
An Implementation of the Contract Net Protocol Based on Marginal Cost

Calculations

Tuomas Sandholm

Computer Science Department
University of Massachusetts

Amherst, Massachusetts 01003
sandholm@cs.umass.edu

Abstract
This paper presents a formalization of the bidding and
awarding decision process that was left undefined in
the original contract net task allocation protocol. This
formalization is based on marginal cost calculations
based on local agent criteria. In this way, agents
having very different local criteria (based on their self-
interest) can interact to distribute tasks so that the
network as a whole functions more effectively. In this
model, both competitive and cooperative agents can
interact. In addition, the contract net protocol is
extended to allow for clustering of tasks, to deal with
the possibility of a large number of announcement and
bid messages and to effectively handle situations, in
which new bidding and awarding is being done during
the period when the results of previous bids are
unknown. The protocol is verified by the TRACONET
(TRAnsportation COoperation NET) system, where
dispatch centers of different companies cooperate
automatically in vehicle routing. The implementation
is asynchronous and truly distributed, and it provides
the agents extensive autonomy. The protocol is
discussed in detail and test results with real data are
presented.1

1 Introduction
The contract net protocol (CNP) (Smith 1980; Smith &
Davis 1981; Davis & Smith 1988) for decentralized task
allocation is one of the important paradigms developed in
distributed artificial intelligence (DAI). Its significance lies
in that it was the first work to use a negotiation process
involving a mutual selection by both managers and
contractors. It was initially applied to a simulated
distributed acoustic sensor network. In this interpretation

1Primary support for this work came from the Technology
Development Centre of Finland, during the period which the
author was working at the Technical Research Centre of Finland,
Laboratory for Information Processing, Lehtisaarentie 2A, SF-
00340 Helsinki, Finland. Additional support comes from DARPA
contract N00014-92-J-1698. The content of the information does
not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.

application, the agents were totally cooperative, and
selection of a contractor was based on suitability, for
example adjacency, processing capability, and current
agent load. However, there was no formal model discussed
in this work for making task announcing, bidding and
awarding decisions. This paper presents such a formal
model, where agents locally calculate their marginal costs
for performing sets of tasks. The choice of a contractor is
based solely on these costs. The pricing mechanism
generalizes the CNP to work for both cooperative and
competitive agents. Another important issue not covered in
previous work on the CNP is the risk attitude of an agent
toward being committed to activities it may not be able to
honor, or the honoring of which may turn out to be
unbeneficial. Additionally, in previous CNP
implementations, tasks have been negotiated one at a time.
This is not sufficient, if the effort of carrying out a task
depends on the carrying out of other tasks. The framework
is extended to handle task interactions by clustering tasks
into sets to be negotiated over as atomic bargaining items.
Finally, the practical problem of announcement message
congestion is solved.

Our case problem, vehicle routing, is structured in terms
of a number of geographically dispersed dispatch centers
of different companies. Each center is responsible for the
deliveries initiated by certain factories and has a certain
number of vehicles to take care of the deliveries. The
geographical main operation areas of the centers overlap
considerably. This provides for the potential for multiple
centers to be able to handle a delivery. Every delivery has
to be included in the route of some vehicle. The local
problem of each agent is a heterogeneous fleet multi-depot
routing problem, where the vehicle attributes include cost
per kilometer, maximum route duration, maximum route
length, maximum load weight and maximum load volume
(Sandholm 1992a). The objective is to minimize the
transportation costs.

In solving the problem, each dispatch center -
represented by one intelligent agent2 - first solves its local

2Another choice would be that each agent represented one
vehicle. This small grain size approach would probably not be as
efficient, because such a large number of agents would congest
the negotiation network and the method would be too

routing problem. After that, an agent can potentially
negotiate with other dispatch agents to take on some of
their deliveries or to let them take on some of its deliveries
for a dynamically constructed charge. In the negotiations
the agents exchange sets of deliveries whenever this is
profitable, i.e., whenever a contractor is able to carry out
the task set with less costs than the manager agent. The
negotiations can be viewed as an iterative way of making
the routing solution better by going through only feasible
solutions.3 Here 'feasible' means that each center can take
care of all of its deliveries. This is how a solution closer to
the global optimum is reached although no global
optimization run is performed. The use of contract nets as
opposed to centralized problem solving is most fruitful in
operative decision making in volatile domains such as ours
and the factory domain of (Parunak 1987).

