
Finding the Optimal Delivery Plan:

Model as a Constraint Satisfaction Problem

Radu Jurca, Nguyen Quang Huy and Michael Schumacher

Intelligent Agents Course 2006–2007

1 Problem Definition

One company owns several vehicles that are supposed to optimally deliver a set
of tasks in a given network. The goal of the company is to determine a plan for
each of its vehicles such that:

1. all tasks assigned to the company are delivered;

2. vehicles carry out tasks sequentially (i.e., every vehicle must first deliver
the loaded task before picking up another task)

3. the total revenue of the company is maximized;

We assume that the total revenue of the company is defined as the sum of
the individual revenues obtained by each vehicle. The revenue of a vehicle is
computed as the sum of the rewards (obtained from delivering the tasks) minus
the total cost incurred for delivering the tasks. The total cost for delivering the
tasks is computed by multiplying the number of driven kilometers by the cost
per kilometer of the vehicle.

Formally, let:

• V = {v1, v2, . . . vNV
} be the set of vehicles owned by the company, and

available for delivering the tasks;

• T = {t1, t2, . . . tNT
} be the set of tasks to be delivered.

Every task is characterized by a pickup city and a delivery city. We assume
we already know the shortest path between any two cities.

2 Solution

As vehicles cannot carry out tasks in parallel, a delivery plan for a vehicle
is uniquely characterized by the delivery sequence of the assigned tasks. For
example, if t1 and t2 are assigned to the first vehicle, it is enough to tell the
vehicle to first carry out t1 and then carry out t2. The plan of the vehicle is
completely determined and consists of the following actions:

1



• move on the shortest path to the pickup point of t1, then

• move on the shortest path to the delivery point of t1, then

• move on the shortest path to the pickup point of t2, then

• move on the shortest path to the delivery point of t2.

The optimal solution for the company consists of an ordered delivery se-
quence for each of its vehicle, such that the constraints are satisfied.

3 Encoding as a CSP

We use the following variables to define a constraint satisfaction (optimization)
problem that finds the optimal plan for a company:

• nextTask - an array of NT +NV variables. The array contains one variable
for every existing task, and one variable for every existing vehicle:

nextTask = [nextTask(t1), . . . , nextTask(tNT
), nextTask(v1), . . . , nextTask(vNV

)];

One variable from the nextTask array can take as a value another task,
or the value NULL:

nextTask(x) ∈ {t1, t2, . . . , tNT
, NULL};

with the following semantics:

– if nextTask(ti) = tj it means that some vehicle will deliver the task
tj immediately after delivering ti;

– if nextTask(vk) = tj it means that the vehicle vk first delivers the
task tj ;

– if nextTask(ti) = NULL, the vehicle that delivered the task ti does
not have to deliver any other tasks;

– if nextTask(vk) = NULL, the vehicle vk does not have to deliver
any task.

• time - an array of NT variables. The array contains one variable for every
existing task.

time = [time(t1), . . . , time(tNT
)];

One variable from the time array can take an integer value specifying the
delivery sequence number of the task in the plan of a certain vehicle:

time(x) ∈ {1, 2, . . . , NT };

We therefore have:

2



– if nextTask(vk) = tj , the task tj is the first to be delivered by the
vehicle vk and therefore time(tj) = 1;

– if nextTask(ti) = tj , the task tj is delivered immediately after the
task ti by some vehicle, and therefore, time(tj) = time(ti) + 1;

• vehicle - a redundant array of NT variables, one variable for each task:

vehicle = [vehicle(t1), . . . , vehicle(tNT
)];

One variable from the vehicle array can take as a value the code of the
vehicle that delivers the corresponding task:

vehicle(x) ∈ {v1, v2, . . . , vNV
};

such that:

– if nextTask(vk) = tj , the task tj is the first to be delivered by the
vehicle vk and therefore vehicle(tj) = vk;

– if nextTask(ti) = tj , the task tj is delivered immediately after the
task ti by some vehicle, and therefore, vehicle(tj) = vehicle(ti);

A valid plan for the company (i.e., a set of plans for each of its vehicles)
is a value allocation for each of the above variables that satisfies the following
constraints:

3.1 Constraints

1. nextTask(t) 6= t: the task delivered after some task t cannot be the same
task;

2. nextTask(vk) = tj ⇒ time(tj) = 1: already explained;

3. nextTask(ti) = tj ⇒ time(tj) = time(ti) + 1: already explained;

4. nextTask(vk) = tj ⇒ vehicle(tj) = vk: already explained;

5. nextTask(ti) = tj ⇒ vehicle(tj) = vehicle(ti): already explained;

6. all tasks must be delivered: the set of values of the variables in the
nextTask array must be equal to the set of tasks T plus NV times the
value NULL.

