
Exercise Set I, Algorithms II
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 (easy) Show that, given a matroidM = (E, I) and a weight function w : E → R, Greedy (as
defined in the lecture notes) always returns a base of the matroid.

Solution: Recall that a base of a matroid is an independent set of maximum cardinality. Let
B ∈ I be a base of M. Suppose towards a contradiction that the output S ∈ I of Greedy
is not a base of M. Then |S| < |B|, and, by the second axiom of matroids, there exists some
eb ∈ B \ S such that (S ∪ {eb}) ∈ I. Let S′ be the subset of elements in S that were considered
before eb by Greedy. In other words, S′ was the partial solution of Greedy just before it
considered eb. By the first axiom of matroids, S′ ∪ {eb} ∈ I because S′ ∪ {eb} ⊆ S ∪ {eb}. Thus
Greedy should have added eb to its solution S in Step 4, which is a contradiction.

Alternative solution. A base is a subset of maximal cardinality. Suppose that Greedy
outputs S ∈ I but there exists S∗ ∈ I such that S ( S∗ (thus S is not maximal). Let e ∈ S∗ \S.
Now consider the current returning set F when Greedy observes e. Since F +e ⊆ S∗, we conclude
from the first axiom that this set is independent. Thus we reach a contradiction because Greedy
should have added e to F .

2 Given a matroidM = (E, I) and a weight function w : E → R, Greedy for matroids returns a
base S = {s1, s2, . . . , sk} of maximum weight. As noted in the lecture notes, any base consists of
the same number, say k, of elements (which is said to be the rank of the matroid). We further
assume that the elements of S are indexed so that w(s1) ≥ w(s2) ≥ · · · ≥ w(sk).

Let S` = {s1, . . . , s`} be the subset of S consisting of the ` first elements, for ` = 1, . . . , k.
Then prove that

w(S`) = max
T∈I:|T |=`

w(T ) for all ` = 1, . . . , k.

In other words, Greedy does not only returns a base of maximum weight but the “prefixes” are
maximum weight sets of respective cardinalities.

Solution: Consider some ` = 1, . . . , k and define I` = {I ∈ I : |I| ≤ `}. There are two key
observations:

• M` = (E, I`) is a matroid called the truncated matroid of M .
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• Greedy has an identical execution onM` as forM until ` elements are selected.

From these properties (and the fact that Greedy works for matroids and thus forM`) we have
that Greedy returns the max-weight base S = {s1, . . . , s`} ofM`. In other words,

w(S`) = max
T∈I`:|T |=`

w(T ) = max
T∈I:|T |=`

w(T )

as required.

3 (easy) Recall that a matroidM = (E, I) is a partition matroid if E is partitioned into disjoint
sets E1, E2, ..., E` and

I = {X ⊆ E : |Ei ∩X| ≤ ki for i = 1, 2, ..., `} .

Verify that this is indeed a matroid.

Solution:
We show thatM satisfies the two axioms I1 and I2 for matroids.

• Take any A ∈ I and let B ⊆ A. Then |Ei ∩ A| ≤ ki for all i = 1, . . . , `. Clearly, all the
inequalities |Ei ∩B| ≤ ki also hold as B ⊆ A. Thus B ∈ I, and Axiom I1 is satisfied.

• Let A,B ∈ I and suppose that |A| > |B|. For all i = 1, . . . , `, consider the sets Ei ∩ A
and Ei ∩B. Since |A| is strictly greater than |B|, there exists an index j ∈ {1, . . . , `} such
that |Ej ∩ A| > |Ej ∩ B|. This implies that |Ej ∩ B| ≤ |Ej ∩ A| − 1 ≤ kj − 1. Choose
an element e ∈ (Ej ∩ A) \ (Ej ∩ B) ⊆ A and add it to B. The new set B ∪ {e} satisfies
|Ej ∩ (B ∪ {e})| ≤ kj . Clearly, the new set also satisfies all the remaining inequalities
because |Ei ∩ (B ∪ {e})| = |Ei ∩ B| for i 6= j (note that e /∈ Ei for i 6= j because e ∈ Ej

and E1, E2, . . . , E` are disjoint). Thus B ∪ {e} ∈ I, and Axiom I2 is satisfied.

4 (half a *) Consider a bipartite graph G = (V,E) where V is partitioned into A and B. Let (A, I)
be the matroid with ground set A and

I = {A′ ⊆ A : G has a matching in which every vertex of A′ is matched} .

Recall that we say that a vertex is matched by a matching M if there is an edge in M incident
to v. Show that (A, I) is indeed a matroid by verifying the two axioms.

Solution: We need to verify the two axioms:

(I1) Consider a set A′ ∈ I and a subset A′′ ⊆ A′. The matching that match every vertex in A′

also matches every vertex in A′′ so A′′ ∈ I as required.