The negotiation is real-time since after each contract is
made the exchange of deliveries is made immediately.
Thus, between individual negotiations some delivery orders
may have been dispatched, new orders may have arrived,
and the available vehicles may have changed. There is no
iteration among the agents until an equilibrium is reached
unlike the approach of (Wellman 1992), where the bids
include a number of the similar items an agent wants to buy
and it is assumed that the purchase of one type of items is
independent of the purchase of other types of items. In our
system, each item (task set) is different and task sets of
different announcements are highly interdependent. In the
equilibrium approach of (Kuwabara and Ishida 1992), at
each iteration, the seller sets the price based on demand and
the buyers state the quantity they want to buy.

Section 2 presents the architecture of our
implementation. Section 3 discusses the local control
strategy of an agent. In sections 4 to 7, the negotiation
phases of announcing, bidding, awarding and award taking
are detailed respectively. Section 8 presents test results
with real data and section 9 concludes.

2 TRACONET Architecture
The vehicle routing application is implemented in a system
called TRACONET (TRAnsportation COoperation NET).4

The asynchronous automatic negotiations in TRACONET
resemble a directed government contracting scheme, where
each involved party is allowed to make one bid for each
announcement it receives, and the bids of the other parties
are not revealed to it. The negotiations are directed in the

opportunistic. When the number of vehicles is small, this
approach does work, though. An example is given in (McElroy et
al. 1989), where automatically guided vehicles transport items
inside a factory.
3Centralized versions of iterative routing are discussed in (Waters
1987) and (Wong & Beasley 1984).
4The system is implemented in an object-oriented fashion using
the C++ language and the X11 Window System on a network of
HP 9000 workstations. Each agent is implemented as one HP-UX
(UNIX) process. The agents negotiate over the file system and
share no memory.

sense that an announcement is not sent to all other agents
(Parunak 1987), fig. 1. The agents have no fixed hierarchy
among themselves. An agent can act both as a manager and
a contractor of delivery sets, but it does not have to take
both roles, nor is it required to negotiate with all other
agents. Further, each agent can reallocate deliveries
received from other agents. When announcing, an agent
tries to buy some other agent's transportation services at a
price, the maximum of which it specifies in the
announcement. When bidding, an agent tries to sell its own
services at a price, the minimum of which it specifies in the
bid. Awarding means actually buying the services of some
other center and award taking means actually selling one's
services. Unlike the original CNP, in the awarding phase
explicit loser messages are sent, fig. 1. These messages free
the bidder agents from the commitment of their bids, which
affects the pricing of new bids and the evaluation of other
agents' bids as will be described. Another option would be
to consider a bid a loser if it has not received an award
within a time limit, but this does not fit our asynchronous
approach, because it forces the manager to award within a
strict time limit. The time to analyze bids varies depending
on the state of the agent and the number of messages
received by it. At this point, we do not know how to
realistically set an appropriate upper bound for this time. In
our approach, we introduce additional message traffic,
which hopefully results in more accurate announcing,
bidding and awarding, since the agent will know early on,
which of its bids it still may have to honor.

Agent 1

Agent 5

Agent 3

Agent 4

Agent 2

Agent 1

Agent 5

Agent 3

Agent 4

Agent 2

Agent 1

Agent 5

Agent 3

Agent 4

Agent 2

Announcing Bidding Awarding

winner loser

loser

Figure 1. Message passing, when agent 1 gives a set of deliveries
to agent 2 to be done.

Each agent has two main parts: the bargaining system and
the local optimizer. The bargaining system is divided into
four major components: the announcer, the bidder, the
awarder and the award taker. The bargaining system is not
restricted to any specific local optimization algorithm5, but
the local optimizer has to provide five services. These
relate to the counting of marginal costs of a set of
deliveries (to remove or to add), to optimizing all deliveries
of an agent and to removing and adding sets of deliveries to
the agent's routing solution. Agents in the same negotiation
network can use different local optimization algorithms
tuned to the requirements of each center separately. The
local optimizer services could also be given manually by a
transportation coordinator in dispatch centers that do not
use automatic optimization. Interactive routing is discussed
in (Waters 1984) and (Powell & Sheffi 1989).

5A good overview of centralized routing algorithms is given in
(Bodin et al. 1983).

