

Exercise Set III, Algorithms II

These exercises are for your own benefit. Feel free to collaborate and share your answers with other students. **This exercise set contains many problems.** So solve as many problems as you can and ask for help if you get stuck for too long. Problems marked * are more difficult but also more fun:).

These problems are taken from various sources at EPFL and on the Internet, too numerous to cite individually.

1 (*) Consider an undirected graph G = (V, E) and let $s \neq t \in V$. Recall that in the min s, t-cut problem, we wish to find a set $S \subseteq V$ such that $s \in S$, $t \notin S$ and the number of edges crossing the cut is minimized. Show that the optimal value of the following linear program equals the number of edges crossed by a min s, t-cut:

$$\begin{array}{ll} \textbf{minimize} & \sum_{e \in E} y_e \\ \textbf{subject to} & y_{\{u,v\}} \geq x_u - x_v \quad \text{ for every } \{u,v\} \in E \\ & y_{\{u,v\}} \geq x_v - x_u \quad \text{ for every } \{u,v\} \in E \\ & x_s = 0 \\ & x_t = 1 \\ & x_v \in [0,1] \quad \text{ for every } v \in V \\ \end{array}$$

The above linear program has a variable x_v for every vertex $v \in V$ and a variable y_e for every edge $e \in E$.

Hint: Show that the expected value of the following randomized rounding equals the value of the linear program. Select θ uniformly at random from [0,1] and output the cut $S = \{v \in V : x_v \leq \theta\}$.

Solution: Let OPT be the number of edges that cross a minimum s, t-cut, and let OPT_{LP} be the value of the given LP. To show that $OPT = OPT_{LP}$, we show that $OPT_{LP} \leq OPT$ and $OPT_{LP} \geq OPT$.

Firstly let's prove that $OPT_{LP} \leq OPT$. Suppose that S is an optimal cut s, t-cut. We have $s \in S$ and $t \notin S$. We will create a solution for the LP problem whose value equals cut size defined by S and $E \setminus S$. Set $x_u = 0$ for all $u \in S$, and $x_v = 1$ for all $v \notin S$. Furthermore define

$$y_e = \begin{cases} 1 & \text{if } e \in \delta(S) \\ 0 & \text{otherwise.} \end{cases}$$

Clearly $\sum_{e} y_e = |\delta(S)| = OPT$. It remains to prove that the assignment to the variables $\{x_v\}_{v \in V}$, $\{y_e\}_{e \in E}$ is feasible:

Page 1 (of 6)

- Consider any edge $\{u,v\}$. We need to verify that $y_{\{u,v\}} \ge x_u x_v$ and $y_{\{u,v\}} \ge x_v x_u$. In other words, that $y_{\{u,v\}} \ge |x_u x_v|$.
 - If $\{u,v\} \in \delta(S)$ then one of the vertices are in S and one is outside. Say $u \in S$ and $v \notin S$. Then

$$1 = y_{\{u,v\}} = |0 - 1| = |x_u - x_v|.$$

- If $\{u,v\} \notin \delta(S)$ then either $x_u = x_v = 0$ (both are in S) or $x_u = x_v$ (both are outside S). In either case $|x_u x_v| = 0$ and so the constraint $y_{\{u,v\}} = 0 = |x_u x_v|$ is again verified (with equality).
- $x_s = 0$ and $x_t = 1$. Moreover, we have $x_v \in \{0, 1\} \subseteq [0, 1]$ for every $v \in V$.

This finishes one part of the proof - there is an assignment to the variables such that the LP outputs OPT. This means that OPT_{LP} is at most OPT, in other words $OPT_{LP} \leq OPT$.

Now let's prove that $OPT_{LP} \geq OPT$. Suppose that $(\{x_v^*\}_{v \in V}, \{y_e^*\}_{e \in E})$ is an optimal solution to the LP. Consider the following randomized rounding: select $\theta \in (0,1)$ uniformly at random and let $S = S_{\theta} = \{v \in V : x_v^* \leq \theta\}$. Let's analyze this rounding algorithm.

