Finding the Optimal Delivery Plan:
Model as a Constraint Satisfaction Problem

Radu Jurca, Nguyen Quang Huy and Michael Schumacher
Intelligent Agents Course 2006-2007

1 Problem Definition

One company owns several vehicles that are supposed to optimally deliver a set
of tasks in a given network. The goal of the company is to determine a plan for
each of its vehicles such that:

1. all tasks assigned to the company are delivered;

2. vehicles carry out tasks sequentially (i.e., every vehicle must first deliver
the loaded task before picking up another task)

3. the total revenue of the company is maximized;

We assume that the total revenue of the company is defined as the sum of
the individual revenues obtained by each vehicle. The revenue of a vehicle is
computed as the sum of the rewards (obtained from delivering the tasks) minus
the total cost incurred for delivering the tasks. The total cost for delivering the
tasks is computed by multiplying the number of driven kilometers by the cost
per kilometer of the vehicle.

Formally, let:

o V = {uv,vs,...vn,} be the set of vehicles owned by the company, and
available for delivering the tasks;

o T ={ty,ta,...tn, } be the set of tasks to be delivered.

Every task is characterized by a pickup city and a delivery city. We assume
we already know the shortest path between any two cities.

2 Solution

As vehicles cannot carry out tasks in parallel, a delivery plan for a vehicle
is uniquely characterized by the delivery sequence of the assigned tasks. For
example, if ¢; and ¢, are assigned to the first vehicle, it is enough to tell the
vehicle to first carry out ¢; and then carry out t. The plan of the vehicle is
completely determined and consists of the following actions:

e move on the shortest path to the pickup point of ¢1, then
e move on the shortest path to the delivery point of ¢1, then
e move on the shortest path to the pickup point of ¢35, then
e move on the shortest path to the delivery point of 5.

The optimal solution for the company consists of an ordered delivery se-
quence for each of its vehicle, such that the constraints are satisfied.

3 Encoding as a CSP

We use the following variables to define a constraint satisfaction (optimization)
problem that finds the optimal plan for a company:

e nextTask - an array of Np+ Ny variables. The array contains one variable
for every existing task, and one variable for every existing vehicle:

nextTask = [nextTask(t1),...,nextTask(ty,), nextTask(vy),...,nextTask(vy,)];

One variable from the nextTask array can take as a value another task,
or the value NULL:

nextTask(x) € {t1,t2,...,tng, NULL};
with the following semantics:
— if nextTask(t;) = t; it means that some vehicle will deliver the task

t; immediately after delivering ¢;;

— if nextTask(vy) = t; it means that the vehicle vy first delivers the
task t;;

— if nextTask(t;) = NULL, the vehicle that delivered the task t; does
not have to deliver any other tasks;

— if nextTask(vy) = NULL, the vehicle v, does not have to deliver
any task.

e time - an array of Np variables. The array contains one variable for every
existing task.
time = [time(t1), ..., time(tn.)];

One variable from the time array can take an integer value specifying the
delivery sequence number of the task in the plan of a certain vehicle:

time(z) € {1,2,...,Nr};

We therefore have:

— if nextTask(vy) = t;, the task ¢; is the first to be delivered by the
vehicle v, and therefore time(t;) = 1;

— if nextTask(t;) = t;, the task t; is delivered immediately after the
task ¢; by some vehicle, and therefore, time(t;) = time(t;) + 1;

e vehicle - a redundant array of Np variables, one variable for each task:

vehicle = [vehicle(ty), ..., vehicle(tn,)];

One variable from the vehicle array can take as a value the code of the
vehicle that delivers the corresponding task:

vehicle(z) € {v1,v2,...,0ny };
such that:

— if nextTask(vy) = t;, the task ¢; is the first to be delivered by the
vehicle vy, and therefore vehicle(t;) = vy;

— if nextTask(t;) = t;, the task t; is delivered immediately after the
task t; by some vehicle, and therefore, vehicle(t;) = vehicle(t;);

A valid plan for the company (i.e., a set of plans for each of its vehicles)
is a value allocation for each of the above variables that satisfies the following
constraints:

3.1

1.

A

Constraints

nextTask(t) # t: the task delivered after some task ¢ cannot be the same
task;

nextTask(vy) = t; = time(t;) = 1: already explained,;
nextTask(t;) = t; = time(t;) = time(t;) + 1: already explained,;
nextTask(v,) = t; = vehicle(t;) = vi: already explained;

(

nextTask(t;) = t; = vehicle(t;) = vehicle(t;): already explained,;

all tasks must be delivered: the set of values of the variables in the
nextTask array must be equal to the set of tasks T plus Ny times the
value NULL.

the capacity of a vehicle cannot be exceeded: if load(t;) > capacity(vy) =
vehicle(t;) # vy

3.2 Objective

From all of the valid plans (i.e. value allocations that satisfy the above con-
straints) we search for the optimal one: i.e., the plan that maximizes the revenue
of the company. All tasks need to be delivered; as the reward for one task is
constant (and defined in the XML file), the total reward of the company is
constant. We therefore want to find the plan that minimizes the cost.