3 Local control
In TRACONET, an agent first calls its own local optimizer
to make the routing decisions concerning the deliveries and
vehicles that belong to the associated dispatch center.
Based on these initial solutions, the agents start the
negotiations. During the negotiations, the local control
loop of an agent repeatedly goes through a sequence of
invoking the bidder, awarder, award taker and announcer.
The bidder, awarder and award taker handle all the
messages that have been received by the time of their calls.
In contrast, the announcer sends at most one announcement
to agents during one local control loop cycle. It is
preferable to first handle all received messages before
sending a new announcement, so that the agents do not get
congested by announcements, and announcements are
constructed according to the most up to date view of the
agent's local routing decisions. The messages received
during the operation of the bidder, awarder or award taker
are handled on the next cycle of the local control loop. This
prevents the system from getting stuck at any single phase
even if large amounts of messages are coming in.

An agent can enter and exit the negotiation network
dynamically. When joining the network the agent first
deletes all announcements and loser messages that may
have accumulated in the incoming message media. Then
the agent is ready for the negotiations. However, exiting
the negotiation process is not as simple for two reasons.
First, some other agent might be awarding a delivery set to
the agent and if the agent has exited the negotiations, it will
not receive the award. Secondly, some other agent might be
making a bid to the agent and if the agent exits the
negotiation, the other agent does not receive even a loser
message for the bid and will not be freed from the
commitment of its bid. The second problem is solved by
sending a loser message to the other agents for all
unhandled announcements sent to them previously. The
first problem is solved by going through a listening phase
before logging out of the network. During this phase no
announcements and no bids are made. The phase can be
ended, when replies (awards or loser messages) have been
received for all unhandled bids that have been sent out. If
an agent wants to reoptimize its local solution, it must first
exit the negotiations, reoptimize and then possibly rejoin
the negotiations. If the agent did not exit temporarily, the
marginal costs calculated before reoptimization would not
be valid after it.

4 Announcing
An agent's announcer chooses a set of deliveries from the
deliveries of the center and announces them to other
centers in order to get bids from them. In the
implementation the announcements focus on deliveries
ending in the geographical main operation areas of the
potential contractors, because these deliveries are most
likely to lead to contracts. The announcing methods differ
from each other in the number of tasks (deliveries) to be

clustered into each announcement, and in whether a
delivery set that has already been announced can be
reannounced (Sandholm 1992b). Reannouncing leads to
better results, but the negotiations are considerably longer.
This, however, is not a serious problem, if we assume that
actual deliveries are being done during the negotiations and
reannouncing is not done immediately. In algorithm 1, a set
of deliveries consists of only one (randomly chosen)
delivery, and reannouncing is allowed. The c'rem(T) service
provided by the local optimizer gives a heuristic
approximation of the marginal cost crem(T) saved if the
delivery set T were removed from the routing solution of
the agent. The implemented calculation of c'rem(T) will be
described in section 6. If the estimate c'rem(T) is too low,
the other center's will not bid even though that might be
beneficial. On the other hand, if the estimate is too high,
the agent will receive also unbeneficial bids. The actual
value of c'rem(T) is not as crucial here as it is in the
awarding phase, because announcements are not binding.
Therefore, even an incorrect calculation of c'rem(T) will not
lead to unbeneficial contracting.

Randomly choose one of the deliveries ending in another center's
main operation area.

T = {the chosen delivery}.
Maximum price of the announcement cmax = c'rem(T).
For all centers except this center itself

If the end stop of the delivery is in the center's main
operation area

Then send an announcement to the center.

Algorithm 1. A simple announcer algorithm.

Announcing one delivery at a time is not sufficient in
general. This is due to the fact that the deliveries are
dependent, i.e., for two disjoint delivery sets T1 and T2, for
the manager, crem(T1 ∪ T2) ≠ crem(T1) + crem(T2). For
example, if the removal cost of either of two deliveries
alone is small, but the removal cost of both of them
together is large, announcing one delivery at a time would
probably not lead to a contract, but announcing two at a
time probably would. For the tasks to be truly independent,
the following would also have to hold for each potential
contractor: cadd(T1 ∪ T2) = cadd(T1) + cadd(T2), where
cadd(T) gives the marginal cost of adding task set T to the
agent's routing solution, as will be explained in section 5.
The clustering of tasks into (not necessarily disjoint) sets to
be bargained over as atomic bargaining items is a complex
problem. To solve it, TRACONET's more refined
announcer algorithms use domain dependent heuristics.
These algorithms and experiments with them in a domain,
where all deliveries originate at a common factory have
been discussed in (Sandholm 1992b). For example, in one
of them, a delivery d1 was clustered with another delivery
d2, the end stop of which was next to the end stop of d1 in
a route, if c'rem({d1, d2}) > α * c'rem({d1}), where α was
a constant.

