
Exercise Set II, Advanced Algorithms 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 (half a *) Devise an algorithm for the following graph orientation problem:

Input: An undirected graph G = (V,E) and capacities k : V → Z for each vertex.

Output: If possible, an orientation of G such that each vertex v ∈ V has in-degree at most
k(v).

An orientation of an undirected graph G replaces each undirected edge {u, v} by either an arc
(u, v) from u to v or by an (v, u) from v to u.

(Hint: reduce the problem to matroid intersection. You can also use bipartite matching. . .)

Solution: Consider the directed graph D = (V,A) obtained from G by replacing every edge
{u, v} ∈ E by the two arcs (u, v) and (v, u). With the arc set A as ground set we define two
partition matroidsM1 andM2:

• To be independent inM1 one can take at most one of {(u, v), (v, u)} for every {u, v} ∈ E,
i.e.,

I1 = {F ⊆ A : |F ∩ {(u, v), (v, u)}| ≤ 1 for all {u, v} ∈ E} .

This matroid enforces the constraint that each edge should be oriented in one direction.

• To be independent in M2, one can take at most k(v) arcs among the set δ−(v) of incoming
arcs for every v:

I2 = {F ⊆ A : |F ∩ δ−(v)| ≤ k(v) for all v ∈ V } .

This matroid enforces the indegree restrictions of the orientation.

By the above definitions, there exists an orientation satisfying the required indegree restrictions
if and only if there exists a common independent set toM1 andM2 of cardinality precisely |E|
(in which case we select either (u, v) or (v, u) but not both).

2 The first problem is difficult so you may want to skip that and solve (6b) assuming (6a) and
then try (6a) if you have time.

2a (*) Consider a family F of subsets of the ground set E that satisfies: if X,Y ∈ F then
either X ∩Y = ∅ (they are disjoint), X ⊆ Y (X is a subset of Y), or Y ⊆ X (Y is a subset
of X). Show that for any positive integers {kX}X∈F (one for each set in F) we have that
M = (E, I) is a matroid, where

I = {S ⊆ E : |S ∩X| ≤ kX for every X ∈ F} .

Such a matroid is called a laminar matroid.

Page 1 (of 8)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

Solution: (There are various proof of this fact. One is explained below.)

We show thatM satisfies the two axioms I1 and I2 for matroids.

• Let ∅ 6= S ∈ I and let x ∈ S. To show thatM satisfies Axiom I1, let T (S. Since S ∈ I,
we have |T ∩X| ≤ |S ∩X| ≤ kX for each X ∈ F . Hence, T ∈ I.

• Let A,B ∈ I such that |A| > |B|. To show thatM satisfies Axiom I2, we show that there
exist an element x ∈ A \B such that B ∪ {x} ∈ I.
Suppose that |B ∩X| < kX (with strict inequality) for all X ∈ F . In this case, we choose
any x ∈ A \B and add it to B, and the resulting set B ∪ {x} is in I.
Now suppose that |B∩X| = kX for some setX ∈ F . Then, we cannot add any x ∈ A∩X to
B as it would violate the constraint for X (|(B ∪ {x}) ∩X| > kX for such an x). However
notice that |A ∩ X| can also have at most kX elements. Thus A has at least |A| − kX
elements outside X and B has exactly |B| − kX elements outside X. Since |A| > |B| we
have |A| − kX > |B| − kX , and consequently, we have more elements in A \ X than in
B \X. We generalize this idea formally below.

Let F? = {X ∈ F : |B ∩ X| = kX} be the collection of sets in F for which the the
constraints are satisfied with equality. By our assumption above, F? is non-empty. Let
Y1 be the largest set in F?. Let Y2 be the next largest set in F? that is disjoint with Y1.
After Yi is selected, let Yi+1 be the next largest set in F? that is disjoint from each Yj for
j = 1, 2, . . . , i. Stop this procedure when no more such sets can be selected, and let Ym be
the last selected set. Any of the remaining sets in F? is completely contained inside one of
the sets Y1, Y2, . . . Ym (why?). Let Y = ∪mi=1Yi. We show that the number of elements in
A \ Y is more than the number of elements in B \ Y . We have

|A| = |(A ∩ Y) ∪ (A \ Y)| =
∣∣(∪i∈[m](A ∩ Yi)

)
∪ (A \ Y)

∣∣ = |A \ Y |+ ∑
i∈[m]

|A ∩ Yi|,

and similarly, we have

|B| = |B \ Y |+
∑
i∈[m]

|B ∩ Yi|.