The cost of the company is defined as the sum of the costs incurred by
individual vehicles for carrying out the assigned tasks. The cost of one vehicle
is defined by the distance travelled by the vehicle, multiplied by the cost per
kilometer.

Before defining the cost, let us introduce the following notation:

o dist(t;,t;) is the shortest distance between the delivery point of the task
t; and the pickup point of the task ¢;;

e dist(t;, NULL) = 0; the vehicle stops after delivering the task t;;

o dist(vy,t;) is the shortest distance between the home location of the ve-
hicle vy, and the pickup point of the task ¢;;

e dist(vy, NULL) = 0;

e length(t;) is the shortest distance from the pickup point to the delivery
point of the task t;;

e length(NULL) = 0;
e cost(vy) is the cost per kilometer of the vehicle vy;

The total cost of the company is defined as:

Nt
C= Z (dist(ti, nextTask(t;)) + length(ne:ttTask(t”)) - cost (vehicle(t;))
i=1

Ny

+ Z (dist(vk, nextTask(vy)) + length(ne:thask(vk))) - cost(vy));
k=1

(1)

The optimal plan for the company results from the value allocation to the
defined variables such that the constraints are satisfied and the cost C' is mini-
mized.

4 Stochastic Local Search algorithm for COP

A discrete constraint optimization problem (COP) is a tuple < X, D,C, f >
where:

e X ={x1,..,x,} is a set of variables.

e D =1{dy,..,d,} is a set of domains of the variables, each given as a finite
set of possible values.

o C ={c1,..,¢p} is a set of constraints, where a constraint ¢; is a function
di1 X .. x dy — {0,1} that returns 1 if the value combination is allowed
and 0 if it is not.

e f:dy x..xd, — R is the objective function that we want to minimize
(or maximize).

The optimal solution of a COP is an assignment of values to all variables
that satisfies all constraints and minimizes the objective function.

The stochastic local search (SLS) is an algorithm that searches for a sub
optimal but close to the global optimal solution for a COP. More details of
the algorithm can be found in [1]. The idea of SLS is simple: the local search
process is started by selecting an initial candidate solution, and then proceeds
by iteratively moving from one candidate solution to a neighbouring candidate
solution, where the decision in each search step is made stochastically and based
on a limited amount of local information only. A sketch of SLS algorithm is given
in the algorithm 1.

Algorithm 1 SLS algorithm for COP
procedure SLS(X,D,C.f)

A — SelectInitial Solution(X, D, C, f)
repeat
Aold — A
N « ChooseNeighbours(A° X, D, C, f)
A « LocalChoice(N, f)
until termination condition met
return A

end procedure

SelectInitialSolution(): This function selects a complete, possibly random,
assignment A of values to all variables that is consistent with the constraints.

ChooseNeighbours(): This function provides a set of candidate assignments
that are close to the current one and could possibly improve it. In the simple
case, they are generated by randomly selecting a variable z; € X and generating
all assignments that are equal to A but assign to z; different values in the domain
of z; that are consistent with the rest of A according to the constraints.

LocalChoice(): Tt first selects the assignment A in the set of candidates that
gives the best improvement of the objective function. If there are multiple
equally good assignments, it chooses one randomly. Then with probability p it
returns A, with probability 1 — p it returns the current assignment A°¢. The
probability p is a parameter of the algorithm. If p is close to 1, the algorithm
converges faster but it is easily trapped into a local minima. A value of p from
0.3 to 0.5 would be a good choice.

The iteration continues until a termination condition is met, for example
when there is no further improvement for some number of steps or the maximum
number of steps is reached.

5 Applying SLS algorithm on Optimal Delivery
Plan problem

The discussion below assumes that vehicle can only carry one task at a time.
You need to take into account the possibility of vehicle carrying multiple tasks.
Therefore, the description below can only serve as a guidelines how to implement
SLS for the extended problem.

In this section we implement the SLS algorithm given in the algorithm 1 for
the CSP formulation in section 3. In our CSP encoding we have

e X = {nextTask,time,vehicle} is the set of variables (n = 3Np + Ny
variables).

e D = {di,..,d,} is the set of domains where
AnextTask(i) = 1t1,t2, ., tng, NULL} for i = t1..tn, or i = v1..UNy;
diime(t;) = 11,2,..., N} for i = t1..tn,;
dyenicte(t;) = 11,2, ..., N} for i = t1..tn,;

e C ={c1,..,cp} is the set of constraints given in the section 3.1.

e f is the objective function given by the equation 1.

The corresponding functions in the algorithm 1 are defined in the following
sections. Some of the functions have already the full pseudo-code. For others,
you must define them yourself.

5.1 SelectInitialSolution() function:

For a simple initial solution, we give all the tasks to the biggest vehicle. If there
exist some tasks that do not fit for the vehicle, then the problem is unsolvable.
function SelectInitialSolution(X,D,C.,f)

// TO DEFINE
end function

5.2 ChooseNeighbours() function:

As the variables in our CSP encoding are correlated, we will use the two following
local operators for finding the neighbours of the current solution:

e Changing vehicle: take the first task from the tasks of one vehicle and give
it to another vehicle.

e Changing task order: change the order of two tasks in the task list of a
vehicle.

In each iteration, we choose one vehicle at random and perform local oper-
ators on this vehicle to compute the neighbour solutions. The pseudo-code for
the function is the following:

function ChooseNeighbours(A°,X,D,C.f)

N={}
v; = random(vy..vy,,) such that A° y7# NULL

nextTask(v;
// Applying the changing vehicle operator :

for v; € (v1..vNy,),v; # v; do
t = Aold
— “TnextTask(v;)

if load(t) < capacity(v;) then
A = ChangingV ehicle(A%, v;, v;)
N =NU{A}
end if
end for
// Applying the Changing task order operator :
// compute the number of tasks of the vehicle
length =0
t =wv; // current task in the list
repeat
t= AgzledmtTask(t)
length = length + 1
until t = NULL
if length > 2 then
for tIdxy € (1..length — 1) do
for tIdxy € (tIdx, + 1..length) do
A = ChangingTaskOrder(A, v;, t1dx, t1dss)
N =NU{4}
end for
end for
end if

return N
end function
Where ChangingVehicle() and ChangingTaskOrder() are the functions
corresponding to the local operators.

function ChangingVehicle(A, vy, vs)
Al=A
t = nextTask(vy)
AlnemtTask:(’m) = Alnethask(t)
AlnemtTask:(t) = AlnemtTask(vg)

AlnemtTask(v2) =t
UpdateTime(Al, vy)

UpdateTime(Al, vs)
Alvehicle(t) = V2
return Al

end function

function ChangingTaskOrder(A,v;,tIdxy, tIdzs)
Al=A
tPre; = v; // previous task of tasky
1 = AlnemtTask(tPrel) // tasky
count =1
while count < tIdx, do
tPTel = tl
i = Alnethask(tl)
count + +
end while
tPosty = Alepirask(t,) // the task delivered after ¢,
tPres =t // previous task of tasks
ty = AlnemtTask:(tPreg) // tasks
count 4+ +
while count < tIdxy do
tPTGQ = t2
ly = AlnemtTask(tg)
count + +
end while
tPosty = Al cpirask(t,) // the task delivered after to
// exchanging two tasks
if tPOStl = t2 then
// the task to is delivered immediately after ¢,
Alnethask(tPrel) = t2
Alnethask(tg) =t
Alnethask(tl) = tPosts
else
Alnethask tPrey) — to

(

Alnethask(tPreg) =1t

Alnethask(tg) = tPost;
(

AlyewiTask t1) — tPosty
end if
UpdateTime(Al, v;)
return Al
end function

UpdateTime() is a function that updates the values of the variables in vector
time that associates with a vehicle v; of a complete assignment:

procedure UpdateTime(A,v;)

t; = AnemtTask(vi)

if t; # NULL then
Atime(ti) =1
repeat

tj - Anethask(ti)
if t; # NULL then
Atime(tj) = Atime(ti) +1
ti=1;
end if
until t; = NULL
end if

end procedure

5.3 LocalChoice() function:

procedure LocalChoice(N,f)
TO DEFINE
end procedure

5.4 The termination condition:

The search process terminates when a maximum number of iterations is reached.
We can set this number to 10000 iterations or more depends on the solution
quality and the problem size.

References

[1] Zhang, Weixiong and Wang, Guandong and Xing, Zhao and Witten-
burg,Lars: ”Distributed stochastic search and distributed breakout: prop-
erties, comparison and applications to constraint optimization problems in
sensor networks,” Artificial Intelligence 161(1-2), pp. 55-88, 2005.