7. the capacity of a vehicle cannot be exceeded: if load(ti) > capacity(vk)⇒
vehicle(ti) 6= vk

3



3.2 Objective

From all of the valid plans (i.e. value allocations that satisfy the above con-
straints) we search for the optimal one: i.e., the plan that maximizes the revenue
of the company. All tasks need to be delivered; as the reward for one task is
constant (and defined in the XML file), the total reward of the company is
constant. We therefore want to find the plan that minimizes the cost.

The cost of the company is defined as the sum of the costs incurred by
individual vehicles for carrying out the assigned tasks. The cost of one vehicle
is defined by the distance travelled by the vehicle, multiplied by the cost per
kilometer.

Before defining the cost, let us introduce the following notation:

• dist(ti, tj) is the shortest distance between the delivery point of the task
ti and the pickup point of the task tj ;

• dist(ti, NULL) = 0; the vehicle stops after delivering the task ti;

• dist(vk, tj) is the shortest distance between the home location of the ve-
hicle vk and the pickup point of the task tj ;

• dist(vk, NULL) = 0;

• length(ti) is the shortest distance from the pickup point to the delivery
point of the task ti;

• length(NULL) = 0;

• cost(vk) is the cost per kilometer of the vehicle vk;

The total cost of the company is defined as:

C =

NT
∑

i=1

(

dist
(

ti, nextTask(ti)
)

+ length
(

nextTask(ti)
)

)

· cost
(

vehicle(ti)
)

+

NV
∑

k=1

(

dist
(

vk, nextTask(vk)
)

+ length
(

nextTask(vk)
)

)

· cost
(

vk)
)

;

(1)

The optimal plan for the company results from the value allocation to the
defined variables such that the constraints are satisfied and the cost C is mini-
mized.

4 Stochastic Local Search algorithm for COP

A discrete constraint optimization problem (COP) is a tuple < X, D, C, f >

where:

• X = {x1, .., xn} is a set of variables.

4



• D = {d1, .., dn} is a set of domains of the variables, each given as a finite
set of possible values.

• C = {c1, .., cp} is a set of constraints, where a constraint ci is a function
di1 × .. × dil → {0, 1} that returns 1 if the value combination is allowed
and 0 if it is not.

• f : d1 × ... × dn → ℜ is the objective function that we want to minimize
(or maximize).

The optimal solution of a COP is an assignment of values to all variables
that satisfies all constraints and minimizes the objective function.

The stochastic local search (SLS) is an algorithm that searches for a sub
optimal but close to the global optimal solution for a COP. More details of
the algorithm can be found in [1]. The idea of SLS is simple: the local search
process is started by selecting an initial candidate solution, and then proceeds
by iteratively moving from one candidate solution to a neighbouring candidate
solution, where the decision in each search step is made stochastically and based
on a limited amount of local information only. A sketch of SLS algorithm is given
in the algorithm 1.

Algorithm 1 SLS algorithm for COP

procedure SLS(X,D,C,f)

A← SelectInitialSolution(X, D, C, f)
repeat

Aold ← A

N ← ChooseNeighbours(Aold, X, D, C, f)
A← LocalChoice(N, f)

until termination condition met
return A

end procedure

SelectInitialSolution(): This function selects a complete, possibly random,
assignment A of values to all variables that is consistent with the constraints.

ChooseNeighbours(): This function provides a set of candidate assignments
that are close to the current one and could possibly improve it. In the simple
case, they are generated by randomly selecting a variable xi ∈ X and generating
all assignments that are equal to A but assign to xi different values in the domain
of xi that are consistent with the rest of A according to the constraints.

LocalChoice(): It first selects the assignment A in the set of candidates that
gives the best improvement of the objective function. If there are multiple
equally good assignments, it chooses one randomly. Then with probability p it
returns A, with probability 1 − p it returns the current assignment Aold. The
probability p is a parameter of the algorithm. If p is close to 1, the algorithm
converges faster but it is easily trapped into a local minima. A value of p from
0.3 to 0.5 would be a good choice.

5



The iteration continues until a termination condition is met, for example
when there is no further improvement for some number of steps or the maximum
number of steps is reached.

5 Applying SLS algorithm on Optimal Delivery
Plan problem

The discussion below assumes that vehicle can only carry one task at a time.
You need to take into account the possibility of vehicle carrying multiple tasks.
Therefore, the description below can only serve as a guidelines how to implement
SLS for the extended problem.

In this section we implement the SLS algorithm given in the algorithm 1 for
the CSP formulation in section 3. In our CSP encoding we have

• X = {nextTask, time, vehicle} is the set of variables (n = 3NT + NV

variables).