But |B∩Yi| = kYi and |A∩Yi| ≤ kYi for all i = 1, . . . ,m. Thus using |A| > |B| we conclude
that |A\Y | > |B \Y |. Choose an element x ∈ (A\Y)\B. By our selection of Yi’s, x is not
in any of the sets in F?, and therefore, adding it to B would not violate those constrains
for sets in F?. For all sets in F\F?, the respective constraints have some slack and adding
x to B would not violate those constraints either.

2b Argh! Buying the DVD rental shop was not such a great idea. After the explosion of more
convenient streaming services, you are now forced to close your business venture. But
what should you do with all your DVDs? To be exact, you have n DVDs and each one
is placed in one of the following genres: action, comedy, drama, horror or adventure. As
you are a very nice person, you decide to distribute these DVDs among your most loyal
customers. You have m loyal customers and for each DVD i and customer j there is a
positive weight w(i, j) that models how interesting DVD i is for customer j. Your goal is
to find an assignment of DVDs to loyal customers satisfying the following:

• Each DVD is assigned to at most one customer.

Page 2 (of 8)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

• Each customer receives at most 5 DVDs in total and no more than 2 DVDs of the
same genre.

• The total weight (called the social welfare) of your assignment is maximized.

Show that the problem of distributing the DVDs as above can be formulated as that of
finding a maximum weight independent set in the intersection of two matroids.

Solution: In this problem, we need to satisfy two conditions.

1. Each DVD is assigned at most one customer

2. Each customer receives at most 5 DVDs in total and no more than 2 DVDs of the same
genre.

Let the customers be numbered 1, . . . ,m and DVDs be numbered 1, . . . , n. Let E = {(i, j) :
i ∈ [m], j ∈ [n]} be the set of possible edges, which will be the ground set for our matroids.

Let S ⊆ E be any assignment of DVDs to customers that satisfies the two constraints.

Let Dj = {(i, j) : i ∈ [m]} for all j ∈ [n]. In order to satisfy Condition 1, it is clear that, for
all j ∈ [n], |S ∩Dj | ≤ 1. Hence, we define our first matroid as the following partition matroid.

I1 = {S ⊆ E : |S ∩Dj | ≤ 1 for all j ∈ [n]} .

For the second constraint, we use the result from 1a. Let G1, . . . G5 be a partition of [n]
corresponding to genres ‘action’, ‘comedy’, ‘drama’, ‘horror’ and ‘adventure’ respectively. For
i ∈ [n], let Ci = {(i, j) ∈ E : j ∈ [n]} be the set of edges going from customer i to the set
of DVDs. For i ∈ [m], ` ∈ [5], let Ti` = {(i, j) ∈ E : j ∈ G`} be the set of edges going from
customer i to DVDs of genre G`. Note that Ci’s are a partitioning of E and, for each i, Ti`’s are
a partitioning of Ci.

If S satisfies Condition 2, it must be the case that, |S ∩ Ti`| ≤ 2 for all ` = 1, . . . , 5 and
|S ∩ Ci| ≤ 5 for all i ∈ [n].

Let kTi` = 2 for all i ∈ [n], ` ∈ [5] and let kCi = 5. Let F = {Ti` : i ∈ [n], ` ∈ [5]} ∪ {Ci :
i ∈ [m]}. Since Ci’s are a partitioning of E and since for each i, Ti`’s are a partitioning of Ci,
any X,Y ∈ F satisfies either X ∩ Y = ∅ or X ⊆ Y or Y ⊆ X. Thus, from 1a the following is a
matroid.

I2 = {S ⊆ E : |S ∩X| ≤ kX for all X ∈ F} .

From the above discussion it is clear that a solution S is feasible if and only if it is independent
in both I1 and I2. Hence, the problem is equivalent to finding the maximum weight independent
set in the intersection of the two matroids, I1 and I2.