It is clear that we always output a feasible cut since $x_s^* = 0$ and $x_t^* = 1$. This tells us that for every $\theta \in (0,1)$ the associated S_{θ} is a valid solution and so $OPT \leq \delta(S_{\theta})$. We thus have

$$OPT \le \mathbb{E}_{\theta \in [0,1]}[|\delta(\{v : x_v^* \le \theta\}|)].$$

We will now complete the proof by showing that the above expectation is at most OPT_{LP} . Let's introduce a new random variable $X_{e,\theta}$ that indicates if an edge is cut:

$$X_{e,\theta} = \begin{cases} 1 & \text{if } e \in \delta(S_{\theta}) \\ 0 & \text{otherwise.} \end{cases}$$

Then the expectation above equals

$$\mathbb{E}_{\theta \in [0,1]} \left[\sum_{e \in E} X_{e,\theta} \right] = \sum_{e \in E} \mathbb{E}_{\theta \in [0,1]} \left[X_{e,\theta} \right]$$

Let's analyze $\mathbb{E}_{\theta \in [0,1]}[X_e] = \Pr_{\theta \in [0,1]}[e \text{ is cut in } S_{\theta}]$ for a specific edge $e = \{u,v\} \in E$. In the case when $x_u^* \leq x_v^*$, the edge e is cut if and only if $x_u^* \leq \theta \leq x_v^*$. The other case is analogous. It follows that

$$\Pr_{\theta \in [0,1]}[X_{\{u,v\},\theta}] = \begin{cases} \Pr_{\theta \in [0,1]}[\theta \in [x_u^*, x_v^*]] & \text{if } x_u^* \leq x_v^* \\ \Pr_{\theta \in [0,1]}[\theta \in [x_v^*, x_u^*]] & \text{if } x_u^* > x_v^* \end{cases} = |x_u^* - x_v^*| \,.$$

Now since the LP guarantees that $y^*_{\{u,v\}} \ge |x^*_u - x^*_v|$, we have

$$\sum_{\{u,v\} \in E} \mathbb{E}_{\theta \in [0,1]} \left[X_{\{u,v\},\theta} \right] = \sum_{\{u,v\} \in E} |x_u^* - x_v^*| \leq \sum_{\{u,v\} \in E} y_{\{u,v\}}^* = OPT_{LP} \,.$$

It follows that

$$OPT \leq \mathbb{E}_{\theta \in [0,1]}[|\delta(\{v: x_v^* \leq \theta\}|)] \leq OPT_{LP}$$

and this finishes the proof.

2 (*) Consider the linear programming relaxation for minimum-weight vertex cover:

Minimize
$$\sum_{v \in V} x_v w(v)$$
Subject to
$$x_u + x_v \ge 1 \quad \forall \{u, v\} \in E$$

$$0 < x_v < 1 \quad \forall v \in V$$

In class, we saw that any extreme point is integral when considering bipartite graphs. For general graphs, this is not true, as can be seen by considering the graph consisting of a single triangle. However, we have the following statement for general graphs:

Any extreme point x^* satisfies $x_v^* \in \{0, \frac{1}{2}, 1\}$ for every $v \in V$.

Prove the above statement.

Solution: Consider an extreme point x^* , and suppose for the sake of contradiction that x^* is not half-integral, i.e., that there is an edge e such that $x_e^* \notin \{0, \frac{1}{2}, 1\}$. We will show that x^* is a convex combination of feasible points, contradicting that x^* is an extreme point. Let $V^+ = \{v : \frac{1}{2} < x_v^* < 1\}$ and $V^- = \{v : 0 < x_v^* < \frac{1}{2}\}$. Note that $V^+ \cup V^- \neq \emptyset$, since x^* is assumed to not be half-integral. Take $\epsilon > 0$ to be tiny, and define:

$$y_v^+ = \begin{cases} x_v^* + \epsilon & \text{if } v \in V^+ \\ x_v^* - \epsilon & \text{if } v \in V^- \\ x_v^* & \text{otherwise} \end{cases}$$

$$y_v^- = \begin{cases} x_v^* - \epsilon & \text{if } v \in V^+ \\ x_v^* + \epsilon & \text{if } v \in V^- \\ x_v^* & \text{otherwise} \end{cases}$$

Note that $x^* = \frac{1}{2}y^+ + \frac{1}{2}y^-$.

