
Exercise Set X, Algorithms II 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

Locality Sensitive Hashing

1 (Final exam question from a previous year) LSH for Jaccard similarity.
Recall the Jaccard index that we saw in Exercises: Suppose we have a universe U . For

non-empty sets A,B ⊆ U , the Jaccard index is defined as

J(A,B) =
|A ∩B|
|A ∪B|

.

Design a locality sensitive hash (LSH) family H of functions h : 2U → [0, 1] such that for any
non-empty sets A,B ⊆ U ,

Pr
h∼H

[h(A) 6= h(B)]

{
≤ 0.01 if J(A,B) ≥ 0.99,
≥ 0.1 if J(A,B) ≤ 0.9.

(In this problem you are asked to explain the hash family and argue that it satisfies the above
properties. Recall that you are allowed to refer to material covered in the course.)

2 In this problem we design an LSH for points in Rd with the `1 distance, i.e.

d(p, q) =
d∑
i=1

|pi − qi|.

Define a class of hash functions as follows: Fix a positive number w. Each hash function is
defined via a choice of d independently selected random real numbers s1, s2, . . . , sd, each uniform
in [0, w). The hash function associated with this random set of choices is

h(x1, . . . , xd) =

(⌊
x1 − s1
w

⌋
,

⌊
x2 − s2
w

⌋
, . . . ,

⌊
xd − sd
w

⌋)
.

Let αi = |pi − qi|. What is the probability that h(p) = h(q), in terms of the αi values? It may
be easier to first think of the case when w = 1. Try also to simplify your expression if w is much
larger than αi’s, using that (1− x) ≈ e−x for small values of x ≥ 0.

Page 1 (of 3)

Algorithms II • Autumn 2024
Ola Svensson

3 (*) A certain ex-president’s “university” has experienced a lot of cheating and you have been
contacted to fix the problem. In particular, you should design a system for detecting plagiarism.
To your help you have downloaded all the recent theses from the web. Let n be the number of
theses. To simplify matters, you use the “bag of words” representation which just represents each
thesis i by a vector vi. The vector has an entry for each word in the English language that equals
the number of times that word appears in the thesis. For example, in the ex-president’s thesis,
say thesis i, the word rigorous appears only once, whereas tremendous appears 1000 times, and
so

vi(“rigorous”) = 1 and vi(“tremendous”) = 1000 .

To deal with theses of different lengths, we normalize the vectors to have unit length. Let
u1, . . . , un denote the normalized vectors, i.e., ui = vi/‖vi‖2 for i = 1, . . . , n. A good distance
measure of similarity between two normalized vectors p and q (corresponding to two different
theses) is the cosine similarity (or angular similarity) defined as follows:

dist(p, q) = “the angle between p and q” = cos−1(〈p, q〉) .

To detect plagiarism, it seems reasonable to inspect similar theses. That is, if the normalized
vector q corresponding to a newly submitted thesis satisfies dist(q, ui) ≤ 1◦ for some i = 1, . . . , n,
then we would like to inspect ui for plagiarism. To find such close ui’s, we wish to design an
efficient (approximate) nearest neighbor search data structure. To do so, you need to design a
family of locally sensitive hash (LSH) functions H that map normalized “bag of word” vectors to
{0, 1} such that for some p1 > p2:

• If dist(q, ui) ≤ 1◦ then Prh∼H[h(q) = h(ui)] ≥ p1. (we need to inspect ui)

• If dist(q, ui) ≥ 10◦ then Prh∼H[h(q) = h(ui)] < p2. (it is safe to ignore ui)

What values of p1 and p2 do you get?

Hint: Randomly cut the sphere into two halves.

Submodular Functions (after Tuesday’s lecture)

4 There is a set [n] = {1, . . . , n} of n different ice cream tastes. Maggie Simpson’s total happiness
goes up by vi ≥ 0 if she eats ice cream i ∈ [n]. However, as her stomach has bounded size, her
happiness can never exceed some certain value B > 0. In other words, if Maggie eats S ⊆ [n],
her total happiness is

f(S) = min

(∑
i∈S

vi, B

)
.

Show that f is a submodular function.

Page 2 (of 3)

Algorithms II • Autumn 2024
Ola Svensson

5 Let f : 2N → R be a submodular function. Show that the following functions are also submod-
ular:

• g(S) = f(S ∪A) where A is a fixed set.

• g(S) = f(S ∩A) where A is a fixed set.

• g(S) = f(N \ S).

6 (half *) Let f : 2N → R be a submodular function. Let A ⊆ N and suppose that A(p) is a
random subset of A where each element u ∈ A appears in A(p) with probability p. Show that:

E[f(A(p))] ≥ (1− p)f(∅) + pf(A).

To prove this, use that the Lovàsz extension f̂ of f is the convex closure. That is, for input
z ∈ [0, 1]n, we have that f̂(z) equals the minimum

ES∼µ[f(S)]

over all distributions µ of subsets satisfying the marginal probabilities: PrS∼µ[i ∈ S] = zi for all
i ∈ {1, 2, . . . , n}.

7 Consider a directed G = (V,E) and define the set function f : 2V → R by

f(S) = |{(u, v) ∈ E : u ∈ S, v 6∈ S}| for every S ⊆ V .

That is, f(S) equals the number of arcs that exits the set S.

7a Show that f is a (non-monotone) submodular function

7b Let S be a random subset of vertices obtained by including each vertex with probability
1/2 independently of other vertices. Show that

E[f(S)] = |E|/4 ≥ OPT/4 ,

where OPT = maxT⊆V f(T).

Also give an example of a graph where |E| = OPT and thus it shows that the analysis is
tight with respect to OPT.

7c (*) Consider any submodular function f that is

• non-negative: f(T) ≥ 0 for all T .

Let S be a random subset of elements obtained by including each element with probability
1/2 independently of other elements. Then

E[f(S)] ≥ OPT/4 ,

where OPT = maxT f(T).

This shows that the simple randomized algorithm actually gives a good approximation to
any (even non-monotone) submodular function assuming it is non-negative.

Page 3 (of 3)

Algorithms II • Autumn 2024
Ola Svensson

