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Exercise Set Ill, Algorithms 1l

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. This exercise set contains many problems. So solve as many
problems as you can and ask for help if you get stuck for too long. Problems marked * are
more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 (*) Consider an undirected graph G = (V, E) and let s #t € V. Recall that in the min s, t-cut
problem, we wish to find a set S C V such that s € S, t € S and the number of edges crossing
the cut is minimized. Show that the optimal value of the following linear program equals the
number of edges crossed by a min s, t-cut:

minimize Z Ye
ecl
subject to Y{uw} = Tu — Ty for every {u,v} € E

Y{up} = To — Ty for every {u,v} € £

zs =0
Tt = 1
x, € 10,1] for every v € V

The above linear program has a variable x,, for every vertex v € V' and a variable y, for every
edge e € F.

Hint: Show that the expected value of the following randomized rounding equals the value of the
linear program. Select 0 uniformly at random from [0, 1] and output the cut S = {v € V : x, < 0}.

Solution: Let OPT be the number of edges that cross a minimum s, t-cut, and let OPTyp be
the value of the given LP. To show that OPT = OP1TLp, we show that OPTrp < OPT and
OPTrp > OPT.

Firstly let’s prove that OPTrp < OPT. Suppose that S is an optimal cut s, t-cut. We have
s€ Sandt ¢ S. We will create a solution for the LP problem whose value equals cut size
defined by S and E'\ S. Set x,, =0 for all uw € S, and z, =1 for all v ¢ S. Furthermore define

1 ifeed(S
ye:{ ()

0 otherwise.

Clearly > .y = [0(S)] = OPT. It remains to prove that the assignment to the variables
{zv}oev, {Ye}eer is feasible:
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e Consider any edge {u,v}. We need to verify that Y{uw} = Tu — Ty and Ypy ) > Ty — Ty
In other words, that yg, ., > [Ty — 2u].

— If {u,v} € 6(5) then one of the vertices are in S and one is outside. Say u € S and
v & S. Then

1 = Y{uw} = |0_1| = |l‘u—l‘v|.

— If {u,v} & 6(S) then either z,, = 2, = 0 (both are in S) or z,, = z,, (both are outside
S). In either case |, — x| = 0 and so the constraint yy, ,} = 0 = |z, — 2| is again
verified (with equality).

e ;=0 and x; = 1. Moreover, we have z, € {0,1} C [0, 1] for every v € V.

This finishes one part of the proof - there is an assignment to the variables such that the LP
outputs OPT. This means that OPTyp is at most OPT, in other words OPTp < OPT.

Now let’s prove that OPTp > OPT. Suppose that ({x}}vev, {y} }eer) is an optimal solution
to the LP. Consider the following randomized rounding: select 6 € (0,1) uniformly at random
and let S = Sp = {v e V:z) <0} Let’s analyze this rounding algorithm.

It is clear that we always output a feasible cut since z% = 0 and x; = 1. This tells us that
for every 6 € (0, 1) the associated Sp is a valid solution and so OPT < §(Sp). We thus have

OPT < Egpejollo({v : x, < 0}])].

We will now complete the proof by showing that the above expectation is at most OPTrp. Let’s
introduce a new random variable X, g that indicates if an edge is cut:

{1 if e € 5(Sp)

Xeg =
¢ 0 otherwise.

)

Then the expectation above equals

Egefo,1) [Z Xe,e] = Epepo, 1] [Xe]

eclE e€lR

Let’s analyze Egcjo 1) [Xe] = Prgep,i[e is cut in Sp| for a specific edge e = {u,v} € E. In the
case when z;, < z7, the edge e is cut if and only if x;, < 6 < z}. The other case is analogous. It
follows that

Pr [X{um},@] = >

Pr@e[o,l} [0 € [‘TZ?‘TZH if z _ ‘x* o x*‘
0€[0,1] Procjol0 € [z, 23]] ifx v

u

Sx &%
8
¥ <%

Now since the LP guarantees that yy, > |}, — 7|, we have
Z EGG[OJ] [X{u,v}ﬁ] = Z ’fﬁz - .1‘:’ < Z yfu,v} =OPT.p.
{u,v}eE {uv}eE {uv}eE

It follows that
OPT < Egepo[[0({v : a3 < 0}])] < OPTLp

and this finishes the proof.
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(*) Consider the linear programming relaxation for minimum-weight vertex cover:

Minimize Z Tpw(v)
veV
Subject to  zy + 2y >1 V{u,v} € FE

0<z, <1 YveV

In class, we saw that any extreme point is integral when considering bipartite graphs. For general
graphs, this is not true, as can be seen by considering the graph consisting of a single triangle.
However, we have the following statement for general graphs:

1

Any extreme point z* satisfies z}, € {0, 5,1} for every v € V.

Prove the above statement.

Solution: Consider an extreme point z*, and suppose for the sake of contradiction that z*
is not half-integral, i.e., that there is an edge e such that =} ¢ {0, %, 1}. We will show that
x* is a convex combination of feasible points, contradicting that z* is an extreme point. Let
Vi={v:i<a<1}and V- = {v:0 <z} <3} Notethat VT UV~ # (), since z* is

assumed to not be half-integral. Take € > 0 to be tiny, and define:

x5+ € ifveVt
—€ ifveV~™
otherwise

+ *
yv - xv
*

Ly

Ty — € ifveVt

Yp =4 Tpt+e€ ifveV™

v
T otherwise

v

Note that z* = %y‘*‘ + %y‘.
It remains to verify that y* and y~ are feasible solutions.