It remains to verify that y^+ and y^- are feasible solutions.

- 1. By selecting ϵ small enough, the boundary constraints $(0 \le y_v^+ \le 1, 0 \le y_v^- \le 1)$ are satisfied.
- 2. Consider the constraints for the edges $e = \{u, v\} \in E$. If $x_u^* + x_v^* > 1$, the constraint remains satisfied by picking $\epsilon > 0$ small enough. If $x_u^* + x_v^* = 1$, then consider the following cases:
 - $u, v \notin V^+ \cup V^-$. In this case, $y_u^+ + y_v^+ = x_u^* + x_v^* = 1$.
 - $u \in V^+$; then $v \in V^-$. In this case, $y_u^+ + y_v^+ = x_u^* + \epsilon + x_v^* \epsilon = 1$.
 - $u \in V^-$; then $v \in V^+$. In this case, $y_u^+ + y_v^+ = x_u^* \epsilon + x_v^* + \epsilon = 1$.

So y^+ is a feasible solution. The same argument holds for y^- .

3 Write the dual of the following linear program:

Maximize
$$6x_1 + 14x_2 + 13x_3$$

Subject to $x_1 + 3x_2 + x_3 \le 24$
 $x_1 + 2x_2 + 4x_3 \le 60$
 $x_1, x_2, x_3 \ge 0$

Hint: How can you convince your friend that the above linear program has optimum value at most z?

Solution: We convince our friend by taking $y_1 \ge 0$ multiples of the first constraints and $y_2 \ge 0$ multiplies of the second constraint so that

$$6x_1 + 14x_2 + 13x_3 \le y_1(x_1 + 3x_2 + x_3) + y_2(x_1 + 2x_2 + 4x_3) \le y_1 + 2x_2 + 2x_3 + 2x_3 \le y_1 + 2x_2 + 2x_3 \le y_1 + 2x_3 \le y_$$

To get the best upper bound, we wish to minimize the right-hand-side $24y_1 + 60y_2$. However, for the first inequality to hold, we need that $y_1x_1 + y_2x_1 \ge 6x_1$ for all non-negative x_1 and so $y_1 + y_2 \ge 6$. The same argument gives us the constraints $3y_1 + 2y_2 \ge 14$ for x_2 and $y_1 + 4y_2 \ge 13$ for x_3 . It follows that we can formulate the problem of finding an upper bound as the following linear program (the dual):

Minimize
$$24y_1 + 60y_2$$

Subject to $y_1 + y_2 \ge 6$
 $3y_1 + 2y_2 \ge 14$
 $y_1 + 4y_2 \ge 13$
 $y_1, y_2 \ge 0$

4 Consider the min-cost perfect matching problem on a bipartite graph $G = (A \cup B, E)$ with costs $c: E \to \mathbb{R}$. Recall from the lecture that the dual linear program is

Maximize
$$\sum_{a \in A} u_a + \sum_{b \in B} v_b$$
 Subject to
$$u_a + v_b \le c(\{a,b\})$$
 for every edge $\{a,b\} \in E$.

Show that the dual linear program is unbounded if there is a set $S \subseteq A$ such that |S| > |N(S)|, where $N(S) = \{v \in B : \{u, v\} \in E \text{ for some } u \in S\}$ denotes the neighborhood of S. This proves (as expected) that the primal is infeasible in this case.