If no more beneficial contracts of any k tasks at a time
can be made between any two agents, the solution is called

k-optimal, which is a necessary, but not a sufficient
condition for optimality. Neither does m-optimality
guarantee n-optimality, if n ≠ m.

5 Bidding
An agent's bidder reads the announcements sent by other
agents. If the maximum price mentioned in the
announcement is higher than the price that the deliveries
would cost if done by this center, a bid is sent with the
latter price. Otherwise, no bid is sent for the specified
announcement. Denote an arbitrary bid by b and the set of
tasks of that bid by Tb. Let Buns be the set of unsettled bids
sent by an agent previously. Define Bpos to be the set of
possible bids that can be awarded to the agent when b is
a l s o a w a r d e d t o t h e a g e n t , i . e . ,
Bpos = {x | x ∈ Buns, Tx ∩ Tb = ∅ }. Let Tcur be the
current set of tasks of the agent. Let function f(T) compute
the total cost of the local optimal solution with task set T.
Let cadd(T) be the marginal cost of adding task set T into
the local solution. For any bid b, the cost cadd(Tb) is
bounded below by

c-
add(Tb) = min [f(Tb ∪ Tcur ∪ Tz) - f(Tcur ∪ Tz)],

 B ⊆ Bpos z ∈ B z ∈ B

 and above by

c+add(Tb) = max [f(Tb ∪ Tcur ∪ Tz) - f(Tcur ∪ Tz)].
 B ⊆ Bpos z ∈ B z ∈ B

Setting the bid price to be c-add(Tb) is an opportunistic
approach, and setting it to be c+add(Tb) is a safe approach.
Assuming that all of the unsettled bids sent by the agent
will be awarded to the agent, the bid price can be calculated
by

calladd(Tb) = f(Tb ∪ Tcur ∪ Tz) - f(Tcur ∪ Tz),
 z ∈ Bpos z ∈ Bpos

and assuming that none of the unsettled bids sent by the
agent will be awarded to it, the bid price is as follows:

cnonadd(Tb) = f(Tb ∪ Tcur) - f(Tcur).

Clearly, c-add(Tb) ≤ ca l ladd(Tb) ≤ c+ add(Tb) and
c-add(Tb) ≤ cnonadd(Tb) ≤ c+ add(Tb), but the partial
order of calladd(Tb) and cnonadd(Tb) varies. This is because
in this domain, both economies of scale (implying
calladd(Tb) < cnonadd(Tb)) and diseconomies of scale
(implying cnonadd(Tb) < ca l ladd(Tb)) are present. In
(Wellman 1992), only diseconomies of scale are present.

The cost cn o nadd(Tb) is faster to compute than
calladd(Tb), and it gives a better approximation of cadd(Tb)
when bids are seldom awarded to the agent. This is usually
the case, if the network has many agents.

In the original CNP, an agent could have multiple bids
concerning different contracts pending concurrently in
order to speed up the operation of the system (Smith 1980).
We have followed this approach for the same reason,
although negotiations over only one contract at a time
allow a more precise bid price. If only one bid is allowed to

be pending from one agent at a time, Bpos = ∅ and
c-

add(Tb) = c+add(Tb) = call
add(Tb) = cnon

add(Tb). Fig. 2
compares results of allowing multiple bids and awards
simultaneously to those of allowing only one
announcement (implying only one award) and one bid at a
time.

Calculation of the local utility function takes time. This
has not been taken into account in the CNP or in work in
game theory. In our domain, calculating the marginal costs
(and therefore the announcing, bidding and awarding) takes
computational time. Because the calculation of the truly
optimizing function f takes exponential time in our domain,
we use a heuristic approximation f', for which f(T) ≤ f'(T)
for any task set T. In our domain, the calculation of
f'(T ∪ Tcur) would be very fast if we knew f(Tcur), because
it could be calculated incrementally by just adding the new
tasks T to the solution without altering the original
solution. The problem is that we do not know the optimal
f(Tcur), but only a heuristic approximation f'(Tcur) of it. In
the tests presented in this paper, the bid price c'add(Tb) was
calculated incrementally like this with respect to the current
heuristic solution assuming that none of the agent's
unsettled bids are awarded to it. This assumption makes the
calculation semi-opportunistic. Therefore an agent using
this strategy may make unbeneficial contracts now and
then. A safe approach would be to use a heuristic upper
bound for c+add(Tb) as the bid price, but its calculation is
slower than that of c'add(Tb).