1. By selecting € small enough, the boundary constraints (0 < yF < 1,0 <y, < 1) are
satisfied.

2. Consider the constraints for the edges e = {u,v} € E. If z} + x} > 1, the constraint
remains satisfied by picking € > 0 small enough. If 7 4+ 27 = 1, then consider the following
cases:

e u,v ¢ VUV~ In this case, yi +y =k + 2} = 1.
e ue VT thenve V™. In this case, yf +y =2 +e+al —e=1.
e u €V ;thenv e VT In this case, yf +y =2 —e+ a5 +e=1.

So yT is a feasible solution. The same argument holds for 3.
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3  Write the dual of the following linear program:

Maximize 6x1 + 1429 + 13x3

Subject to x1 4+ 3zo + 3 < 24
T1 + 229 + 423 < 60
T1,T9,2x3 >0

Hint: How can you convince your friend that the above linear program has optimum value at
most 27

Solution: We convince our friend by taking y; > 0 multiples of the first constraints and y» > 0
multiplies of the second constraint so that

6x1 + 14z + 1323 < 1 (331 + 329 + 563) + y2($1 + 229 + 4$3) < 1124 4 1960 .

To get the best upper bound, we wish to minimize the right-hand-side 24y; + 60y2. However,
for the first inequality to hold, we need that y1x1 + yox1 > 621 for all non-negative x; and so
y1+y2 > 6. The same argument gives us the constraints 3y; 4+ 2ys > 14 for x2 and y; +4y» > 13
for x3. It follows that we can formulate the problem of finding an upper bound as the following
linear program (the dual):

Minimize 24y; + 60y2
Subject to Y1 +y2 > 6
3y1 +2y2 > 14
Y1+ 4y2 > 13
y1,y2 > 0

4 Consider the min-cost perfect matching problem on a bipartite graph G = (AU B, F) with costs
c: E — R. Recall from the lecture that the dual linear program is

Maximize Z Uq + Z Vp

acA beB
Subject to  ug + vy < c({a, b}) for every edge {a,b} € E.

Show that the dual linear program is unbounded if there is a set S C A such that |S| > |[N(5)],
where N(S) = {v € B : {u,v} € E for some u € S} denotes the neighborhood of S. This proves
(as expected) that the primal is infeasible in this case.

Solution: Let v, = 0 for all b € B and u, = ming, y1ecp c({a, b}) be a dual solution. By definition
it is feasible. Now define the vector (u*,v*) by

. 1 ifaesS . —1 ifbe N(5)
u, = i and vy = )
0 otherwise 0 otherwise

Note that (u,v) + - (u*,v*) is a feasible solution for any scalar v > 0. Such a solution has dual
value - c g ta+) pep vpta (Zaes UG = 2 ben(s) UZ) = 2acatat Y pep vnta-(|S[=[N(S))),
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and as |S| > |N(S)| this shows that the optimal solution to the dual is unbounded (letting
a — 00).

(half a *) Prove Hall’s Theorem:

“An n-by-n bipartite graph G = (AUB, E) has a perfect matching if and only if |S| < |N(S)|
forall SC A

(Hint: use the properties of the augmenting path algorithm for the hard direction.)

Solution: It is easy to see that if a bipartite graph has a perfect matching, then |S| < |[N(95)]
for all S C A. This holds even if we only consider the edges inside the perfect matching. Now
we focus on proving the other direction, i.e., if |S| < |N(S)| for all S C A then G has a perfect
matching. We define a procedure that given a matching M with maximum size which does not
cover apg € A, it returns a set S C A such that |[N(S)| < |S|. This shows that the size of the
matching should be n. To this end, let Ay = {ap} and By = N(ap). Note that all vertices of By
are covered by the matching M (if by € By is not covered, the edge apby can be added to the
matching which contradicts the fact that M is a maximum matching). If By =0, S = Ap is a
set such that |N(S)| < |S|. Else, By is matched with |By| vertices of A distinct from ag. We
set A1 = Nyr(By) U{agp}, where Njs(By) is the set of vertices matched with vertices of By. We
have |A1| = |Bo|+1 > |Ao|+1. Let By = N(A;). Again, no vertices in Bj is exposed, otherwise
there is an augmenting path. If |Bj| < |A;], the algorithm terminates with |N(A;)| < |Ai]. If
not, let Ay = Ny (B1) U {ap}. Then |As| > |Bi| +1 > |A1| + 1. We continue this procedure
till it terminates. This procedure eventually terminates since size of set A; is strictly increasing.
Hence it return a set S C A such that |[N(A4)| < |S]. E|

Consider the Maximum Disjoint Paths problem: given an undirected graph G = (V, E) with
designated source s € V' and sink ¢ € V'\ {s} vertices, find the maximum number of edge-disjoint
paths from s to ¢. To formulate it as a linear program, we have a variable z, for each possible
path p that starts at the source s and ends at the sink ¢. The intuitive meaning of x,, is that it
should take value 1 if the path p is used and 0 otherwiseﬂ Let P be the set of all such paths
from s to t. The linear programming relaxation of this problem now becomes

Maximize E Tp

peEP
subject to Z xp < 1, Ve € E,
pEP:e€p
xp 2> 0, Vp € P.

What is the dual of this linear program? What famous combinatorial problem do binary
solutions to the dual solve?

1Some parts of this proof are taken from this linkl
2The number of variables may be exponential, but let us not worry about that.
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http://www-sop.inria.fr/members/Frederic.Havet/Cours/matching.pdf

Solution:
The dual is the following;:

minimize Z Ye
eckE
subject to Zye >1 VpeP,

eEp
Ye >0 Ve € F.

Any binary solution y € {0, 1}|E | to the dual corresponds to a set of edges which, when removed

from G, disconnect s and ¢ (indeed, for every path p from s to ¢, at least one edge must be
removed). This is called the minimum s,t-cut problem.
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