• D = {d1, .., dn} is the set of domains where

dnextTask(i) = {t1, t2, . . . , tNT
, NULL} for i = t1..tNT

or i = v1..vNV
;

dtime(ti) = {1, 2, . . . , NT } for i = t1..tNT
;

dvehicle(ti) = {1, 2, . . . , NT } for i = t1..tNT
;

• C = {c1, .., cp} is the set of constraints given in the section 3.1.

• f is the objective function given by the equation 1.

The corresponding functions in the algorithm 1 are defined in the following
sections. Some of the functions have already the full pseudo-code. For others,
you must define them yourself.

5.1 SelectInitialSolution() function:

For a simple initial solution, we give all the tasks to the biggest vehicle. If there
exist some tasks that do not fit for the vehicle, then the problem is unsolvable.
function SelectInitialSolution(X,D,C,f)

// TO DEFINE

end function

5.2 ChooseNeighbours() function:

As the variables in our CSP encoding are correlated, we will use the two following
local operators for finding the neighbours of the current solution:

• Changing vehicle: take the first task from the tasks of one vehicle and give
it to another vehicle.

6



• Changing task order : change the order of two tasks in the task list of a
vehicle.

In each iteration, we choose one vehicle at random and perform local oper-
ators on this vehicle to compute the neighbour solutions. The pseudo-code for
the function is the following:

function ChooseNeighbours(Aold,X,D,C,f)

N = {}
vi = random(v1..vNV

) such that Aold
nextTask(vi)

6= NULL

// Applying the changing vehicle operator :
for vj ∈ (v1..vNV

), vj 6= vi do

t = Aold
nextTask(vi)

if load(t) ≤ capacity(vj) then

A = ChangingV ehicle(Aold, vi, vj)
N = N ∪ {A}

end if

end for

// Applying the Changing task order operator :
// compute the number of tasks of the vehicle
length = 0
t = vi // current task in the list
repeat

t = Aold
nextTask(t)

length = length + 1
until t = NULL

if length ≥ 2 then

for tIdx1 ∈ (1..length− 1) do

for tIdx2 ∈ (tIdx1 + 1..length) do

A = ChangingTaskOrder(Aold, vi, tIdx1, tIdx2)
N = N ∪ {A}

end for

end for

end if

return N

end function

Where ChangingV ehicle() and ChangingTaskOrder() are the functions
corresponding to the local operators.

function ChangingVehicle(A, v1 , v2)

A1 = A

t = nextTask(v1)
A1nextTask(v1) = A1nextTask(t)

A1nextTask(t) = A1nextTask(v2)

A1nextTask(v2) = t

UpdateT ime(A1, v1)

7



UpdateT ime(A1, v2)
A1vehicle(t) = v2

return A1

end function

function ChangingTaskOrder(A, vi, tIdx1, tIdx2)

A1 = A

tPre1 = vi // previous task of task1

t1 = A1nextTask(tPre1) // task1

count = 1
while count < tIdx1 do

tPre1 = t1
t1 = A1nextTask(t1)

count + +
end while

tPost1 = A1nextTask(t1) // the task delivered after t1
tPre2 = t1 // previous task of task2

t2 = A1nextTask(tPre2) // task2

count + +
while count < tIdx2 do

tPre2 = t2
t2 = A1nextTask(t2)

count + +
end while

tPost2 = A1nextTask(t2) // the task delivered after t2
// exchanging two tasks
if tPost1 = t2 then

// the task t2 is delivered immediately after t1
A1nextTask(tPre1) = t2
A1nextTask(t2) = t1
A1nextTask(t1) = tPost2

else

A1nextTask(tPre1) = t2
A1nextTask(tPre2) = t1
A1nextTask(t2) = tPost1
A1nextTask(t1) = tPost2

end if

UpdateT ime(A1, vi)
return A1

end function

UpdateT ime() is a function that updates the values of the variables in vector
time that associates with a vehicle vi of a complete assignment:

procedure UpdateTime(A, vi)

ti = AnextTask(vi)

8



if ti 6= NULL then

Atime(ti) = 1
repeat

tj = AnextTask(ti)

if tj 6= NULL then

Atime(tj) = Atime(ti) + 1
ti = tj

end if

until tj = NULL

end if

end procedure

5.3 LocalChoice() function:

procedure LocalChoice(N,f)

TO DEFINE

end procedure

5.4 The termination condition:

The search process terminates when a maximum number of iterations is reached.
We can set this number to 10000 iterations or more depends on the solution
quality and the problem size.

References

[1] Zhang, Weixiong and Wang, Guandong and Xing, Zhao and Witten-
burg,Lars: ”Distributed stochastic search and distributed breakout: prop-
erties, comparison and applications to constraint optimization problems in
sensor networks,” Artificial Intelligence 161(1-2), pp. 55-88, 2005.

9