Read in all received announcements and call this set A.
For each announcement a ∈ A
 Call the set of deliveries in a Ta and the maximum price cmax.
 If f'(Tcur ∪ Ta ∪ Tpos) < ∞ (Feasibility check; Tpos

defined w.r.t. a potential bid b with the deliveries of a.)
 Set cbid = c'add(Ta).
 If cbid < cmax

 Send a bid with the identifier of the announcement, the
 name of this center and cost cbid.

Algorithm 2. The bidding algorithm.

Because of binding bids, a feasibility check in algorithm 2
checks that the agent's transportation solution will be
feasible even if all of the previous unsettled possible bids
and this bid are awarded to the agent. In domains (unlike
ours), where the feasibility check often restricts the
bidding, the bidder should choose the most profitable
combination among the possible combinations of beneficial
bids to send.

Using the previously discussed bidding methods, the
negotiation network got congested with announcements,
i.e., some of the agents were receiving announcements at a
faster pace than they could process. The problem occurred
only with announcements, because in our domain the
number of them far exceeds the number of other messages.
The reason the congested agents could not keep in pace
was that the time to handle an announcement increased
with the number of previously sent unsettled bids – mainly
because of the feasibility check. The more announcements

an agent had received, the more bids it was able to make,
which slowed it down, and during the bidding process even
more announcements kept coming in. The congestion
problem was solved by making the bidder consider only
announcements newer than a certain time limit. This is
sensible also, because bids made on older announcements
would probably not get to the managers before the
negotiations concerning these announcements would be
over.

6 Awarding
An agent's awarder reads the bids of other agents. Before
handling the bids concerning a certain announcement, it
checks that a fixed time has passed since the sending of the
announcement, so that many potential contractors have had
time to bid. An award or loser message is sent to every
agent to whom an announcement concerning the same
contract was sent earlier. The award is sent to the agent
with the most inexpensive bid.6 After an award is sent, the
awarder removes the set of deliveries from the agent's
current deliveries Tcur and from its transportation solution.
If no bids for an announcement have been received by the
time of the mentioned time limit, the awarding is postponed
until the first bid for this announcement is received. If this
takes longer than a second time limit, the agent simply
forgets that it has made such an announcement and sends
loser messages to all agents to whom the announcement
was sent previously. Bids received later for this
announcement are deleted.

In the awarding phase the manager has a chance to check
that awarding is still beneficial to itself, i.e., it does not
have to accept any bid. In deciding whether the awarding is
beneficial, the manager has to also consider the unsettled
bids that it has sent. Awarding to bid b is beneficial iff
crem(Tb) > cb, where cb is the price mentioned in the bid b,
and crem(Tb) is the cost of removing the tasks Tb from the
manager's own local solution. Unlike in the bidding phase,
Bpos = Buns. The cost crem(Tb) is bounded above by

c+rem(Tb) = max [f(Tcur ∪ Tz) - f((Tcur - Tb) ∪ Tz)],
 B ⊆ Bpos z ∈ B z ∈ B

and below by

c-rem(Tb) = min [f(Tcur ∪ Tz) - f((Tcur - Tb) ∪ Tz)].
 B ⊆ Bpos z ∈ B z ∈ B

Assuming that all of the agent's unsettled bids will be
awarded to it, crem(Tb) is calculated by

callrem(Tb) = f(Tcur ∪ Tz) - f((Tcur -Tb) ∪ Tz),
 z ∈ Bpos z ∈ Bpos

and assuming that none of the agent's unsettled bids will be
awarded to it, crem(Tb) is calculated as follows:

6If some of the deliveries of the announcement have already been
awarded out by an award of some other announcement, all
messages sent are loser messages.

cnonrem(Tb) = f(Tcur) - f(Tcur -Tb).

Clearly, c-rem(Tb) ≤ callrem(Tb) ≤ c+rem(Tb) and
c-rem(Tb) ≤ cnonrem(Tb) ≤ c+rem(Tb), but the partial
order of callrem(Tb) and cnonrem(Tb) varies. If only one bid
is allowed to be pending from an agent at a time, then
[callrem(Tb) = c-rem(Tb) and cnonrem(Tb) = c+rem(Tb)] or
[cnonrem(Tb) = c-rem(Tb) and callrem(Tb) = c+rem(Tb)].

