1
2}. Note that V + ∪ V − 6= ∅, since x∗ is

assumed to not be half-integral. Take ε > 0 to be tiny, and define:

y+v =


x∗v + ε if v ∈ V +

x∗v − ε if v ∈ V −
x∗v otherwise

y−v =


x∗v − ε if v ∈ V +

x∗v + ε if v ∈ V −
x∗v otherwise

Note that x∗ = 1
2y

+ + 1
2y
−.

It remains to verify that y+ and y− are feasible solutions.

1. By selecting ε small enough, the boundary constraints (0 ≤ y+v ≤ 1, 0 ≤ y−v ≤ 1) are
satisfied.

2. Consider the constraints for the edges e = {u, v} ∈ E. If x∗u + x∗v > 1, the constraint
remains satisfied by picking ε > 0 small enough. If x∗u+x∗v = 1, then consider the following
cases:

• u, v /∈ V + ∪ V −. In this case, y+u + y+v = x∗u + x∗v = 1.

• u ∈ V +; then v ∈ V −. In this case, y+u + y+v = x∗u + ε+ x∗v − ε = 1.

• u ∈ V −; then v ∈ V +. In this case, y+u + y+v = x∗u − ε+ x∗v + ε = 1.

So y+ is a feasible solution. The same argument holds for y−.
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3 Write the dual of the following linear program:

Maximize 6x1 + 14x2 + 13x3

Subject to x1 + 3x2 + x3 ≤ 24

x1 + 2x2 + 4x3 ≤ 60

x1, x2, x3 ≥ 0

Hint: How can you convince your friend that the above linear program has optimum value at
most z?

Solution: We convince our friend by taking y1 ≥ 0 multiples of the first constraints and y2 ≥ 0
multiplies of the second constraint so that

6x1 + 14x2 + 13x3 ≤ y1(x1 + 3x2 + x3) + y2(x1 + 2x2 + 4x3) ≤ y124 + y260 .

To get the best upper bound, we wish to minimize the right-hand-side 24y1 + 60y2. However,
for the first inequality to hold, we need that y1x1 + y2x1 ≥ 6x1 for all non-negative x1 and so
y1+y2 ≥ 6. The same argument gives us the constraints 3y1+2y2 ≥ 14 for x2 and y1+4y2 ≥ 13
for x3. It follows that we can formulate the problem of finding an upper bound as the following
linear program (the dual):

Minimize 24y1 + 60y2

Subject to y1 + y2 ≥ 6

3y1 + 2y2 ≥ 14

y1 + 4y2 ≥ 13

y1, y2 ≥ 0

4 Consider the min-cost perfect matching problem on a bipartite graph G = (A∪B,E) with costs
c : E → R. Recall from the lecture that the dual linear program is

Maximize
∑
a∈A

ua +
∑
b∈B

vb

Subject to ua + vb ≤ c({a, b}) for every edge {a, b} ∈ E.

Show that the dual linear program is unbounded if there is a set S ⊆ A such that |S| > |N(S)|,
where N(S) = {v ∈ B : {u, v} ∈ E for some u ∈ S} denotes the neighborhood of S. This proves
(as expected) that the primal is infeasible in this case.

Solution: Let vb = 0 for all b ∈ B and ua = min{a,b}∈E c({a, b}) be a dual solution. By definition
it is feasible. Now define the vector (u∗, v∗) by

u∗a =

{
1 if a ∈ S
0 otherwise

and v∗b =

{
−1 if b ∈ N(S)

0 otherwise

Note that (u, v)+α · (u∗, v∗) is a feasible solution for any scalar α ≥ 0. Such a solution has dual
value

∑
a∈A ua+

∑
b∈B vb+α·

(∑
a∈S u

∗
a −

∑
b∈N(S) v

∗
b

)
=
∑

a∈A ua+
∑

b∈B vb+α·(|S|−|N(S)|),
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and as |S| > |N(S)| this shows that the optimal solution to the dual is unbounded (letting
α→∞).

5 (half a *) Prove Hall’s Theorem:

“An n-by-n bipartite graphG = (A∪B,E) has a perfect matching if and only if |S| ≤ |N(S)|
for all S ⊆ A.”

(Hint: use the properties of the augmenting path algorithm for the hard direction.)

Solution: It is easy to see that if a bipartite graph has a perfect matching, then |S| ≤ |N(S)|
for all S ⊆ A. This holds even if we only consider the edges inside the perfect matching. Now
we focus on proving the other direction, i.e., if |S| ≤ |N(S)| for all S ⊆ A then G has a perfect
matching. We define a procedure that given a matching M with maximum size which does not
cover a0 ∈ A, it returns a set S ⊆ A such that |N(S)| < |S|. This shows that the size of the
matching should be n. To this end, let A0 = {a0} and B0 = N(a0). Note that all vertices of B0

are covered by the matching M (if b0 ∈ B0 is not covered, the edge a0b0 can be added to the
matching which contradicts the fact that M is a maximum matching). If B0 = ∅, S = A0 is a
set such that |N(S)| < |S|. Else, B0 is matched with |B0| vertices of A distinct from a0. We
set A1 = NM (B0) ∪ {a0}, where NM (B0) is the set of vertices matched with vertices of B0. We
have |A1| = |B0|+1 ≥ |A0|+1. Let B1 = N(A1). Again, no vertices in B1 is exposed, otherwise
there is an augmenting path. If |B1| < |A1|, the algorithm terminates with |N(A1)| < |A1|. If
not, let A2 = NM (B1) ∪ {a0}. Then |A2| ≥ |B1| + 1 ≥ |A1| + 1. We continue this procedure
till it terminates. This procedure eventually terminates since size of set Ai is strictly increasing.
Hence it return a set S ⊆ A such that |N(A)| < |S|. 1

6 Consider the Maximum Disjoint Paths problem: given an undirected graph G = (V,E) with
designated source s ∈ V and sink t ∈ V \{s} vertices, find the maximum number of edge-disjoint
paths from s to t. To formulate it as a linear program, we have a variable xp for each possible
path p that starts at the source s and ends at the sink t. The intuitive meaning of xp is that it
should take value 1 if the path p is used and 0 otherwise2. Let P be the set of all such paths
from s to t. The linear programming relaxation of this problem now becomes

Maximize
∑
p∈P

xp

subject to
∑

p∈P :e∈p
xp ≤ 1, ∀e ∈ E,

xp ≥ 0, ∀p ∈ P.

What is the dual of this linear program? What famous combinatorial problem do binary
solutions to the dual solve?

1Some parts of this proof are taken from this link.
2The number of variables may be exponential, but let us not worry about that.
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Solution:
The dual is the following:

minimize
∑
e∈E

ye

subject to
∑
e∈p

ye ≥ 1 ∀p ∈ P,

ye ≥ 0 ∀e ∈ E.

Any binary solution y ∈ {0, 1}|E| to the dual corresponds to a set of edges which, when removed
from G, disconnect s and t (indeed, for every path p from s to t, at least one edge must be
removed). This is called the minimum s,t-cut problem.
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