(I2) Consider two sets A1, A2 ∈ I with |A1| < |A2|. Let M1 and M2 be the two matchings
that matches all vertices in A1 and A2, respectively. Assume, w.l.o.g. that |M1| = |A1|
and |M2| = |A2|. Note that these matchings are guaranteed to exist since A1, A2 ∈ I.
Now the graph (V,M1 ∪M2) has a matching of cardinality at least |M2|. This means that
there is an augmenting path P in (V,M1 ∪M2) with respect to the matching M1. If we
let M = M1∆P then M matches all vertices in A1 plus one more vertex v from A since
|M | = |M1| + 1. This vertex has to be from A2 since A1 ∪ A2 are the only vertices of A
that are incident to any edges in graph (V,M1 ∪M2). It follows that v ∈ A2 \ A1 and
A1 + v ∈ I as required.
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5

5a (*) Consider a family F of subsets of the ground set E that satisfies: if X,Y ∈ F then
either X ∩Y = ∅ (they are disjoint), X ⊆ Y (X is a subset of Y ), or Y ⊆ X (Y is a subset
of X). Show that for any positive integers {kX}X∈F (one for each set in F) we have that
M = (E, I) is a matroid, where

I = {S ⊆ E : |S ∩X| ≤ kX for every X ∈ F} .

Such a matroid is called a laminar matroid.

Solution: (There are various proof of this fact. One is explained below.)

We show thatM satisfies the two axioms I1 and I2 for matroids.

• Let ∅ 6= S ∈ I and let x ∈ S. To show thatM satisfies Axiom I1, let T ( S. Since S ∈ I,
we have |T ∩X| ≤ |S ∩X| ≤ kX for each X ∈ F . Hence, T ∈ I.

• Let A,B ∈ I such that |A| > |B|. To show thatM satisfies Axiom I2, we show that there
exist an element x ∈ A \B such that B ∪ {x} ∈ I.
Suppose that |B ∩X| < kX (with strict inequality) for all X ∈ F . In this case, we choose
any x ∈ A \B and add it to B, and the resulting set B ∪ {x} is in I.
Now suppose that |B∩X| = kX for some setX ∈ F . Then, we cannot add any x ∈ A∩X to
B as it would violate the constraint for X (|(B ∪ {x}) ∩X| > kX for such an x). However
notice that |A ∩ X| can also have at most kX elements. Thus A has at least |A| − kX
elements outside X and B has exactly |B| − kX elements outside X. Since |A| > |B| we
have |A| − kX > |B| − kX , and consequently, we have more elements in A \ X than in
B \X. We generalize this idea formally below.

Let F? = {X ∈ F : |B ∩ X| = kX} be the collection of sets in F for which the the
constraints are satisfied with equality. By our assumption above, F? is non-empty. Let
Y1 be the largest set in F?. Let Y2 be the next largest set in F? that is disjoint with Y1.
After Yi is selected, let Yi+1 be the next largest set in F? that is disjoint from each Yj for
j = 1, 2, . . . , i. Stop this procedure when no more such sets can be selected, and let Ym be
the last selected set. Any of the remaining sets in F? is completely contained inside one of
the sets Y1, Y2, . . . Ym (why?). Let Y = ∪mi=1Yi. We show that the number of elements in
A \ Y is more than the number of elements in B \ Y . We have

|A| = |(A ∩ Y ) ∪ (A \ Y )| =
∣∣(∪i∈[m](A ∩ Yi)

)
∪ (A \ Y )

∣∣ = |A \ Y |+
∑
i∈[m]

|A ∩ Yi|,

and similarly, we have

|B| = |B \ Y |+
∑
i∈[m]

|B ∩ Yi|.

But |B∩Yi| = kYi and |A∩Yi| ≤ kYi for all i = 1, . . . ,m. Thus using |A| > |B| we conclude
that |A\Y | > |B \Y |. Choose an element x ∈ (A\Y )\B. By our selection of Yi’s, x is not
in any of the sets in F?, and therefore, adding it to B would not violate those constrains
for sets in F?. For all sets in F\F?, the respective constraints have some slack and adding
x to B would not violate those constraints either.
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5b Argh! Buying the DVD rental shop was not such a great idea. After the explosion of more
convenient streaming services, you are now forced to close your business venture. But
what should you do with all your DVDs? To be exact, you have n DVDs and each one
is placed in one of the following genres: action, comedy, drama, horror or adventure. As
you are a very nice person, you decide to distribute these DVDs among your most loyal
customers. You have m loyal customers and for each DVD i and customer j there is a
positive weight w(i, j) that models how interesting DVD i is for customer j. Your goal is
to find an assignment of DVDs to loyal customers satisfying the following:

• Each DVD is assigned to at most one customer.