Similar to our discussion of f', because calculating the
truly optimizing f function takes a long time, we use a
heuristic approximation f'', for which f(T) ≤ f ''(T) for any
task set T. In our domain, the calculation of f''(Tcur -Tb)
would be fast if we knew f(Tcur), because it could be
calculated decrementally by just removing the tasks Tb
from the solution without altering the original solution. The
problem is that we do not know the optimal f(Tcur), but
only a heuristic approximation f''(Tcur) of it. In the tests
presented in this paper, the benefit check price c'rem(Tb)
was calculated decrementally like this with respect to the
current heuristic solution assuming that none of the agent's
unsettled bids are awarded to it. The assumption makes this
calculation semi-opportunistic, and an agent using this
strategy may have to take unbeneficial awards later. A safe
approach would be to use a heuristic lower bound for
c
_
rem(Tb) as the benefit check price, but its calculation is

slower than that of c'rem(Tb).7

In the current implementation, all bids received before
the start of the awarding phase are handled in order of
receipt before going to any next negotiation phase. If the
check for benefit is used, the order of awarding may be
important - though this seldom is the case in our domain.
The awarding of one task set may disable the beneficial
awarding of another. Usually the number of received bids
per local control loop cycle is small, so the awarder could
try all possible orderings of awarding sets of deliveries and
carry out the best ordering.

7 Taking awards
An agent's award taker reads the awards and inserts the
deliveries from the awards to the agent's deliveries Tcur and
its transportation solution. Some contracts may have
sneaked in between the bidding for a certain set of
deliveries and taking the corresponding award. These
contracts have altered the routing solution. If opportunistic
pricing is used, taking the award might no longer be
profitable for the center. Because bids are binding, the
center is committed to take the award anyway. Making bids
non-binding would not solve the problem, because the
contractor, after receiving an award, would have to inform
the manager that it has taken the award or that it will not
take it. This would require the manager to keep the delivery
set in its routing solution until award taking is confirmed,
during which, some changes may have sneaked into its
routing solution and the problem rearises.

7This sentence has been changed since AAAI-93 thanks to
Mariaelena Polito and Francesco Aperti.

8 Experimental results
The purpose of the experiments was to validate the
distributed problem solving approach in reducing the total
transportation costs among autonomous dispatch centers. A
detailed presentation of these experiments is given in
(Sandholm 1992a). Table 1 provides results of one example
experiment. As can be seen, the negotiations led to
considerable transportation cost savings in reasonable time
even in such a large problem. In the experiment, company
A owned the first three centers and company B owned the
last two. The centers were located around Finland. The
agents had similar local optimization modules and each
agent's original local routing solution was acquired
heuristically using a parallel insertion algorithm (Sandholm
1992a). Each agent executed on its own HP 9000 s300
workstation. The profit of each contract was divided in half
between the agents, i.e., the actual price of a contract was
half way between the maximum price mentioned in the
announcement and the bid price. A choice closer to a real
world competing agent contracting scheme would be to let
the contract price equal the bid price. In 30 minutes, each
agent goes through its main control loop 100 - 200 times.

Dispatch
center

Deliveries Vehicles Average
delivery
length

Cost
savings
in 15

minutes

Cost
savings
in 30

minutes
A1 65 10 121 km 5% 6%
A2 200 13 169 km 12% 18%
A3 82 21 44 km 31% 34%
B1 124 18 145 km 11% 23%
B2 300 15 270 km 9% 15%

Total 771 77 187 km 11% 17%
Table 1. Columns 2 - 4 characterize the one week real vehicle and
delivery data of the experiments, and the last two columns show

results of the negotiations.

Figure 2 presents example runs with two unsafe bidding
schemes. Due to the semi-opportunistic pricing explained
before, the local costs of the agents do not decrease
monotonically in case 1. An agent is forced to take
unbeneficial awards now and then. The unbeneficial
contracts are somewhat compensated for by other
contracting within the time window shown. The cost of an
agent in case 1 decreases faster (in the sense of local
control loop cycles required) than in case 2. In case 2, the
cost decreased monotonically for every agent. To guarantee
monotonic decrease of the cost using opportunistic pricing,
one bid at a time should be allowed and awarding should
be allowed only when no bid is pending from the agent.
This would require even more local control loop cycles
than case 2, where awarding can happen while a bid is
pending.