3 Spanning trees with colors. Consider the following problem where we are given an edge-
colored graph and we wish to find a spanning tree that contains a specified number of edges of
each color:

Input: A connected undirected graph G = (V,E) where the edges E are partitioned into k color
classes E1, E2, . . . , Ek. In addition each color class i has a target number ti ∈ N.

Page 3 (of 8)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

Output: If possible, a spanning tree T ⊆ E of the graph satisfying the color requirements:

|T ∩ Ei| = ti for i = 1, . . . , k.

Otherwise, i.e., if no such spanning tree T exists, output that no solution exists.

Design a polynomial time algorithm for the above problem. You should analyze the correctness
of your algorithm, i.e., why it finds a solution if possible. To do so, you are allowed to use
algorithms and results seen in class without reexplaining them.

Solution: We solve this problem using matroid intersection. First observe that if the summation
of the ti for 1 ≤ i ≤ k is not equal to n− 1 then there is no feasible solution since we know that
the number of edge in any spanning tree is exactly n−1. Therefore, we assume

∑
1≤i≤k ti = n−1.

The ground set for both matroids that we use is the set of the edges E. First matroid that we
use is the graphic matroid. The second matroid that we use is a partition matroid with following
independent sets:

I = {F ⊆ E | |F ∩ Ei| ≤ ti, for 1 ≤ i ≤ k}

As shown in class the both above defined matroids are indeed matroid. Now assume that F is
the maximum size independent set the intersection of these two matroids (we saw in the class
how we can find F). If |F | < n − 1 it is not possible to find a solution for our problem, since
any solution to our problem corresponds to a solution in the intersection of these two matroids
of size n − 1. Moreover, if |F | = n − 1, than F is a spanning tree and |F ∩ Ei| ≤ ti. Also, we
know that |F | = n− 1 and

∑
1≤i≤k ti = n− 1 and Ei’s are disjoint. Therefore |F ∩ Ei| = ti, so

we get the desired solution.

4 For a bipartite graph, devise an efficient algorithm for finding an augmenting path P (if one
exists). What is the total running time of the AugmentingPathAlgorithm explained in the
second lecture?

Solution: Let the bipartition of the bipartite graph G = (V,E) be A and B, and let M be the
current bipartite matching maintained by AugmentingPathAlgorithm. From G, obtain the
directed graph where each edge in M is directed from the vertex in B to the vertex in A. All
other edges E\M are directed from A to B. Now start a breadth-first-search from the unmatched
vertices in A. Note that if an unmatched vertex in B is reached by the breadth-first-search, then
we have found an augmenting path. The runtime analysis is

• O(|E|) for the construction of the directed graph from G.

• O(|V |+ |E|) for the run of the breadth-first-search.

So we can find an augmenting path in timeO(|V |+|E|). Since we increase the size of the matching
each time we find an augmenting path, the total running time is O(k(|V |+|E|) = O(|V |(|V |+|E|)
where k is the cardinality of a maximum matching.

5 You have just started your prestigious and important job as the Swiss Cheese Minister. As it
turns out, different fondues and raclettes have different nutritional values and different prices:

Page 4 (of 8)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

Food Fondue moitie moitie Fondue a la tomate Raclette Requirement per week
Vitamin A [mg/kg] 35 0.5 0.5 0.5 mg
Vitamin B [mg/kg] 60 300 0.5 15 mg
Vitamin C [mg/kg] 30 20 70 4 mg
[price [CHF/kg] 50 75 60 —

Formulate the problem of finding the cheapest combination of the different fondues (moitie
moitie & a la tomate) and Raclette so as to satisfy the weekly nutritional requirement as a linear
program.

Solution: We have a variable x1 for moitie moitie, a variable x2 for a la tomate, and a variable
x3 for Raclette. The linear program becomes

Minimize 50x1 + 75x2 + 60x3

Subject to 35x1 + 0.5x2 + 0.5x3 ≥ 0.5

60x1 + 300x2 + 0.5x3 ≥ 15

30x1 + 20x2 + 70x3 ≥ 4

x1, x2, x3 ≥ 0

6 Consider the following linear program for finding a maximum-weight matching:

Maximize
∑
e∈E

xewe

Subject to
∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

(This is similar to the perfect matching problem seen in the lecture, except that we have inequality
constraints instead of equality constraints.) Prove that, for bipartite graphs, any extreme point
is integral.