Solution: Let $v_b = 0$ for all $b \in B$ and $u_a = \min_{\{a,b\} \in E} c(\{a,b\})$ be a dual solution. By definition it is feasible. Now define the vector (u^*, v^*) by

$$u_a^* = \begin{cases} 1 & \text{if } a \in S \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad v_b^* = \begin{cases} -1 & \text{if } b \in N(S) \\ 0 & \text{otherwise} \end{cases}$$

Note that $(u, v) + \alpha \cdot (u^*, v^*)$ is a feasible solution for any scalar $\alpha \geq 0$. Such a solution has dual value $\sum_{a \in A} u_a + \sum_{b \in B} v_b + \alpha \cdot \left(\sum_{a \in S} u_a^* - \sum_{b \in N(S)} v_b^*\right) = \sum_{a \in A} u_a + \sum_{b \in B} v_b + \alpha \cdot (|S| - |N(S)|)$,

Page 4 (of 6)

and as |S| > |N(S)| this shows that the optimal solution to the dual is unbounded (letting $\alpha \to \infty$).

5 (half a *) Prove Hall's Theorem:

"An *n*-by-*n* bipartite graph $G = (A \cup B, E)$ has a perfect matching if and only if $|S| \leq |N(S)|$ for all $S \subseteq A$."

(Hint: use the properties of the augmenting path algorithm for the hard direction.)

Solution: It is easy to see that if a bipartite graph has a perfect matching, then $|S| \leq |N(S)|$ for all $S \subseteq A$. This holds even if we only consider the edges inside the perfect matching. Now we focus on proving the other direction, i.e., if $|S| \leq |N(S)|$ for all $S \subseteq A$ then G has a perfect matching. We define a procedure that given a matching M with maximum size which does not cover $a_0 \in A$, it returns a set $S \subseteq A$ such that |N(S)| < |S|. This shows that the size of the matching should be n. To this end, let $A_0 = \{a_0\}$ and $B_0 = N(a_0)$. Note that all vertices of B_0 are covered by the matching M (if $b_0 \in B_0$ is not covered, the edge a_0b_0 can be added to the matching which contradicts the fact that M is a maximum matching). If $B_0 = \emptyset$, $S = A_0$ is a set such that |N(S)| < |S|. Else, B_0 is matched with $|B_0|$ vertices of A distinct from a_0 . We set $A_1 = N_M(B_0) \cup \{a_0\}$, where $N_M(B_0)$ is the set of vertices matched with vertices of B_0 . We have $|A_1| = |B_0| + 1 \ge |A_0| + 1$. Let $B_1 = N(A_1)$. Again, no vertices in B_1 is exposed, otherwise there is an augmenting path. If $|B_1| < |A_1|$, the algorithm terminates with $|N(A_1)| < |A_1|$. If not, let $A_2 = N_M(B_1) \cup \{a_0\}$. Then $|A_2| \ge |B_1| + 1 \ge |A_1| + 1$. We continue this procedure till it terminates. This procedure eventually terminates since size of set A_i is strictly increasing. Hence it return a set $S \subseteq A$ such that |N(A)| < |S|.

6 Consider the Maximum Disjoint Paths problem: given an undirected graph G = (V, E) with designated source $s \in V$ and sink $t \in V \setminus \{s\}$ vertices, find the maximum number of edge-disjoint paths from s to t. To formulate it as a linear program, we have a variable x_p for each possible path p that starts at the source s and ends at the sink t. The intuitive meaning of x_p is that it should take value 1 if the path p is used and 0 otherwise². Let p be the set of all such paths from p to p. The linear programming relaxation of this problem now becomes

$$\begin{array}{ll} \text{Maximize} & \sum_{p \in P} x_p \\ \text{subject to} & \sum_{p \in P: e \in p} x_p \leq 1, \qquad \forall e \in E, \\ & x_p \geq 0, \qquad \forall p \in P. \end{array}$$

What is the dual of this linear program? What famous combinatorial problem do binary solutions to the dual solve?

¹Some parts of this proof are taken from this link.

²The number of variables may be exponential, but let us not worry about that.

Solution:

The dual is the following:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{e \in E} y_e \\ \text{subject to} & \displaystyle \sum_{e \in p} y_e \geq 1 & \forall p \in P, \\ & y_e \geq 0 & \forall e \in E. \end{array}$$

Any binary solution $y \in \{0,1\}^{|E|}$ to the dual corresponds to a set of edges which, when removed from G, disconnect s and t (indeed, for every path p from s to t, at least one edge must be removed). This is called the minimum s,t-cut problem.