In case 1, the agents have to consider more messages on
each local control loop cycle. Therefore, the previously
mentioned time limits were set to be longer in case 1, and
in the same actual time, the agents of case 2 go through
more main control loop cycles than in case 1.

1 1 0 0 0

1 2 0 0 0

1 3 0 0 0

1 4 0 0 0

1

4
0

7
9

1
1

8

1
5

7

1
9

6

2
3

5

2
7

4

3
1

3

3
5

2

1 1 0 0 0

1 2 0 0 0

1 3 0 0 0

1 4 0 0 0

1

7
5

1
4

9

2
2

3

2
9

7

3
7

1

4
4

5

5
1

9

5
9

3

2 0 0 0 0

2 2 0 0 0

2 4 0 0 0

2 6 0 0 0

1

3
4

6
7

1
0

0

1
3

3

1
6

6

1
9

9

2
3

2

2
6

5

2 0 0 0 0

2 2 0 0 0

2 4 0 0 0

2 6 0 0 0

1

7
1

1
4

1

2
1

1

2
8

1

3
5

1

4
2

1

4
9

1

5
6

1

5 2 0 0

5 7 0 0

6 2 0 0

6 7 0 0

7 2 0 0

1

3
8

7
5

1
1

2

1
4

9

1
8

6

2
2

3

2
6

0

2
9

7

3
3

4

5 2 0 0

5 7 0 0

6 2 0 0

6 7 0 0

7 2 0 0

1

6
0

1
1

9

1
7

8

2
3

7

2
9

6

3
5

5

4
1

4

4
7

3

5
3

2

1 2 5 0 0

1 3 5 0 0

1 4 5 0 0

1 5 5 0 0

1

4
3

8
5

1
2

7

1
6

9

2
1

1

2
5

3

2
9

5

3
3

7

3
7

9

1 2 5 0 0

1 3 5 0 0

1 4 5 0 0

1 5 5 0 0

1

7
7

1
5

3

2
2

9

3
0

5

3
8

1

4
5

7

5
3

3

6
0

9

2 8 5 0 0

3 0 5 0 0

3 2 5 0 0

3 4 5 0 0

1

3
4

6
7

1
0

0

1
3

3

1
6

6

1
9

9

2
3

2

2
6

5

2 8 5 0 0

3 0 5 0 0

3 2 5 0 0

3 4 5 0 0

1

5
4

1
0

7

1
6

0

2
1

3

2
6

6

3
1

9

3
7

2

4
2

5

Figure 2. An example run with the results of the five agents one
below another. The x-axis show the number of local control loop
cycles for each agent. The thin gray line shows the evolution of
the total length of the truck routes of an agent in kilometers. The
black line shows the evolution of the local cost for each agent, so
the black line takes into account the amounts paid by the
managers to the contractors for carrying out the transportation
tasks. The figures in the left column (case 1) show the normal
case, where multiple announcements and bids are allowed
simultaneously. The right column (case 2) shows the case, where
only one announcement (implying at most one award) and one bid
are allowed to be pending from one agent at a time.

9 Conclusions
The role of DAI systems with cooperative and competitive
agents is likely to increase in the future. Especially
important will be enterprise cooperation: allowing
autonomous, even competitive, enterprises to cooperate
through the on-line, dynamic establishment of contracts
among enterprises. The groundwork for computerizing this
cooperation is currently being made by building networks
of enterprises with electronic data interchange. This paper
presents, to our knowledge, the first prototype of an
application where different enterprises work together
automatically using DAI techniques. Our methodology is
presented through a concrete application domain, vehicle
routing, but it is applicable to other task allocation
problems - assuming that a reasonable local objective
function is known for each agent.

TRACONET uses task negotiation. Another solution
technique for the same problem is to negotiate over
resources. If there are many tasks per resource (eg. many
deliveries in one truck route), a higher resolution of
cooperation is achieved by exchanging tasks. All possible
solutions reached by resource exchange can be reached by
task exchange, but not vice versa, so the best possible
solution when negotiating tasks is at least as good as the
best possible solution when negotiating resources. This
does not necessarily imply that after a certain number of
iterations, the solution using task negotiation is as good or
better than the solution using resource negotiations. Also, if
we use a limit on the maximum number of tasks per
announcement, it may happen that the best global solution
of task negotiations can not be reached at all. If fast
computation is crucial, the coarser grain size negotiations -
resource negotiations in this case - may be preferred. In
domains with many resources per task, the above
arguments should be reversed.