Solution: We prove that all the extreme points are integral by contradiction. To that end,
assume that there exists an extreme point x∗ that is not integral. Let G = (V1, V2, E) be the
given bipartite graph and let Ef = {e ∈ E | 0 < x∗e < 1}. If Ef contains a cycle, then the
proof follows in the same way as the proof in the lecture notes. Therefore, we assume that Ef
does not contain any cycles. Consider any maximal path in Ef ; let it have vertices v1, ..., vk and
edges e1, ..., ek−1. Choose any ε such that 0 < ε < min(x∗ei , 1− x

∗
ei : i = 1, ..., k − 1). Note that,

since Ef only contains edges that are fractional, such an ε exists. Let y, z be the following two
solutions to the linear program:

y =


x∗e + ε if e ∈ {e1, e3, e5, e7, ...}
x∗e − ε if e ∈ {e2, e4, e6, e8, ...}
x∗e otherwise

z =


x∗e − ε if e ∈ {e1, e3, e5, e7, ...}
x∗e + ε if e ∈ {e2, e4, e6, e8, ...}
x∗e otherwise

Page 5 (of 8)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

One can see that x∗ = y+z
2 .

We continue by showing that y is a feasible solution to the linear program. One can see that
for any vertex v ∈ G except v1 and vk we have

∑
e∈δ(v) ye =

∑
e∈δ(v) x

∗
e. So, we only need to

show that the linear program constraint holds for v1 and vk. Let us first state two observations.
First, by the definition of ε, we have that 0 ≤ x∗e1 + ε ≤ 1, 0 ≤ x∗e1− ε ≤ 1, 0 ≤ x∗ek−1

+ ε ≤ 1, and
0 ≤ x∗ek−1

− ε ≤ 1. Second, since the path is maximal and Ef does not contain any cycles, the
degrees of v1 and vk in Ef are both one. Therefore

∑
e∈δ(v1) ye = ye1 and

∑
e∈δ(vk) ye = yek−1

.
Putting together the previous two observations, we get that the linear program constraint also
holds for v1 and vk, so y is a feasible solution.

We can similarly show that z is also a feasible solution. This shows that we can write x∗ as
a convex combination of y and z, which contradicts the fact that x∗ is an extreme point.

7 (half a *) Use the integrality of the bipartite perfect matching polytope (as proved in class) to
show the following classical result:

The edge set of a k-regular bipartite graph G = (A ∪ B,E) can in polynomial time be
partitioned into k disjoint perfect matchings.

A graph is k-regular if the degree of each vertex equals k. Two matchings are disjoint if they do
not share any edges.

Solution: We show how to find such k disjoint perfect matchings in a k-regular bipartite graph
in polynomial time.

Let G0 = (A ∪ B,E) be a k-regular bipartite graph. Consider the LP for bipartite perfect
matching on G0. The LP is feasible because setting xe = 1/k for all e ∈ E satisfies all the
constraints (recall that each vertex of a k-regular graph is incident to exactly k edges). Now we
find an extreme point solution to the LP in polynomial time, and due to the integrality of such
solutions, we get a valid perfect matching M1.

Notice that M1, being a perfect matching, forms a 1-regular sub-graph of G. Therefore, if
we remove the matching M1 from the original graph G0, we get a new (k − 1)-regular graph
G1 = (A ∪B,E \M).

Now we repeat the process k times. Formally, at each iteration i = 1, . . . , k, we start with
(k− i+ 1)-regular graph Gi−1. By solving the bipartite perfect matching LP for Gi−1 to get an
extreme point solution, we obtain a perfect matching Mi. We remove Mi from Gi−1 to obtain a
(k − i)-regular graph Gi, which is a sub-graph of Gi−1.

Since we remove the already found perfect matchings at each iteration, the k-perfect match-
ings M1, . . . ,Mk are disjoint. Furthermore, since all graphs G1, . . . , Gk−1 are sub-graphs of the
original graph G0, the matchings M1, . . . ,Mk are all valid perfect matchings of G0.

Page 6 (of 8)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