• Each customer receives at most 5 DVDs in total and no more than 2 DVDs of the
same genre.

• The total weight (called the social welfare) of your assignment is maximized.

Show that the problem of distributing the DVDs as above can be formulated as that of
finding a maximum weight independent set in the intersection of two matroids.

Solution: In this problem, we need to satisfy two conditions.

1. Each DVD is assigned at most one customer

2. Each customer receives at most 5 DVDs in total and no more than 2 DVDs of the same
genre.

Let the customers be numbered 1, . . . ,m and DVDs be numbered 1, . . . , n. Let E = {(i, j) :
i ∈ [m], j ∈ [n]} be the set of possible edges, which will be the ground set for our matroids.

Let S ⊆ E be any assignment of DVDs to customers that satisfies the two constraints.

Let Dj = {(i, j) : i ∈ [m]} for all j ∈ [n]. In order to satisfy Condition 1, it is clear that, for
all j ∈ [n], |S ∩Dj | ≤ 1. Hence, we define our first matroid as the following partition matroid.

I1 = {S ⊆ E : |S ∩Dj | ≤ 1 for all j ∈ [n]} .

For the second constraint, we use the result from 1a. Let G1, . . . G5 be a partition of [n]
corresponding to genres ‘action’, ‘comedy’, ‘drama’, ‘horror’ and ‘adventure’ respectively. For
i ∈ [n], let Ci = {(i, j) ∈ E : j ∈ [n]} be the set of edges going from customer i to the set
of DVDs. For i ∈ [m], ` ∈ [5], let Ti` = {(i, j) ∈ E : j ∈ G`} be the set of edges going from
customer i to DVDs of genre G`. Note that Ci’s are a partitioning of E and, for each i, Ti`’s are
a partitioning of Ci.

If S satisfies Condition 2, it must be the case that, |S ∩ Ti`| ≤ 2 for all ` = 1, . . . , 5 and
|S ∩ Ci| ≤ 5 for all i ∈ [n].

Let kTi`
= 2 for all i ∈ [n], ` ∈ [5] and let kCi = 5. Let F = {Ti` : i ∈ [n], ` ∈ [5]} ∪ {Ci :

i ∈ [m]}. Since Ci’s are a partitioning of E and since for each i, Ti`’s are a partitioning of Ci,
any X,Y ∈ F satisfies either X ∩ Y = ∅ or X ⊆ Y or Y ⊆ X. Thus, from 1a the following is a
matroid.

I2 = {S ⊆ E : |S ∩X| ≤ kX for all X ∈ F} .
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From the above discussion it is clear that a solution S is feasible if and only if it is independent
in both I1 and I2. Hence, the problem is equivalent to finding the maximum weight independent
set in the intersection of the two matroids, I1 and I2.

6 Spanning trees with colors. Consider the following problem where we are given an edge-
colored graph and we wish to find a spanning tree that contains a specified number of edges of
each color:

Input: A connected undirected graph G = (V,E) where the edges E are partitioned into k color
classes E1, E2, . . . , Ek. In addition each color class i has a target number ti ∈ N.

Output: If possible, a spanning tree T ⊆ E of the graph satisfying the color requirements:

|T ∩ Ei| = ti for i = 1, . . . , k.

Otherwise, i.e., if no such spanning tree T exists, output that no solution exists.

Design a polynomial time algorithm for the above problem. You should analyze the correctness
of your algorithm, i.e., why it finds a solution if possible. To do so, you are allowed to use
algorithms and results seen in class without reexplaining them.

Solution: We solve this problem using matroid intersection. First observe that if the summation
of the ti for 1 ≤ i ≤ k is not equal to n− 1 then there is no feasible solution since we know that
the number of edge in any spanning tree is exactly n−1. Therefore, we assume

∑
1≤i≤k ti = n−1.

The ground set for both matroids that we use is the set of the edges E. First matroid that we
use is the graphic matroid. The second matroid that we use is a partition matroid with following
independent sets:

I = {F ⊆ E | |F ∩ Ei| ≤ ti, for 1 ≤ i ≤ k}

As shown in class the both above defined matroids are indeed matroid. Now assume that F is
the maximum size independent set the intersection of these two matroids (we saw in the class
how we can find F ). If |F | < n − 1 it is not possible to find a solution for our problem, since
any solution to our problem corresponds to a solution in the intersection of these two matroids
of size n − 1. Moreover, if |F | = n − 1, than F is a spanning tree and |F ∩ Ei| ≤ ti. Also, we
know that |F | = n− 1 and

∑
1≤i≤k ti = n− 1 and Ei’s are disjoint. Therefore |F ∩ Ei| = ti, so

we get the desired solution.
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