We have extended the CNP with a formal model for
making announcing, bidding and awarding decisions based
on local marginal cost calculations. Additionally,
announcing, bidding and awarding are allowed while the
results of previous bids are still unknown. Safe and
opportunistic pricing policies are discussed: opportunism
speeds up the negotiations, but safe policies guarantee
monotonic decrease of the local cost. Task interaction is
handled by heuristically clustering tasks into
announcements negotiated over atomically. The
implementation is asynchronous and truly distributed and
solves the message congestion problems.

At this stage, the announcing, bidding and awarding
decisions do not anticipate future contracts. Future
research also includes estimating the marginal costs when a
local solution does not exist, so that the agents could
negotiate before they solve the local routing problem, and
even if a feasible solution to the local problem does not
exist at the moment. In the future we wish to extend the
protocol for contracts involving multiple agents. In
TRACONET, the bidder can only bid for the announced
task sets, but allowing counterproposals with different
content may speed up the negotiations. Currently there is
just one focus in the contract space and it is committal.
Moving non-committal foci in the contract space would
enable jumping over local minima, because multiple
contracts would be made before the agents have to commit.
Finally, other than per centual profit division mechanisms,
and intelligent local reoptimization activation should be
implemented.

Acknowledgements
I would like to thank professor Victor Lesser from the
University of Massachusetts at Amherst, Computer Science
Department, and research professor Seppo Linnainmaa
from the Technical Research Centre of Finland, Laboratory
for Information Processing, for their support.

References
Bodin, L. et al. 1983. Routing and scheduling of vehicles
and crews: The state of the art. Computers and Operations
Research 10(2):63-211.

Davis, R., and Smith, R.G. 1988. Negotiation as a
Metaphor for Distributed Problem Solving. In: Bond, A.,
and Gasser, L. eds. Readings in Distributed Artificial
Intelligence, 333-356. San Mateo, Calif.: Morgan
Kaufmann.

Kuwabara, K., and Ishida, T. 1992. Symbiotic Approach to
Distributed Resource Allocation: Toward Coordinated
Balancing. In Proceedings of the European Workshop on
Modeling Autonomous Agents and Multi-Agent Worlds
'92.

McElroy, J. et al. 1989. Communication and cooperation in
a distributed automatic guided vehicle system. In
Proceedings of the IEEE Southeastcon '89, 999-1003.

Parunak, H.V.D. 1987. Manufacturing Experience with the
Contract Net. In: Huhns, M. ed. Distributed Artificial
Intell igence , 285-310. Los Altos, Calif.: Morgan
Kaufmann.

Powell, W., and Sheffi, Y. 1989. Design and
implementation of an interactive optimization system for
network design in the motor carrier industry. Operations
Research 37(1):12-29.

Sandholm, T. 1992a. Automatic Cooperation of Dispatch
Centers in Vehicle Routing. M.Sc. Thesis. Research Report
No. J-9, Laboratory for Information Processing, Technical
Research Centre of Finland.

Sandholm, T. 1992b. Automatic Cooperation of Area-
Distributed Dispatch Centers in Vehicle Routing. In
Preprints of the International Conference on Artificial
Intelligence Applications in Transportation Engineering,
449-467. Institute of Transportation Studies, Univ. of
Calif., Irvine.

Smith, R.G. 1980. The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver. IEEE Trans. on Computers C-29(12):1104-1113.

Smith, R.G., and Davis, R. 1981. Frameworks for
Cooperation in Distributed Problem Solving. IEEE Trans.
on Systems, Man, and Cybernetics 11(1):61-70.

Waters, C.D. 1984. Interactive vehicle routing. Journal of
the Operational Research Society 35(9):821-826.

Waters, C.D. 1987. A solution procedure for the vehicle-
scheduling problem based on iterative route improvement.
Journal of the Operational Research Society 38(9):833-
839.

Wellman, M. 1992. A General-Equilibrium Approach to
Distributed Transportation Planning. Proceedings of the
AAAI -92, 282-289.

Wong, K., and Beasley, J. 1984. Vehicle routing using
fixed delivery areas. Omega International Journal of
Management Science 12(6):591-600.

ERROR: undefined
OFFENDING COMMAND: ÿ

STACK:

