The PDP with Reactive Agents

Intelligent Agents

Vo W\ AL L

Reactive Agents

= Simple behaviours
that react to
i i f th Autonomous
S lmu i from the Agent
environment

= Robot-like:

from sensor
« information » Environment

Vo W\ AL A

lab®

Our Reactive Agent Architecture

= Vehicles as reactive agents

= Percepts from the environment (state):
= Route?
= City?
= Task?
= Actions the agent can take :
= Move in a direction according to the topology
= Pickup a task
= Deliver a task

Vo W\ AL s A

lab®
Three Steps

1. Learn off-line the actions to take
(strategy) in order to optimally search
and deliver tasks (MAIN PART)

2. Using the learned strategy, travel
through the network

3. When a task has been picked up, deliver
it on the shortest path (given)

Vo W\ AL« L

lab®
Assumptions (1)

= The vehicle starts from its home city

= When the vehicle arrives in a city, it finds
out whether a task is available or not in
that city. The vehicle sees at most one
task!

= |f task, agent can decide to:
= Deliver it
= Give it up and continue to a neighbour city

Vo W\ AL s A

lab®
Assumptions (2)

= There exists a probability distribution of
the tasks

= A vehicle can transport only one task

= Must deliver it, and on the shortest path
(given)

Vo W\ AL s A

Applying reinforcement learning '°"*

Markov Decision Processes - MDP

= Goal:

= learn optimal strategy to move in the
network and deliver tasks

= ij.e. react optimally on the basis of a
probability distribution of the tasks in the
network

= MDP Solver: offline, before agent
travels!

Vo W\ AL 1 A

Existing two tables

" P(1,)):
= probabilities pij that in city i,
there is a task for city j

" R(1,)):
= average reward rij for a task to be
transported from city i to city j

= Beforehand, tasks tij have been created
with the probablity pij and a variation
reward around rij

Vo W\ AL A

Reinforcement Learning

= Define MDP on paper (and in report!):
= A state representation of the world,

= the actions for the transitions between those
states,

= with the corresponding rewards,
= and the probability of the transition.

Vo W\ AL o A

labé&
Algorithm

= Compute V(S) by value iteration:

initialize V(S) arbitrarily
loop until good enough
loop for s€ S
loop for a€ A
Q(s,0) = R(5.0) +7 X es T(s,a,8)V(s')
V(s) «— max,Q(s,a)

Vo W\ AL L

Data Structures (1)

= V(s):

= vector indicating the discounted sum of the rewards
to be earned (on expectation) by following that

solution from state s
= R(s,a):

= table that indicates the rewards for taking action a
being in state s

" T(s,a,s)

= =p(s'|s,a), i.e. probability to arrive in state s’ given
that you are in state s and that you take action a

= Discount Factor y: between 0 and 1

Vo W\ AL u L

lab®
Data Structures (2)

Q(s,a) |States1 |State s2

Action a1 |Q(s1,a1) |Q(s2, a1)
Action a2 |Q(s1, a2) |Q(s2, a2)

Vo W\ AL A

lab®

* |Implement a simple reactive agent

* Define:
= state representation s
= possible actions a,
= reward table R(s,a)
= probability transition table T(s,a,s’)

* Implement the offline reinforcement
learning algorithm

= Run simulations, analyze the perfor-
mance of your agent and test limit cases

Vo W\ AL n L

