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Abstract

This paper surveys the field of reinforcement learning from a computer-science perspective. It
is written to be accessible to researchers familiar with machine learning. Both the historical basis
of the field and a broad selection of current work are summarized. Reinforcement learning is the
problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic
environment. The work described here has a resemblance to work in psychology, but differs
considerably in the details and in the use of the word “reinforcement.” The paper discusses central
issues of reinforcement learning, including trading off exploration and exploitation, establishing
the foundations of the field via Markov decision theory, learning from delayed reinforcement,
constructing empirical models to accelerate learning, making use of generalization and hierarchy,
and coping with hidden state. It concludes with a survey of some implemented systems and an
assessment of the practical utility of current methods for reinforcement learning.

1. Introduction

Reinforcement learning dates back to the early days of cybernetics and work in statistics, psychology,
neuroscience, and computer science. In the last five to ten years, it has attracted rapidly increasing
interest in the machine learning and artificial intelligence communities. Its promise is beguiling—a
way of programming agents by reward and punishment without needing to specify how the task is
to be achieved. But there are formidable computational obstacles to fulfilling the promise.

This paper surveys the historical basis of reinforcement learning and some of the current work
from a computer science perspective. We give a high-level overview of the field and a taste of some
specific approaches. It is, of course, impossible to mention all of the important work in the field;
this should not be taken to be an exhaustive account.

Reinforcement learning is the problem faced by an agent that must learn behavior through trial-
and-error interactions with a dynamic environment. The work described here has a strong family
resemblance to eponymous work in psychology, but differs considerably in the details and in the use
of the word “reinforcement.” It is appropriately thought of as a class of problems, rather than as a
set of techniques.

There are two main strategies for solving reinforcement-learning problems. The first is to search
in the space of behaviors in order to find one that performs well in the environment. This approach
has been taken by work in genetic algorithms and genetic programming, as well as some more
novel search techniques [101]. The second is to use statistical techniques and dynamic programming
methods to estimate the utility of taking actions in states of the world. This paper is devoted
almost entirely to the second set of techniques because they take advantage of the special structure
of reinforcement-learning problems that is not available in optimization problems in general. It is
not yet clear which set of approaches is best in which circumstances.
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Figure 1: The standard reinforcement-learning model.

The rest of this section is devoted to establishing notation and describing the basic reinforcement-
learning model. Section 2 explains the trade-off between exploration and exploitation and presents
some solutions to the most basic case of reinforcement-learning problems, in which we want to max-
imize the immediate reward. Section 3 considers the more general problem in which rewards can be
delayed in time from the actions that were crucial to gaining them. Section 4 considers some clas-
sic model-free algorithms for reinforcement learning from delayed reward: adaptive heuristic critic,
TD(A) and Q-learning. Section 5 demonstrates a continuum of algorithms that are sensitive to the
amount of computation an agent can perform between actual steps of action in the environment.
Generalization—the cornerstone of mainstream machine learning research—has the potential of con-
siderably aiding reinforcement learning, as described in Section 6. Section 7 considers the problems
that arise when the agent does not have complete perceptual access to the state of the environ-
ment. Section 8 catalogs some of reinforcement learning’s successful applications. Finally, Section 9
concludes with some speculations about important open problems and the future of reinforcement
learning.

1.1 Reinforcement-Learning Model

In the standard reinforcement-learning model, an agent is connected to its environment via percep-
tion and action, as depicted in Figure 1. On each step of interaction the agent receives as input,
t, some indication of the current state, s, of the environment; the agent then chooses an action, a,
to generate as output. The action changes the state of the environment, and the value of this state
transition is communicated to the agent through a scalar reinforcement signal, r. The agent’s behav-
ior, B, should choose actions that tend to increase the long-run sum of values of the reinforcement
signal. It can learn to do this over time by systematic trial and error, guided by a wide variety of
algorithms that are the subject of later sections of this paper.
Formally, the model consists of

e a discrete set of environment states, S;
e a discrete set of agent actions, 4; and
e a set of scalar reinforcement signals; typically {0, 1}, or the real numbers.

The figure also includes an input function I, which determines how the agent views the environment
state; we will assume that it is the identity function (that is, the agent perceives the exact state of
the environment) until we consider partial observability in Section 7.

An intuitive way to understand the relation between the agent and its environment is with the
following example dialogue.
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Environment: You are in state 65. You have 4 possible actions.
Agent: I'll take action 2.
Environment: You received a reinforcement of 7 units. You are now in state 15.

You have 2 possible actions.

Agent: I'll take action 1.

Environment: You received a reinforcement of -4 units. You are now in state 65.
You have 4 possible actions.

Agent: I'll take action 2.

Environment: You received a reinforcement of 5 units. You are now in state 44.

You have 5 possible actions.

The agent’s job is to find a policy w, mapping states to actions, that maximizes some long-run
measure of reinforcement. We expect, in general, that the environment will be non-deterministic;
that is, that taking the same action in the same state on two different occasions may result in different
next states and/or different reinforcement values. This happens in our example above: from state 65,
applying action 2 produces differing reinforcements and differing states on two occasions. However,
we assume the environment is stationary; that is, that the probabilities of making state transitions
or receiving specific reinforcement signals do not change over time.!

Reinforcement learning differs from the more widely studied problem of supervised learning in
several ways. The most important difference is that there is no presentation of input/output pairs.
Instead, after choosing an action the agent is told the immediate reward and the subsequent state,
but is not told which action would have been in its best long-term interests. It is necessary for the
agent to gather useful experience about the possible system states, actions, transitions and rewards
actively to act optimally. Another difference from supervised learning is that on-line performance is
important: the evaluation of the system is often concurrent with learning.

Some aspects of reinforcement learning are closely related to search and planning issues in arti-
ficial intelligence. Al search algorithms generate a satisfactory trajectory through a graph of states.
Planning operates in a similar manner, but typically within a construct with more complexity than
a graph, in which states are represented by compositions of logical expressions instead of atomic
symbols. These Al algorithms are less general than the reinforcement-learning methods, in that they
require a predefined model of state transitions, and with a few exceptions assume determinism. On
the other hand, reinforcement learning, at least in the kind of discrete cases for which theory has
been developed, assumes that the entire state space can be enumerated and stored in memory—an
assumption to which conventional search algorithms are not tied.

1.2 Models of Optimal Behavior

Before we can start thinking about algorithms for learning to behave optimally, we have to decide
what our model of optimality will be. In particular, we have to specify how the agent should take
the future into account in the decisions it makes about how to behave now. There are three models
that have been the subject of the majority of work in this area.

The finite-horizon model is the easiest to think about; at a given moment in time, the agent
should optimize its expected reward for the next h steps:

h

E(Z ) 3

t=0

1. This assumption may be disappointing; after all, operation in non-stationary environments is one of the moti-
vations for building learning systems. In fact, many of the algorithms described in later sections are effective in
slowly-varying non-stationary environments, but there is very little theoretical analysis in this area.
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it need not worry about what will happen after that. In this and subsequent expressions, r; represents
the scalar reward received ¢ steps into the future. This model can be used in two ways. In the first,
the agent will have a non-stationary policy; that is, one that changes over time. On its first step it
will take what is termed a h-step optimal action. This is defined to be the best action available given
that it has h steps remaining in which to act and gain reinforcement. On the next step it will take a
(h — 1)-step optimal action, and so on, until it finally takes a 1-step optimal action and terminates.
In the second, the agent does receding-horizon control, in which it always takes the h-step optimal
action. The agent always acts according to the same policy, but the value of A limits how far ahead
it looks in choosing its actions. The finite-horizon model is not always appropriate. In many cases
we may not know the precise length of the agent’s life in advance.

The infinite-horizon discounted model takes the long-run reward of the agent into account, but
rewards that are received in the future are geometrically discounted according to discount factor =,

(where 0 < v < 1):
E(Z'ytn) .
t=0

We can interpret v in several ways. It can be seen as an interest rate, a probability of living another
step, or as a mathematical trick to bound the infinite sum. The model is conceptually similar
to receding-horizon control, but the discounted model is more mathematically tractable than the
finite-horizon model. This is a dominant reason for the wide attention this model has received.

Another optimality criterion is the average-reward model, in which the agent is supposed to take
actions that optimize its long-run average reward:

R L
Jim B3 m) -
t=0

Such a policy is referred to as a gain optimal policy; it can be seen as the limiting case of the infinite-
horizon discounted model as the discount factor approaches 1 [14]. One problem with this criterion
is that there is no way to distinguish between two policies, one of which gains a large amount of
reward in the initial phases and the other of which does not. Reward gained on any initial prefix
of the agent’s life is overshadowed by the long-run average performance. It is possible to generalize
this model so that it takes into account both the long run average and the amount of initial reward
than can be gained. In the generalized, bias optimal model, a policy is preferred if it maximizes the
long-run average and ties are broken by the initial extra reward.

Figure 2 contrasts these models of optimality by providing an environment in which changing the
model of optimality changes the optimal policy. In this example, circles represent the states of the
environment and arrows are state transitions. There is only a single action choice from every state
except the start state, which is in the upper left and marked with an incoming arrow. All rewards are
zero except where marked. Under a finite-horizon model with h = 5, the three actions yield rewards
of +6.0, +0.0, and +0.0, so the first action should be chosen; under an infinite-horizon discounted
model with v = 0.9, the three choices yield +16.2, 459.0, and +58.5 so the second action should be
chosen; and under the average reward model, the third action should be chosen since it leads to an
average reward of +11. If we change h to 1000 and v to 0.2, then the second action is optimal for
the finite-horizon model and the first for the infinite-horizon discounted model; however, the average
reward model will always prefer the best long-term average. Since the choice of optimality model
and parameters matters so much, it is important to choose it carefully in any application.

The finite-horizon model is appropriate when the agent’s lifetime is known; one important aspect
of this model is that as the length of the remaining lifetime decreases, the agent’s policy may change.
A system with a hard deadline would be appropriately modeled this way. The relative usefulness of
infinite-horizon discounted and bias-optimal models is still under debate. Bias-optimality has the
advantage of not requiring a discount parameter; however, algorithms for finding bias-optimal policies
are not yet as well-understood as those for finding optimal infinite-horizon discounted policies.
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Figure 2: Comparing models of optimality. All unlabeled arrows produce a reward of zero.

1.3 Measuring Learning Performance

The criteria given in the previous section can be used to assess the policies learned by a given
algorithm. We would also like to be able to evaluate the quality of learning itself. There are several
incompatible measures in use.

e Eventual convergence to optimal. Many algorithms come with a provable guarantee of
asymptotic convergence to optimal behavior [129]. This is reassuring, but useless in practical
terms. An agent that quickly reaches a plateau at 99% of optimality may, in many applications,
be preferable to an agent that has a guarantee of eventual optimality but a sluggish early
learning rate.

e Speed of convergence to optimality. Optimality is usually an asymptotic result, and so
convergence speed is an ill-defined measure. More practical is the speed of convergence to near-
optimality. This measure begs the definition of how near to optimality is sufficient. A related
measure is level of performance after a given time, which similarly requires that someone define
the given time.

It should be noted that here we have another difference between reinforcement learning and
conventional supervised learning. In the latter, expected future predictive accuracy or statis-
tical efficiency are the prime concerns. For example, in the well-known PAC framework [127],
there is a learning period during which mistakes do not count, then a performance period
during which they do. The framework provides bounds on the necessary length of the learning
period in order to have a probabilistic guarantee on the subsequent performance. That is
usually an inappropriate view for an agent with a long existence in a complex environment.

In spite of the mismatch between embedded reinforcement learning and the train/test perspec-
tive, Fiechter [39] provides a PAC analysis for Q-learning (described in Section 4.2) that sheds
some light on the connection between the two views.

Measures related to speed of learning have an additional weakness. An algorithm that merely
tries to achieve optimality as fast as possible may incur unnecessarily large penalties during
the learning period. A less aggressive strategy taking longer to achieve optimality, but gaining
greater total reinforcement during its learning might be preferable.

e Regret. A more appropriate measure, then, is the expected decrease in reward gained due to
executing the learning algorithm instead of behaving optimally from the very beginning. This
measure is known as regret [12]. It penalizes mistakes wherever they occur during the run.
Unfortunately, results concerning the regret of algorithms are quite hard to obtain.
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1.4 Reinforcement Learning and Adaptive Control

Adaptive control [19, 112] is also concerned with algorithms for improving a sequence of decisions
from experience. Adaptive control is a much more mature discipline that concerns itself with dynamic
systems in which states and actions are vectors and system dynamics are smooth: linear or locally
linearizable around a desired trajectory. A very common formulation of cost functions in adaptive
control are quadratic penalties on deviation from desired state and action vectors. Most importantly,
although the dynamic model of the system is not known in advance, and must be estimated from
data, the structure of the dynamic model is fixed, leaving model estimation as a parameter estimation
problem. These assumptions permit deep, elegant and powerful mathematical analysis, which in turn
lead to robust, practical, and widely deployed adaptive control algorithms.

2. Exploitation versus Exploration: The Single-State Case

One major difference between reinforcement learning and supervised learning is that a reinforcement-
learner must explicitly explore its environment. In order to highlight the problems of exploration,
we treat a very simple case in this section. The fundamental issues and approaches described here
will, in many cases, transfer to the more complex instances of reinforcement learning discussed later
in the paper.

The simplest possible reinforcement-learning problem is known as the k-armed bandit problem,
which has been the subject of a great deal of study in the statistics and applied mathematics
literature [12]. The agent is in a room with a collection of & gambling machines (each called a
“one-armed bandit” in colloquial English). The agent is permitted a fixed number of pulls, h. Any
arm may be pulled on each turn. The machines do not require a deposit to play; the only cost is
in wasting a pull playing a suboptimal machine. When arm ¢ is pulled, machine ¢ pays off 1 or 0,
according to some underlying probability parameter p;, where payoffs are independent events and
the p;s are unknown. What should the agent’s strategy be?

This problem illustrates the fundamental tradeoff between exploitation and exploration. The
agent might believe that a particular arm has a fairly high payoff probability; should it choose that
arm all the time, or should it choose another one that it has less information about, but seems to
be worse? Answers to these questions depend on how long the agent is expected to play the game;
the longer the game lasts, the worse the consequences of prematurely converging on a sub-optimal
arm, and the more the agent should explore.

There is a wide variety of solutions to this problem. We will consider a representative selection
of them, but for a deeper discussion and a number of important theoretical results, see the book
by Berry and Fristedt [12]. We use the term “action” to indicate the agent’s choice of arm to pull.
This eases the transition into delayed reinforcement models in Section 3. It is very important to
note that bandit problems fit our definition of a reinforcement-learning environment with a single
state with only self transitions.

Section 2.1 discusses three solutions to the basic one-state bandit problem that have formal
correctness results. Although they can be extended to problems with real-valued rewards, they do
not apply directly to the general multi-state delayed-reinforcement case. Section 2.2 presents three
techniques that are not formally justified, but that have had wide use in practice, and can be applied
(with similar lack of guarantee) to the general case.

2.1 Formally Justified Techniques

There is a fairly well-developed formal theory of exploration for very simple problems. Although it
is instructive, the methods it provides do not scale well to more complex problems.
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2.1.1 DyNAMIC-PROGRAMMING APPROACH

If the agent is going to be acting for a total of h steps, it can use basic Bayesian reasoning to solve
for an optimal strategy [12]. This requires an assumed prior joint distribution for the parameters
{p:i}, the most natural of which is that each p; is independently uniformly distributed between 0
and 1. We compute a mapping from belief states (summaries of the agent’s experiences during this
run) to actions. Here, a belief state can be represented as a tabulation of action choices and payoffs:
{n1, w1, ng, wa, ..., ng, wg } denotes a state of play in which each arm i has been pulled n; times with
w; payoffs. We write V*(ny, w1y, ..., ng, wy) as the expected payoff remaining, given that a total of
h pulls are available, and we use the remaining pulls optimally.

If 7, n; = h, then there are no remaining pulls, and V*(ny, wy,...,ng, wy) = 0. This is the
basis of a recursive definition. If we know the V> value for all belief states with ¢ pulls remaining,
we can compute the V* value of any belief state with ¢ + 1 pulls remaining:

Future payoff if agent takes action ¢,
then acts optimally for remaining pulls

V*(ny, wy, ... g, wg) = maxiE[
e piV¥(ny,wiy .o ng + Lw + 1,000, ng, w )+
o A (L= p)VE(n, wiy e ng + 1w, o g, w)

where p; is the posterior subjective probability of action i paying off given n;, w; and our prior
probability. For the uniform priors, which result in a beta distribution, p; = (w; + 1)/(n; + 2).

The expense of filling in the table of V* values in this way for all attainable belief states is linear
in the number of belief states times actions, and thus exponential in the horizon.

2.1.2 GITTINS ALLOCATION INDICES

Gittins gives an “allocation index” method for finding the optimal choice of action at each step in
k-armed bandit problems [40]. The technique only applies under the discounted expected reward
criterion. For each action, consider the number of times it has been chosen, n, versus the number of
times it has paid off, w. For certain discount factors, there are published tables of “index values,”
I(n,w) for each pair of n and w. Look up the index value for each action i, I(n;, w;). It represents
a comparative measure of the combined value of the expected payoff of action ¢ (given its history of
payoffs) and the value of the information that we would get by choosing it. Gittins has shown that
choosing the action with the largest index value guarantees the optimal balance between exploration
and exploitation.

Because of the guarantee of optimal exploration and the simplicity of the technique (given the
table of index values), this approach holds a great deal of promise for use in more complex ap-
plications. This method proved useful in an application to robotic manipulation with immediate
reward [98]. Unfortunately, no one has yet been able to find an analog of index values for delayed
reinforcement problems.

2.1.3 LEARNING AUTOMATA

A branch of the theory of adaptive control is devoted to learning automata, surveyed by Narendra
and Thathachar [85], which were originally described explicitly as finite state automata. The Tsetlin
automaton shown in Figure 3 provides an example that solves a 2-armed bandit arbitrarily near
optimally as IV approaches infinity.

It is inconvenient to describe algorithms as finite-state automata, so a move was made to describe
the internal state of the agent as a probability distribution according to which actions would be
chosen. The probabilities of taking different actions would be adjusted according to their previous
successes and failures.

An example, which stands among a set of algorithms independently developed in the mathe-
matical psychology literature [45], is the linear reward-inaction algorithm. Let p; be the agent’s
probability of taking action z.
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a=0 a=1
1 2 3 N1 N 2N 2N-1 N+3 N+2 N+1
r=1

a=0 a=1

1 2 3 N1 N 2N 2N-1 N+3 N+2 N+1
r=0

Figure 3: A Tsetlin automaton with 2V states. The top row shows the state transitions that are
made when the previous action resulted in a reward of 1; the bottom row shows transitions
after a reward of 0. In states in the left half of the figure, action 0 is taken; in those on
the right, action 1 is taken.

e When action a; succeeds,

pi = pita(l—p)
p; = p;j—ap; forj#1

e When action a; fails, p; remains unchanged (for all j).

This algorithm converges with probability 1 to a vector containing a single 1 and the rest 0’s
(choosing a particular action with probability 1). Unfortunately, it does not always converge to the
correct action; but the probability that it converges to the wrong one can be made arbitrarily small
by making « small [86]. There is no literature on the regret of this algorithm.

2.2 Ad-Hoc Techniques

In reinforcement-learning practice, some simple, ad hoc strategies have been popular. They are
rarely, if ever, the best choice for the models of optimality we have used, but they may be viewed
as reasonable, computationally tractable, heuristics. Thrun [124] has surveyed a variety of these
techniques.

2.2.1 GREEDY STRATEGIES

The first strategy that comes to mind is to always choose the action with the highest estimated
payoff. The flaw is that early unlucky sampling might indicate that the best action’s reward is less
than the reward obtained from a suboptimal action. The suboptimal action will always be picked,
leaving the true optimal action starved of data and its superiority never discovered. An agent must
explore to ameliorate this outcome.

A useful heuristic is optimism in the face of uncertainty in which actions are selected greedily, but
strongly optimistic prior beliefs are put on their payoffs so that strong negative evidence is needed
to eliminate an action from consideration. This still has a measurable danger of starving an optimal
but unlucky action, but the risk of this can be made arbitrarily small. Techniques like this have
been used in several reinforcement learning algorithms including the interval exploration method [52]
(described shortly), the exploration bonus in Dyna [116], curiosity-driven exploration [102], and the
exploration mechanism in prioritized sweeping [83].

244



REINFORCEMENT LEARNING: A SURVEY

2.2.2 RANDOMIZED STRATEGIES

Another simple exploration strategy is to take the action with the best estimated expected reward
by default, but with probability p, choose an action at random. Some versions of this strategy start
with a large value of p to encourage initial exploration, which is slowly decreased.

An objection to the simple strategy is that when it experiments with a non-greedy action it is
no more likely to try a promising alternative than a clearly hopeless alternative. A slightly more
sophisticated strategy is Boltzmann exploration. In this case, the expected reward for taking action
a, FR(a) is used to choose an action probabilistically according to the distribution

CER(a)/T
S q PRETT

The temperature parameter T can be decreased over time to decrease exploration. This method
works well if the best action is well separated from the others, but suffers somewhat when the values

of the actions are close. It may also converge unnecessarily slowly unless the temperature schedule
is manually tuned with great care.

Pa) =

2.2.3 INTERVAL-BASED TECHNIQUES

Exploration is often more efficient when it is based on second-order information about the certainty
or variance of the estimated values of actions. Kaelbling’s interval estimation algorithm [52] stores
statistics for each action a;: w; is the number of successes and n; the number of trials. An action
is chosen by computing the upper bound of a 100 - (1 — a)% confidence interval on the success
probability of each action and choosing the action with the highest upper bound. Smaller values of
the a parameter encourage greater exploration. When payoffs are boolean, the normal approximation
to the binomial distribution can be used to construct the confidence interval (though the binomial
should be used for small n). Other payoff distributions can be handled using their associated
statistics or with nonparametric methods. The method works very well in empirical trials. It is also
related to a certain class of statistical techniques known as experiment design methods [17], which
are used for comparing multiple treatments (for example, fertilizers or drugs) to determine which
treatment (if any) is best in as small a set of experiments as possible.

2.3 More General Problems

When there are multiple states, but reinforcement is still immediate, then any of the above solutions
can be replicated, once for each state. However, when generalization is required, these solutions must
be integrated with generalization methods (see section 6); this is straightforward for the simple ad-
hoc methods, but it is not understood how to maintain theoretical guarantees.

Many of these techniques focus on converging to some regime in which exploratory actions are
taken rarely or never; this is appropriate when the environment is stationary. However, when the
environment is non-stationary, exploration must continue to take place, in order to notice changes
in the world. Again, the more ad-hoc techniques can be modified to deal with this in a plausible
manner (keep temperature parameters from going to 0; decay the statistics in interval estimation),
but none of the theoretically guaranteed methods can be applied.

3. Delayed Reward

In the general case of the reinforcement learning problem, the agent’s actions determine not only
its immediate reward, but also (at least probabilistically) the next state of the environment. Such
environments can be thought of as networks of bandit problems, but the agent must take into account
the next state as well as the immediate reward when it decides which action to take. The model of
long-run optimality the agent is using determines exactly how it should take the value of the future
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into account. The agent will have to be able to learn from delayed reinforcement: it may take a long
sequence of actions, receiving insignificant reinforcement, then finally arrive at a state with high
reinforcement. The agent must be able to learn which of its actions are desirable based on reward
that can take place arbitrarily far in the future.

3.1 Markov Decision Processes

Problems with delayed reinforcement are well modeled as Markov decision processes (MDPs). An
MDP consists of

e a set of states &,
e a set of actions A,
e a reward function R: 8§ x A — R, and

e a state transition function T : § x A — TI(S), where a member of II(S) is a probability
distribution over the set S (i.e. it maps states to probabilities). We write T'(s, a, s") for the
probability of making a transition from state s to state s’ using action a.

The state transition function probabilistically specifies the next state of the environment as a function
of its current state and the agent’s action. The reward function specifies expected instantaneous
reward as a function of the current state and action. The model is Markov if the state transitions are
independent of any previous environment states or agent actions. There are many good references
to MDP models [10, 13, 48, 90].

Although general MDPs may have infinite (even uncountable) state and action spaces, we will
only discuss methods for solving finite-state and finite-action problems. In section 6, we discuss
methods for solving problems with continuous input and output spaces.

3.2 Finding a Policy Given a Model

Before we consider algorithms for learning to behave in MDP environments, we will explore tech-
niques for determining the optimal policy given a correct model. These dynamic programming
techniques will serve as the foundation and inspiration for the learning algorithms to follow. We re-
strict our attention mainly to finding optimal policies for the infinite-horizon discounted model, but
most of these algorithms have analogs for the finite-horizon and average-case models as well. We rely
on the result that, for the infinite-horizon discounted model, there exists an optimal deterministic
stationary policy [10].

We will speak of the optimal wvalue of a state—it is the expected infinite discounted sum of
reward that the agent will gain if it starts in that state and executes the optimal policy. Using 7 as
a complete decision policy, it is written

V*(s) = max F (Z 'ytrt)
t=0

This optimal value function is unique and can be defined as the solution to the simultaneous equations

V(s) = max (R(s, a) + Z T(s,a, sl)V*(sl)) ,Vse S (1)

s'eS

which assert that the value of a state s is the expected instantaneous reward plus the expected
discounted value of the next state, using the best available action. Given the optimal value function,
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we can specify the optimal policy as

n*(s) = arg max (R(s, a) + Z T(s,a, sl)V*(sl))

s'eS

3.2.1 VALUE ITERATION

One way, then, to find an optimal policy is to find the optimal value function. It can be determined
by a simple iterative algorithm called value iteration that can be shown to converge to the correct

V> values [10, 13].

initialize V(s) arbitrarily
loop until policy good emnough
loop for s €S
loop for a € A
Q(s,a) = R(s,a) + 7> ,cs T(s,a,s)V(s')
V(s) := max, Q(s,a)
end loop
end loop

It is not obvious when to stop the value iteration algorithm. One important result bounds the
performance of the current greedy policy as a function of the Bellman residual of the current value
function [134]. Tt says that if the maximum difference between two successive value functions is
less than e, then the value of the greedy policy, (the policy obtained by choosing, in every state,
the action that maximizes the estimated discounted reward, using the current estimate of the value
function) differs from the value function of the optimal policy by no more than 2ey/(1 — ) at
any state. This provides an effective stopping criterion for the algorithm. Puterman [90] discusses
another stopping criterion, based on the span semi-norm, which may result in earlier termination.
Another important result is that the greedy policy is guaranteed to be optimal in some finite number
of steps even though the value function may not have converged [13]. And in practice, the greedy
policy is often optimal long before the value function has converged.

Value iteration is very flexible. The assignments to V' need not be done in strict order as shown
above, but instead can occur asynchronously in parallel provided that the value of every state gets
updated infinitely often on an infinite run. These issues are treated extensively by Bertsekas [16],
who also proves convergence results.

Updates based on Equation 1 are known as full backups since they make use of information from
all possible successor states. It can be shown that updates of the form

Q(s,a) == Q(s,a) + a(r+ 'YH}IE}XQ(S’,a’) - Q(s,a))

can also be used as long as each pairing of @ and s is updated infinitely often, s’ is sampled from the
distribution T'(s, a, s’), r is sampled with mean R(s,a) and bounded variance, and the learning rate
« is decreased slowly. This type of sample backup [111] is critical to the operation of the model-free
methods discussed in the next section.

The computational complexity of the value-iteration algorithm with full backups, per iteration,
is quadratic in the number of states and linear in the number of actions. Commonly, the transition
probabilities T'(s,a,s’) are sparse. If there are on average a constant number of next states with
non-zero probability then the cost per iteration is linear in the number of states and linear in
the number of actions. The number of iterations required to reach the optimal value function is
polynomial in the number of states and the magnitude of the largest reward if the discount factor is
held constant. However, in the worst case the number of iterations grows polynomially in 1/(1 —7),
so the convergence rate slows considerably as the discount factor approaches 1 [66].
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3.2.2 Poricy ITERATION

The policy iteration algorithm manipulates the policy directly, rather than finding it indirectly via
the optimal value function. It operates as follows:

choose an arbitrary policy =’
loop
mi=a
compute the value function of policy m:
solve the linear equations
Va(s) = R(s.7(s)) +7 Dyres Tls. w(s), )V )
improve the policy at each state:
n'(s) 1= argmax, (R(s, a)+v ves T(s,a, 5’)V7T(5’))

until 7= =7’

The value function of a policy is just the expected infinite discounted reward that will be gained,
at each state, by executing that policy. It can be determined by solving a set of linear equations.
Once we know the value of each state under the current policy, we consider whether the value could
be improved by changing the first action taken. If it can, we change the policy to take the new
action whenever it is in that situation. This step is guaranteed to strictly improve the performance
of the policy. When no improvements are possible, then the policy is guaranteed to be optimal.

Since there are at most |.A||S| distinct policies, and the sequence of policies improves at each
step, this algorithm terminates in at most an exponential number of iterations [90]. However, it
is an important open question how many iterations policy iteration takes in the worst case. It is
known that the running time is pseudopolynomial and that for any fixed discount factor, there is a
polynomial bound in the total size of the MDP [66].

3.2.3 ENHANCEMENT TO VALUE ITERATION AND PoOLICY ITERATION

In practice, value iteration is much faster per iteration, but policy iteration takes fewer iterations.
Arguments have been put forth to the effect that each approach is better for large problems. Put-
erman’s modified policy iteration algorithm [91] provides a method for trading iteration time for
iteration improvement in a smoother way. The basic idea is that the expensive part of policy itera-
tion is solving for the exact value of V. Instead of finding an exact value for V., we can perform a
few steps of a modified value-iteration step where the policy is held fixed over successive iterations.
This can be shown to produce an approximation to V; that converges linearly in 7. In practice, this
can result in substantial speedups.

Several standard numerical-analysis techniques that speed the convergence of dynamic program-
ming can be used to accelerate value and policy iteration. Multigrid methods can be used to quickly
seed a good initial approximation to a high resolution value function by initially performing value
iteration at a coarser resolution [93]. State aggregation works by collapsing groups of states to a
single meta-state solving the abstracted problem [15].

3.2.4 COMPUTATIONAL COMPLEXITY

Value iteration works by producing successive approximations of the optimal value function. Each
iteration can be performed in O(|A||S]?) steps, or faster if there is sparsity in the transition function.
However, the number of iterations required can grow exponentially in the discount factor [27]; as
the discount factor approaches 1, the decisions must be based on results that happen farther and
farther into the future. In practice, policy iteration converges in fewer iterations than value iteration,
although the per-iteration costs of O(|A||S|? + |S|?) can be prohibitive. There is no known tight
worst-case bound available for policy iteration [66]. Modified policy iteration [91] seeks a trade-off
between cheap and effective iterations and is preferred by some practictioners [96].
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Linear programming [105] is an extremely general problem, and MDPs can be solved by general-
purpose linear-programming packages [35, 34, 46]. An advantage of this approach is that commercial-
quality linear-programming packages are available, although the time and space requirements can
still be quite high. From a theoretic perspective, linear programming is the only known algorithm
that can solve MDPs in polynomial time, although the theoretically efficient algorithms have not
been shown to be efficient in practice.

4. Learning an Optimal Policy: Model-free Methods

In the previous section we reviewed methods for obtaining an optimal policy for an MDP assuming
that we already had a model. The model consists of knowledge of the state transition probability
function T'(s,a,s’) and the reinforcement function R(s,a). Reinforcement learning is primarily
concerned with how to obtain the optimal policy when such a model is not known in advance.
The agent must interact with its environment directly to obtain information which, by means of an
appropriate algorithm, can be processed to produce an optimal policy.

At this point, there are two ways to proceed.

e Model-free: Learn a controller without learning a model.
e Model-based: Learn a model, and use it to derive a controller.

Which approach is better? This is a matter of some debate in the reinforcement-learning community.
A number of algorithms have been proposed on both sides. This question also appears in other fields,
such as adaptive control, where the dichotomy is between direct and indirect adaptive control.

This section examines model-free learning, and Section 5 examines model-based methods.

The biggest problem facing a reinforcement-learning agent is temporal credit assignment. How
do we know whether the action just taken is a good one, when it might have far-reaching effects?
One strategy is to wait until the “end” and reward the actions taken if the result was good and
punish them if the result was bad. In ongoing tasks, it is difficult to know what the “end” is, and
this might require a great deal of memory. Instead, we will use insights from value iteration to adjust
the estimated value of a state based on the immediate reward and the estimated value of the next
state. This class of algorithms is known as temporal difference methods [115]. We will consider two
different temporal-difference learning strategies for the discounted infinite-horizon model.

4.1 Adaptive Heuristic Critic and TD())

The adaptive heuristic eritic algorithm is an adaptive version of policy iteration [9] in which the
value-function computation is no longer implemented by solving a set of linear equations, but is
instead computed by an algorithm called TD(0). A block diagram for this approach is given in
Figure 4. Tt consists of two components: a critic (labeled AHC), and a reinforcement-learning
component (labeled RL). The reinforcement-learning component can be an instance of any of the
k-armed bandit algorithms, modified to deal with multiple states and non-stationary rewards. But
instead of acting to maximize instantaneous reward, it will be acting to maximize the heuristic
value, v, that is computed by the critic. The critic uses the real external reinforcement signal to
learn to map states to their expected discounted values given that the policy being executed is the
one currently instantiated in the RL component.

We can see the analogy with modified policy iteration if we imagine these components working in
alternation. The policy m implemented by RL is fixed and the critic learns the value function V; for
that policy. Now we fix the critic and let the RL component learn a new policy 7’ that maximizes
the new value function, and so on. In most implementations, however, both components operate
simultaneously. Only the alternating implementation can be guaranteed to converge to the optimal
policy, under appropriate conditions. Williams and Baird explored the convergence properties of a
class of AHC-related algorithms they call “incremental variants of policy iteration” [133].
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Figure 4: Architecture for the adaptive heuristic critic.

It remains to explain how the critic can learn the value of a policy. We define (s, a,r, s’} to be
an experience tuple summarizing a single transition in the environment. Here s is the agent’s state
before the transition, a is its choice of action, r the instantaneous reward it receives, and s’ its
resulting state. The value of a policy is learned using Sutton’s T'D(0) algorithm [115] which uses
the update rule

V(s):=V(s)+alr+4V(s)=V(s)) .

Whenever a state s is visited, its estimated value is updated to be closer to r + vV (s'), since r is
the instantaneous reward received and V(s') is the estimated value of the actually occurring next
state. This is analogous to the sample-backup rule from value iteration—the only difference is that
the sample is drawn from the real world rather than by simulating a known model. The key idea
is that r + vV (s) is a sample of the value of V(s), and it is more likely to be correct because it
incorporates the real r. If the learning rate « is adjusted properly (it must be slowly decreased) and
the policy is held fixed, TD(0) is guaranteed to converge to the optimal value function.

The TD(0) rule as presented above is really an instance of a more general class of algorithms
called TD(A), with A = 0. TD(0) looks only one step ahead when adjusting value estimates; although
it will eventually arrive at the correct answer, it can take quite a while to do so. The general T D())
rule is similar to the 7.D(0) rule given above,

V(u) :=V(u) +a(r+9V(s') = V(s))e(u) ,

but it is applied to every state according to its eligibility e(u), rather than just to the immediately
previous state, s. One version of the eligibility trace is defined to be

t
B ek ] 1lifs=s;
6(8) = Z(/\’)/) 6s,sk s where 6575k - { 0 otherwise

k=1
The eligibility of a state s is the degree to which it has been visited in the recent past; when a
reinforcement is received, it is used to update all the states that have been recently visited, according
to their eligibility. When A = 0 this is equivalent to TD(0). When A = 1, it is roughly equivalent
to updating all the states according to the number of times they were visited by the end of a run.
Note that we can update the eligibility online as follows:

(s) i= yAe(s) +1 if s = current state
5) = yAe(s) otherwise

It is computationally more expensive to execute the general T D(A), though it often converges
considerably faster for large A [30, 32]. There has been some recent work on making the updates
more efficient [24] and on changing the definition to make T'D(A) more consistent with the certainty-
equivalent method [108], which is discussed in Section 5.1.

4.2 Q-learning

The work of the two components of AHC can be accomplished in a unified manner by Watkins’
Q-learning algorithm [128, 129]. Q-learning is typically easier to implement. In order to understand
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Q-learning, we have to develop some additional notation. Let @*(s,a) be the expected discounted
reinforcement of taking action a in state s, then continuing by choosing actions optimally. Note that
V*(s) is the value of s assuming the best action is taken initially, and so V*(s) = max, Q*(s, a).
Q7 (s,a) can hence be written recursively as

Q*(s,a) = R(s,a)+~ Z T(s,a,s") HlEIiXQ*(S/, a) .

s'eS

Note also that, since V*(s) = max, @*(s,a), we have 7*(s) = argmax, Q*(s, a) as an optimal policy.
Because the ) function makes the action explicit, we can estimate the @ values on-line using a
method essentially the same as T'D(0), but also use them to define the policy, because an action can
be chosen just by taking the one with the maximum @ value for the current state.
The Q-learning rule is

Q(s,a) = Q(s,a) + a(r+ 'YH}IE}XQ(S’,a’) - Q(s,a)) ,

where (s,a,r,s') is an experience tuple as described earlier. If each action is executed in each state
an infinite number of times on an infinite run and « is decayed appropriately, the Q) values will
converge with probability 1 to @* [128, 125, 49]. Q-learning can also be extended to update states
that occurred more than one step previously, as in TD(A) [88].

When the ) values are nearly converged to their optimal values, it is appropriate for the agent
to act greedily, taking, in each situation, the action with the highest ¢ value. During learning,
however, there is a difficult exploitation versus exploration trade-off to be made. There are no good,
formally justified approaches to this problem in the general case; standard practice is to adopt one
of the ad hoc methods discussed in section 2.2.

AHC architectures seem to be more difficult to work with than Q-learning on a practical level.
It can be hard to get the relative learning rates right in AHC so that the two components converge
together. In addition, Q-learning is exploration insensitive: that is, that the @ values will converge
to the optimal values, independent of how the agent behaves while the data is being collected (as
long as all state-action pairs are tried often enough). This means that, although the exploration-
exploitation issue must be addressed in Q-learning, the details of the exploration strategy will not
affect the convergence of the learning algorithm. For these reasons, Q-learning is the most popular
and seems to be the most effective model-free algorithm for learning from delayed reinforcement. It
does not, however, address any of the issues involved in generalizing over large state and/or action
spaces. In addition, it may converge quite slowly to a good policy.

4.3 Model-free Learning With Average Reward

As described, Q-learning can be applied to discounted infinite-horizon MDPs. It can also be applied
to undiscounted problems as long as the optimal policy is guaranteed to reach a reward-free absorbing
state and the state is periodically reset.

Schwartz [106] examined the problem of adapting Q-learning to an average-reward framework.
Although his R-learning algorithm seems to exhibit convergence problems for some MDPs, several
researchers have found the average-reward criterion closer to the true problem they wish to solve
than a discounted criterion and therefore prefer R-learning to Q-learning [69].

With that in mind, researchers have studied the problem of learning optimal average-reward
policies. Mahadevan [70] surveyed model-based average-reward algorithms from a reinforcement-
learning perspective and found several difficulties with existing algorithms. In particular, he showed
that existing reinforcement-learning algorithms for average reward (and some dynamic programming
algorithms) do not always produce bias-optimal policies. Jaakkola, Jordan and Singh [50] described
an average-reward learning algorithm with guaranteed convergence properties. It uses a Monte-Carlo
component to estimate the expected future reward for each state as the agent moves through the
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Figure 5: In this environment, due to Whitehead [130], random exploration would take take O(2")
steps to reach the goal even once, whereas a more intelligent exploration strategy (e.g.
“assume any untried action leads directly to goal”) would require only O(n?) steps.

environment. In addition, Bertsekas presents a Q-learning-like algorithm for average-case reward in
his new textbook [14]. Although this recent work provides a much needed theoretical foundation to
this area of reinforcement learning, many important problems remain unsolved.

5. Computing Optimal Policies by Learning Models

The previous section showed how it is possible to learn an optimal policy without knowing the
models T'(s,a,s’) or R(s,a) and without even learning those models en route. Although many of
these methods are guaranteed to find optimal policies eventually and use very little computation time
per experience, they make extremely inefficient use of the data they gather and therefore often require
a great deal of experience to achieve good performance. In this section we still begin by assuming
that we don’t know the models in advance, but we examine algorithms that do operate by learning
these models. These algorithms are especially important in applications in which computation is
considered to be cheap and real-world experience costly.

5.1 Certainty Equivalent Methods

We begin with the most conceptually straightforward method: first, learn the T and R functions
by exploring the environment and keeping statistics about the results of each action; next, com-
pute an optimal policy using one of the methods of Section 3. This method is known as certainty
equivlance [57].

There are some serious objections to this method:

e It makes an arbitrary division between the learning phase and the acting phase.

e How should it gather data about the environment initially? Random exploration might be
dangerous, and in some environments is an immensely inefficient method of gathering data,
requiring exponentially more data [130] than a system that interleaves experience gathering
with policy-building more tightly [56]. See Figure 5 for an example.

e The possibility of changes in the environment is also problematic. Breaking up an agent’s life
into a pure learning and a pure acting phase has a considerable risk that the optimal controller
based on early life becomes, without detection, a suboptimal controller if the environment
changes.

A variation on this idea is certainty equivalence, in which the model is learned continually through
the agent’s lifetime and, at each step, the current model is used to compute an optimal policy
and value function. This method makes very effective use of available data, but still ignores the
question of exploration and is extremely computationally demanding, even for fairly small state
spaces. Fortunately, there are a number of other model-based algorithms that are more practical.
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Steps before Backups before

convergence convergence
Q-learning 531,000 531,000
Dyna 62,000 3,055,000
prioritized sweeping 28,000 1,010,000

Table 1: The performance of three algorithms described in the text. All methods used the explo-
ration heuristic of “optimism in the face of uncertainty”: any state not previously visited
was assumed by default to be a goal state. Q-learning used its optimal learning rate pa-
rameter for a deterministic maze: @ = 1. Dyna and prioritized sweeping were permitted
to take & = 200 backups per transition. For prioritized sweeping, the priority queue often
emptied before all backups were used.

5.2 Dyna

Sutton’s Dyna architecture [116, 117] exploits a middle ground, yielding strategies that are both more
effective than model-free learning and more computationally efficient than the certainty-equivalence
approach. It simultaneously uses experience to build a model (T and R), uses experience to adjust
the policy, and uses the model to adjust the policy.

Dyna operates in a loop of interaction with the environment. Given an experience tuple {s, a, s', 7},
it behaves as follows:

e Update the model, incrementing statistics for the transition from s to s’ on action a and for
receiving reward r for taking action a in state s. The updated models are T" and R.

e Update the policy at state s based on the newly updated model using the rule

Q(s,a) := R(s, a) + 'yZT(s, a,s’) meILXQ(S/, a),

sl
which is a version of the value-iteration update for ) values.

e Perform £ additional updates: choose k state-action pairs at random and update them accord-
ing to the same rule as before:

Q(skyar):=R(sk ar) +5 Y T(sk, ax, s') max Q(s', a’) .

e Choose an action a’ to perform in state s, based on the @) values but perhaps modified by an
exploration strategy.

The Dyna algorithm requires about &k times the computation of Q-learning per instance, but
this is typically vastly less than for the naive model-based method. A reasonable value of k can be
determined based on the relative speeds of computation and of taking action.

Figure 6 shows a grid world in which in each cell the agent has four actions (N, S, E, W) and
transitions are made deterministically to an adjacent cell, unless there is a block, in which case no
movement occurs. As we will see in Table 1, Dyna requires an order of magnitude fewer steps of
experience than does Q-learning to arrive at an optimal policy. Dyna requires about six times more
computational effort, however.
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T

5]

Figure 6: A 3277-state grid world. This was formulated as a shortest-path reinforcement-learning
problem, which yields the same result as if a reward of 1 is given at the goal, a reward of
zero elsewhere and a discount factor is used.

5.3 Prioritized Sweeping / Queue-Dyna

Although Dyna is a great improvement on previous methods, it suffers from being relatively undi-
rected. It is particularly unhelpful when the goal has just been reached or when the agent is stuck
in a dead end; it continues to update random state-action pairs, rather than concentrating on the
“interesting” parts of the state space. These problems are addressed by prioritized sweeping [83]
and Queue-Dyna [87], which are two independently-developed but very similar techniques. We will
describe prioritized sweeping in some detail.

The algorithm is similar to Dyna, except that updates are no longer chosen at random and
values are now associated with states (as in value iteration) instead of state-action pairs (as in Q-
learning). To make appropriate choices, we must store additional information in the model. Each
state remembers its predecessors: the states that have a non-zero transition probability to it under
some action. In addition, each state has a priority, initially set to zero.

Instead of updating & random state-action pairs, prioritized sweeping updates k states with the
highest priority. For each high-priority state s, it works as follows:

e Remember the current value of the state: Vyiq = V(s).

Update the state’s value

V(s):= max (R(s, a) + 'yZT(s, a, sl)V(sl))

s!

e Set the state’s priority back to 0.

Compute the value change A = [V, ;g — V(s)|.

Use A to modify the priorities of the predecessors of s.
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If we have updated the V value for state s’ and it has changed by amount A, then the immediate
predecessors of s’ are informed of this event. Any state s for which there exists an action a such
that T(s, a,s') # 0 has its priority promoted to A - T(s, a,s'), unless its priority already exceeded
that value.

The global behavior of this algorithm is that when a real-world transition is “surprising” (the
agent happens upon a goal state, for instance), then lots of computation is directed to propagate
this new information back to relevant predecessor states. When the real-world transition is “boring”
(the actual result is very similar to the predicted result), then computation continues in the most
deserving part of the space.

Running prioritized sweeping on the problem in Figure 6, we see a large improvement over Dyna.
The optimal policy is reached in about half the number of steps of experience and one-third the
computation as Dyna required (and therefore about 20 times fewer steps and twice the computational
effort of Q-learning).

5.4 Other Model-Based Methods

Methods proposed for solving MDPs given a model can be used in the context of model-based
methods as well.

RTDP (real-time dynamic programming) [8] is another model-based method that uses Q-learning
to concentrate computational effort on the areas of the state-space that the agent is most likely to
occupy. It is specific to problems in which the agent is trying to achieve a particular goal state and
the reward everywhere else is 0. By taking into account the start state, it can find a short path from
the start to the goal, without necessarily visiting the rest of the state space.

The Plexus planning system [33, 55] exploits a similar intuition. It starts by making an approx-
imate version of the MDP which is much smaller than the original one. The approximate MDP
contains a set of states, called the envelope, that includes the agent’s current state and the goal
state, if there is one. States that are not in the envelope are summarized by a single “out” state.
The planning process is an alternation between finding an optimal policy on the approximate MDP
and adding useful states to the envelope. Action may take place in parallel with planning, in which
case irrelevant states are also pruned out of the envelope.

6. Generalization

All of the previous discussion has tacitly assumed that it is possible to enumerate the state and
action spaces and store tables of values over them. Except in very small environments, this means
impractical memory requirements. It also makes inefficient use of experience. In a large, smooth
state space we generally expect similar states to have similar values and similar optimal actions.
Surely, therefore, there should be some more compact representation than a table. Most problems
will have continuous or large discrete state spaces; some will have large or continuous action spaces.
The problem of learning in large spaces is addressed through generalization techniques, which allow
compact storage of learned information and transfer of knowledge between “similar” states and
actions.

The large literature of generalization techniques from inductive concept learning can be applied
to reinforcement learning. However, techniques often need to be tailored to specific details of the
problem. In the following sections, we explore the application of standard function-approximation
techniques, adaptive resolution models, and hierarchical methods to the problem of reinforcement
learning.

The reinforcement-learning architectures and algorithms discussed above have included the stor-
age of a variety of mappings, including § — A (policies), § — R (value functions), S x A - R
(@ functions and rewards), § x A — § (deterministic transitions), and & x A x § — [0, 1] (tran-
sition probabilities). Some of these mappings, such as transitions and immediate rewards, can be
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learned using straightforward supervised learning, and can be handled using any of the wide variety
of function-approximation techniques for supervised learning that support noisy training examples.
Popular techniques include various neural-network methods [94], fuzzy logic [11, 58]. CMAC [3],
and local memory-based methods [84], such as generalizations of nearest neighbor methods. Other
mappings, especially the policy mapping, typically need specialized algorithms because training sets
of input-output pairs are not available.

6.1 Generalization over Input

A reinforcement-learning agent’s current state plays a central role in its selection of reward-maximizing
actions. Viewing the agent as a state-free black box, a description of the current state is its input.
Depending on the agent architecture, its output is either an action selection, or an evaluation of the
current state that can be used to select an action. The problem of deciding how the different aspects
of an input affect the value of the output is sometimes called the “structural credit-assignment”
problem. This section examines approaches to generating actions or evaluations as a function of a
description of the agent’s current state.

The first group of techniques covered here is specialized to the case when reward is not delayed;
the second group is more generally applicable.

6.1.1 IMMEDIATE REWARD

When the agent’s actions do not influence state transitions, the resulting problem becomes one of
choosing actions to maximize immediate reward as a function of the agent’s current state. These
problems bear a resemblance to the bandit problems discussed in Section 2 except that the agent
should condition its action selection on the current state. For this reason, this class of problems has
been described as associative reinforcement learning.

The algorithms in this section address the problem of learning from immediate boolean rein-
forcement where the state is vector valued and the action is a boolean vector. Such algorithms can
and have been used in the context of a delayed reinforcement, for instance, as the RL component in
the AHC architecture described in Section 4.1. They can also be generalized to real-valued reward
through reward comparison methods [114].

CRBP The complementary reinforcement backpropagation algorithm [1] (CRBP) consists of a
feed-forward network mapping an encoding of the state to an encoding of the action. The action is
determined probabilistically from the activation of the output units: if output unit ¢ has activation
Y;, then bit ¢ of the action vector has value 1 with probability y;, and 0 otherwise. Any neural-
network supervised training procedure can be used to adapt the network as follows. If the result of
generating action a is » = 1, then the network is trained with input-output pair {s,a). If the result
is r = 0, then the network is trained with input-output pair {s,a), where a = (1 —ay,...,1 — ay).

The idea behind this training rule is that whenever an action fails to generate reward, CRBP
will try to generate an action that is different from the current choice. Although it seems like the
algorithm might oscillate between an action and its complement, that does not happen. One step of
training a network will only change the action slightly and since the output probabilities will tend
to move toward 0.5, this makes action selection more random and increases search. The hope is
that the random distribution will generate an action that works better, and then that action will be
reinforced.

ARC The associative reinforcement comparison (ARC) algorithm [114] is an instance of the AHC
architecture for the case of boolean actions, consisting of two feed-forward networks. One learns
the value of situations, the other learns a policy. These can be simple linear networks or can have
hidden units.

In the simplest case, the entire system learns only to optimize immediate reward. First, let us
consider the behavior of the network that learns the policy, a mapping from a vector describing s
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to a 0 or 1. If the output unit has activation y;, then a, the action generated, will be 1 if y + v > 0,
where v is normal noise, and 0 otherwise.
The adjustment for the output unit is, in the simplest case,

e=r(a—1/2) ,

where the first factor is the reward received for taking the most recent action and the second
encodes which action was taken. The actions are encoded as 0 and 1, so a — 1/2 always has the
same magnitude; if the reward and the action have the same sign, then action 1 will be made more
likely, otherwise action 0 will be.

As described, the network will tend to seek actions that given positive reward. To extend this
approach to maximize reward, we can compare the reward to some baseline, . This changes the
adjustment to

e=(r—>0)(a—1/2) ,
where b is the output of the second network. The second network is trained in a standard supervised
mode to estimate r as a function of the input state s.
Variations of this approach have been used in a variety of applications [4, 9, 61, 114].

REINFORCE Algorithms Williams [131, 132] studied the problem of choosing actions to max-
imize immedate reward. He identified a broad class of update rules that perform gradient descent
on the expected reward and showed how to integrate these rules with backpropagation. This class,
called REINFORCE algorithms, includes linear reward-inaction (Section 2.1.3) as a special case.

The generic REINFORCE update for a parameter w;; can be written

J
Awij = aij(r — b”)(‘)TZ»j In(g;)

where «;; is a non-negative factor, r the current reinforcement, b;; a reinforcement baseline, and g; is
the probability density function used to randomly generate actions based on unit activations. Both
a;; and b;; can take on different values for each w;;, however, when «;; is constant throughout the
system, the expected update is exactly in the direction of the expected reward gradient. Otherwise,
the update is in the same half space as the gradient but not necessarily in the direction of steepest
increase.

Williams points out that the choice of baseline, b;;, can have a profound effect on the convergence
speed of the algorithm.

Logic-Based Methods Another strategy for generalization in reinforcement learning is to reduce
the learning problem to an associative problem of learning boolean functions. A boolean function
has a vector of boolean inputs and a single boolean output. Taking inspiration from mainstream
machine learning work, Kaelbling developed two algorithms for learning boolean functions from
reinforcement: one uses the bias of k&-DNF to drive the generalization process [54]; the other searches
the space of syntactic descriptions of functions using a simple generate-and-test method [53].

The restriction to a single boolean output makes these techniques difficult to apply. In very
benign learning situations, it is possible to extend this approach to use a collection of learners to
independently learn the individual bits that make up a complex output. In general, however, that
approach suffers from the problem of very unreliable reinforcement: if a single learner generates
an inappropriate output bit, all of the learners receive a low reinforcement value. The CASCADE
method [52] allows a collection of learners to be trained collectively to generate appropriate joint
outputs; it is considerably more reliable, but can require additional computational effort.

6.1.2 DELAYED REWARD

Another method to allow reinforcement-learning techniques to be applied in large state spaces is
modeled on value iteration and Q-learning. Here, a function approximator is used to represent the
value function by mapping a state description to a value.
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Many reseachers have experimented with this approach: Boyan and Moore [18] used local
memory-based methods in conjunction with value iteration; Lin [59] used backpropagation networks
for Q-learning; Watkins [128] used CMAC for Q-learning; Tesauro [118, 120] used backpropagation
for learning the value function in backgammon (described in Section 8.1); Zhang and Dietterich [136]
used backpropagation and T D(A) to learn good strategies for job-shop scheduling.

Although there have been some positive examples, in general there are unfortunate interactions
between function approximation and the learning rules. In discrete environments there is a guarantee
that any operation that updates the value function (according to the Bellman equations) can only
reduce the error between the current value function and the optimal value function. This guarantee
no longer holds when generalization is used. These issues are discussed by Boyan and Moore [1§],
who give some simple examples of value function errors growing arbitrarily large when generalization
is used with value iteration. Their solution to this, applicable only to certain classes of problems,
discourages such divergence by only permitting updates whose estimated values can be shown to be
near-optimal via a battery of Monte-Carlo experiments.

Thrun and Schwartz [123] theorize that function approximation of value functions is also dan-
gerous because the errors in value functions due to generalization can become compounded by the
“max” operator in the definition of the value function.

Several recent results [42, 126] show how the appropriate choice of function approximator can
guarantee convergence, though not necessarily to the optimal values. Baird’s residual gradient
technique [6] provides guaranteed convergence to locally optimal solutions.

Perhaps the gloominess of these counter-examples is misplaced. Boyan and Moore [18] report
that their counter-examples can be made to work with problem-specific hand-tuning despite the
unreliability of untuned algorithms that provably converge in discrete domains. Sutton [113] shows
how modified versions of Boyan and Moore’s examples can converge successfully. An open question is
whether general principles, ideally supported by theory, can help us understand when value function
approximation will succeed. In Sutton’s comparative experiments with Boyan and Moore’s counter-
examples, he changes four aspects of the experiments:

1. Small changes to the task specifications.
2. A very different kind of function approximator (CMAC [2]) that has weak generalization.
3. A different learning algorithm: SARSA [95] instead of value iteration.

4. A different training regime. Boyan and Moore sampled states uniformly in state space, whereas
Sutton’s method sampled along empirical trajectories.

There are intuitive reasons to believe that the fourth factor is particularly important, but more
careful research is needed.

Adaptive Resolution Models In many cases, what we would like to do is partition the envi-
ronment into regions of states that can be considered the same for the purposes of learning and
generating actions. Without detailed prior knowledge of the environment, it is very difficult to
know what granularity or placement of partitions is appropriate. This problem is overcome in meth-
ods that use adaptive resolution; during the course of learning, a partition is constructed that is
appropriate to the environment.

Decision Trees In environments that are characterized by a set of boolean or discrete-valued
variables, it is possible to learn compact decision trees for representing ¢ values. The G-learning
algorithm [21], works as follows. It starts by assuming that no partitioning is necessary and tries
to learn @ values for the entire environment as if it were one state. In parallel with this process, it
gathers statistics based on individual input bits; it asks the question whether there is some bit b in
the state description such that the ¢ values for states in which b = 1 are significantly different from
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@ values for states in which & = 0. If such a bit is found, it is used to split the decision tree. Then, the
process is repeated in each of the leaves. This method was able to learn very small representations
of the @) function in the presence of an overwhelming number of irrelevant, noisy state attributes. It
outperformed QQ-learning with backpropagation in a simple video-game environment and was used
by McCallum [74] (in conjunction with other techniques for dealing with partial observability) to
learn behaviors in a complex driving-simulator. It cannot, however, acquire partitions in which
attributes are only significant in combination (such as those needed to solve parity problems).

Variable Resolution Dynamic Programming The VRDP algorithm [80] enables conventional
dynamic programming to be performed in real-valued multivariate state-spaces where straightfor-
ward discretization would fall prey to the curse of dimensionality. A kd-tree (similar to a decision
tree) is used to partition state space into coarse regions. The coarse regions are refined into detailed
regions, but only in parts of the state space which are predicted to be important. This notion of
importance is obtained by running “mental trajectories” through state space. This algorithm proved
effective on a number of problems for which full high-resolution arrays would have been impractical.
It has the disadvantage of requiring a guess at an initially valid trajectory through state-space.

PartiGame Algorithm Moore’s PartiGame algorithm [81] is another solution to the problem
of learning to achieve goal configurations in deterministic high-dimensional continuous spaces by
learning an adaptive-resolution model. It also divides the environment into cells; but in each cell,
the actions available consist of aiming at the neighboring cells (this aiming is accomplished by a local
controller, which must be provided as part of the problem statement). The graph of cell transitions
is solved for shortest paths in an online incremental manner, but a minimax criterion is used to
detect when a group of cells is too coarse to prevent movement between obstacles or to avoid limit
cycles. The offending cells are split to higher resolution. Eventually, the environment is divided up
just enough to choose appropriate actions for achieving the goal, but no unnecessary distinctions are
made. An important feature is that, as well as reducing memory and computational requirements,
it also structures exploration of state space in a multi-resolution manner. Given a failure, the agent
will initially try something very different to rectify the failure, and only resort to small local changes
when all the qualitatively different strategies have been exhausted.

Figure 7a shows a two-dimensional continuous maze. Figure 7b shows the performance of a robot
using the PartiGame algorithm during the very first trial. Figure 7c shows the second trial, started
from a slightly different position.

This is a very fast algorithm, learning policies in spaces of up to nine dimensions in less than
a minute. The restriction of the current implementation to deterministic environments limits its
applicability, however. McCallum [76] suggests some related tree-structured methods.

6.2 Generalization over Actions

The networks described in Section 6.1.1 generalize over state descriptions presented as inputs. They
also produce outputs in a discrete, factored representation and thus could be seen as generalizing
over actions as well.

In cases such as this when actions are described combinatorially, it is important to generalize
over actions to avoid keeping separate statistics for the huge number of actions that can be chosen.
In continuous action spaces, the need for generalization is even more pronounced.

When estimating ) values using a neural network, it is possible to use either a distinct network
for each action, or a network with a distinct output for each action. When the action space is
continuous, neither approach is possible. An alternative strategy is to use a single network with
both the state and action as input and ) value as the output. Training such a network is not
conceptually difficult, but using the network to find the optimal action can be a challenge. One
method is to do a local gradient-ascent search on the action in order to find one with high value [7].
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Figure 7: (a) A two-dimensional maze problem. The point robot must find a path from start to
goal without crossing any of the barrier lines. (b) The path taken by PartiGame during
the entire first trial. It begins with intense exploration to find a route out of the almost
entirely enclosed start region. Having eventually reached a sufficiently high resolution, it
discovers the gap and proceeds greedily towards the goal, only to be temporarily blocked
by the goal’s barrier region. (¢) The second trial.

Gullapalli [43, 44] has developed a “neural” reinforcement-learning unit for use in continuous
action spaces. The unit generates actions with a normal distribution; it adjusts the mean and
variance based on previous experience. When the chosen actions are not performing well, the
variance is high, resulting in exploration of the range of choices. When an action performs well, the
mean is moved in that direction and the variance decreased, resulting in a tendency to generate more
action values near the successful one. This method was successfully employed to learn to control a
robot arm with many continuous degrees of freedom.

6.3 Hierarchical Methods

Another strategy for dealing with large state spaces is to treat them as a hierarchy of learning
problems. In many cases, hierarchical solutions introduce slight sub-optimality in performance, but
potentially gain a good deal of efficiency in execution time, learning time, and space.

Hierarchical learners are commonly structured as gated behaviors, as shown in Figure 8. There
is a collection of behaviors that map environment states into low-level actions and a gating function
that decides, based on the state of the environment, which behavior’s actions should be switched
through and actually executed. Maes and Brooks [68] used a version of this architecture in which
the individual behaviors were fixed a priori and the gating function was learned from reinforcement.
Mahadevan and Connell [72] used the dual approach: they fixed the gating function, and supplied
reinforcement functions for the individual behaviors, which were learned. Lin [60] and Dorigo and
Colombetti [38, 37] both used this approach, first training the behaviors and then training the gating
function. Many of the other hierarchical learning methods can be cast in this framework.

6.3.1 FEUDAL Q-LEARNING

Feudal Q-learning [31, 128] involves a hierarchy of learning modules. In the simplest case, there
is a high-level master and a low-level slave. The master receives reinforcement from the external
environment. Its actions consist of commands that it can give to the low-level learner. When the
master generates a particular command to the slave, it must reward the slave for taking actions that
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Figure 8: A structure of gated behaviors.

satisfy the command, even if they do not result in external reinforcement. The master, then, learns
a mapping from states to commands. The slave learns a mapping from commands and states to
external actions. The set of “commands” and their associated reinforcement functions are established
in advance of the learning.

This is really an instance of the general “gated behaviors” approach, in which the slave can
execute any of the behaviors depending on its command. The reinforcement functions for the
individual behaviors (commands) are given, but learning takes place simultaneously at both the
high and low levels.

6.3.2 COMPOSITIONAL Q-LEARNING

Singh’s compositional Q-learning [110, 109] (C-QL) consists of a hierarchy based on the temporal
sequencing of subgoals. The elemental tasks are behaviors that achieve some recognizable condition.
The high-level goal of the system is to achieve some set of conditions in sequential order. The
achievement of the conditions provides reinforcement for the elemental tasks, which are trained first
to achieve individual subgoals. Then, the gating function learns to switch the elemental tasks in
order to achieve the appropriate high-level sequential goal. This method was used by Tham and
Prager [121] to learn to control a simulated multi-link robot arm.

6.3.3 HIERARCHICAL DISTANCE TO (GOAL

Especially if we consider reinforcement learning modules to be part of larger agent architectures, it
is important to consider problems in which goals are dynamically input to the learner. Kaelbling’s
HDG algorithm [51] uses a hierarchical approach to solving problems when goals of achievement
(the agent should get to a particular state as quickly as possible) are given to an agent dynamically.

The HDG algorithm works by analogy with navigation in a harbor. The environment is parti-
tioned (a priori, but more recent work [5] addresses the case of learning the partition) into a set
of regions whose centers are known as “landmarks.” If the agent is currently in the same region
as the goal, then it uses low-level actions to move to the goal. If not, then high-level information
is used to determine the next landmark on the shortest path from the agent’s closest landmark to
the goal’s closest landmark. Then, the agent uses low-level information to aim toward that next
landmark. If errors in action cause deviations in the path, there is no problem; the best aiming
point is recomputed on every step.
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Figure 9: An example of a partially observable environment.

7. Partially Observable Environments

In many real-world environments, it will not be possible for the agent to have perfect and complete
perception of the state of the environment. Unfortunately, complete observability is necessary for
learning methods based on MDPs. In this section, we consider the case in which the agent makes
observations of the state of the environment, but these observations may be noisy and provide
incomplete information. In the case of a robot, for instance, it might observe whether it is in
a corridor, an open room, a T-junction, etc., and those observations might be error-prone. This
problem is also referred to as the problem of “incomplete perception,” “perceptual aliasing,” or
“hidden state.”

In this section, we will consider extensions to the basic MDP framework for solving partially
observable problems. The resulting formal model is called a partially observable Markov decision
process or POMDP.

7.1 State-Free Deterministic Policies

The most naive strategy for dealing with partial observability is to ignore it. That is, to treat the
observations as if they were the states of the environment and try to learn to behave. Figure 9 shows
a simple environment in which the agent is attempting to get to the printer from an office. If it
moves from the office, there is a good chance that the agent will end up in one of two places that
look like “hall”, but that require different actions for getting to the printer. If we consider these
states to be the same, then the agent cannot possibly behave optimally. But how well can it do?

The resulting problem is not Markovian, and Q-learning cannot be guaranteed to converge. Small
breaches of the Markov requirement are well handled by Q-learning, but it is possible to construct
simple environments that cause Q-learning to oscillate [23]. It is possible to use a model-based
approach, however; act according to some policy and gather statistics about the transitions between
observations, then solve for the optimal policy based on those observations. Unfortunately, when the
environment is not Markovian, the transition probabilities depend on the policy being executed, so
this new policy will induce a new set of transition probabilities. This approach may yield plausible
results in some cases, but again, there are no guarantees.

It is reasonable, though, to ask what the optimal policy (mapping from observations to actions, in
this case) is. It is NP-hard [64] to find this mapping, and even the best mapping can have very poor
performance. In the case of our agent trying to get to the printer, for instance, any deterministic
state-free policy takes an infinite number of steps to reach the goal on average.
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7.2 State-Free Stochastic Policies

Some improvement can be gained by considering stochastic policies; these are mappings from ob-
servations to probability distributions over actions. If there is randomness in the agent’s actions, it
will not get stuck in the hall forever. Jaakkola, Singh, and Jordan [50] have developed an algorithm
for finding locally-optimal stochastic policies, but finding a globally optimal policy is still NP hard.

In our example, it turns out that the optimal stochastic policy is for the agent, when in a state
that looks like a hall, to go east with probability 2—+/2 ~ 0.6 and west with probability v/2—1 ~ 0.4.
This policy can be found by solving a simple (in this case) quadratic program. The fact that such a
simple example can produce irrational numbers gives some indication that it is a difficult problem
to solve exactly.

7.3 Policies with Internal State

The only way to behave truly effectively in a wide-range of environments is to use memory of previous
actions and observations to disambiguate the current state. There are a variety of approaches to
learning policies with internal state.

Recurrent Q-learning One intuitively simple approach is to use a recurrent neural network to
learn @ values. The network can be trained using backpropagation through time (or some other
suitable technique) and learns to retain “history features” to predict value. This approach has been
used by a number of researchers [77, 62, 103]. It seems to work effectively on simple problems, but
can suffer from convergence to local optima on more complex problems.

Classifier Systems Classifier systems [47, 41] were explicitly developed to solve problems with
delayed reward, including those requiring short-term memory. The internal mechanism typically
used to pass reward back through chains of decisions, called the bucket brigade algorithm, bears a
close resemblance to Q-learning. In spite of some early successes, the original design does not appear
to handle partially observed environments robustly.

Recently, this approach has been reexamined using insights from the reinforcement-learning liter-
ature, with some success. Dorigo did a comparative study of Q-learning and classifier systems [36].
Cliff and Ross [26] start with Wilson’s zeroth-level classifier system [135] and add one and two-
bit memory registers. They find that, although their system can learn to use short-term memory
registers effectively, the approach is unlikely to scale to more complex environments.

Dorigo and Colombetti applied classifier systems to a moderately complex problem of learning
robot behavior from immediate reinforcement [38, 37].

Finite-history-window Approach One way to restore the Markov property is to allow decisions
to be based on the history of recent observations and perhaps actions. Lin and Mitchell [62] used a
fixed-width finite history window to learn a pole balancing task. McCallum [76] describes the “utile
suffix memory” which learns a variable-width window that serves simultaneously as a model of the
environment and a finite-memory policy. This system has had excellent results in a very complex
driving-simulation domain [74]. Ring [92] has a neural-network approach that uses a variable history
window, adding history when necessary to disambiguate situations.

POMDP Approach Another strategy consists of using hidden Markov model (HMM) techniques
to learn a model of the environment, including the hidden state, then to use that model to construct
a perfect memory controller [20, 67, 79].

Chrisman [22] showed how the forward-backward algorithm for learning HMMs could be adapted
to learning POMDPs. He, and later McCallum [75], also gave heuristic state-splitting rules to
attempt to learn the smallest possible model for a given environment. The resulting model can then
be used to integrate information from the agent’s observations in order to make decisions.

Figure 10 illustrates the basic structure for a perfect-memory controller. The component on
the left is the state estimator, which computes the agent’s belief state, b as a function of the old
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Figure 10: Structure of a POMDP agent.

belief state, the last action a, and the current observation ¢. In this context, a belief state is a
probability distribution over states of the environment, indicating the likelihood, given the agent’s
past experience, that the environment is actually in each of those states. The state estimator can
be constructed straightforwardly using the estimated world model and Bayes’ rule.

Now we are left with the problem of finding a policy mapping belief states into action. This
problem can be formulated as an MDP, but it is difficult to solve using the techniques described
earlier, because the input space is continuous. Chrisman’s approach [22] does not take into account
future uncertainty, but yields a policy after a small amount of computation. A standard approach
from the operations-research literature is to solve for the optimal policy (or a close approximation
thereof) based on its representation as a piecewise-linear and convex function over the belief space.
This method is computationally intractable, but may serve as inspiration for methods that make
further approximations [20, 65].

8. Reinforcement Learning Applications

One reason that reinforcement learning is popular is that is serves as a theoretical tool for studying
the principles of agents learning to act. But it is unsurprising that it has also been used by a
number of researchers as a practical computational tool for constructing autonomous systems that
improve themselves with experience. These applications have ranged from robotics, to industrial
manufacturing, to combinatorial search problems such as computer game playing.

Practical applications provide a test of the efficacy and usefulness of learning algorithms. They
are also an inspiration for deciding which components of the reinforcement learning framework are
of practical importance. For example, a researcher with a real robotic task can provide a data point
to questions such as:

e How important is optimal exploration? Can we break the learning period into exploration
phases and exploitation phases?

e What is the most useful model of long-term reward: Finite horizon? Discounted? Infinite
horizon?

e How much computation is available between agent decisions and how should it be used?

e What prior knowledge can we build into the system, and which algorithms are capable of using
that knowledge?

Let us examine a set of practical applications of reinforcement learning, while bearing these questions
in mind.

8.1 Game Playing

Game playing has dominated the Artificial Intelligence world as a problem domain ever since the
field was born. Two-player games do not fit into the established reinforcement-learning framework
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since the optimality criterion for games is not one of maximizing reward in the face of a fixed
environment, but one of maximizing reward against an optimal adversary (minimax). Nonetheless,
reinforcement-learning algorithms can be adapted to work for a very general class of games [63]
and many researchers have used reinforcement learning in these environments. One application,
spectacularly far ahead of its time, was Samuel’s checkers playing system [99]. This learned a value
function represented by a linear function approximator, and employed a training scheme similar to
the updates used in value iteration, temporal differences and Q-learning.

More recently, Tesauro [118, 119, 120] applied the temporal difference algorithm to backgammon.
Backgammon has approximately 10?° states, making table-based reinforcement learning impossible.
Instead, Tesauro used a backpropagation-based three-layer neural network as a function approxima-
tor for the value function

Board Position — Probability of victory for current player.

Two versions of the learning algorithm were used. The first, which we will call Basic TD-Gammon,
used very little predefined knowledge of the game, and the representation of a board position was
virtually a raw encoding, sufficiently powerful only to permit the neural network to distinguish
between conceptually different positions. The second, TD-Gammon, was provided with the same
raw state information supplemented by a number of hand-crafted features of backgammon board
positions. Providing hand-crafted features in this manner is a good example of how inductive biases
from human knowledge of the task can be supplied to a learning algorithm.

The training of both learning algorithms required several months of computer time, and was
achieved by constant self-play. No exploration strategy was used—the system always greedily chose
the move with the largest expected probability of victory. This naive exploration strategy proved
entirely adequate for this environment, which is perhaps surprising given the considerable work
in the reinforcement-learning literature which has produced numerous counter-examples to show
that greedy exploration can lead to poor learning performance. Backgammon, however, has two
important properties. Firstly, whatever policy is followed, every game is guaranteed to end in finite
time, meaning that useful reward information is obtained fairly frequently. Secondly, the state
transitions are sufficiently stochastic that independent of the policy, all states will occasionally be
visited—a wrong initial value function has little danger of starving us from visiting a critical part of
state space from which important information could be obtained.

The results (Table 2) of TD-Gammon are impressive. It has competed at the very top level of
international human play. Basic TD-Gammon played respectably, but not at a professional standard.

Although experiments with other games have in some cases produced interesting learning be-
havior, no success close to that of TD-Gammon has been repeated. Other games that have been
studied include Go [104] and Chess [122]. Tt is still an open question as to if and how the success of
TD-Gammon can be repeated in other domains.

8.2 Robotics and Control

In recent years there have been many robotics and control applications that have used reinforcement
learning. Here we will concentrate on the following four examples, although many other interesting
ongoing robotics investigations are underway.

1. Schaal and Atkeson [100] constructed a two-armed robot, shown in Figure 11, that learns to
juggle a device known as a devil-stick. This is a complex non-linear control task involving a
six-dimensional state space and less than 200 msecs per control decision. After about 40 initial
attempts the robot learns to keep juggling for hundreds of hits. A typical human learning the
task requires an order of magnitude more practice to achieve proficiency at mere tens of hits.

The juggling robot learned a world model from experience, which was generalized to unvisited
states by a function approximation scheme known as locally weighted regression [25, 82].
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Figure 11: Schaal and Atkeson’s devil-sticking robot. The tapered stick is hit alternately by each of
the two hand sticks. The task is to keep the devil stick from falling for as many hits as
possible. The robot has three motors indicated by torque vectors 7y, 72, 73.

Between each trial, a form of dynamic programming specific to linear control policies and
locally linear transitions was used to improve the policy. The form of dynamic programming
is known as linear-quadratic-regulator design [97].

2. Mahadevan and Connell [71] discuss a task in which a mobile robot pushes large boxes for
extended periods of time. Box-pushing is a well-known difficult robotics problem, character-
ized by immense uncertainty in the results of actions. Q-learning was used in conjunction
with some novel clustering techniques designed to enable a higher-dimensional input than a
tabular approach would have permitted. The robot learned to perform competitively with the
performance of a human-programmed solution. Another aspect of this work, mentioned in
Section 6.3, was a pre-programmed breakdown of the monolithic task description into a set of
lower level tasks to be learned.
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3. Mataric [73] describes a robotics experiment with, from the viewpoint of theoretical rein-
forcement learning, an unthinkably high dimensional state space, containing many dozens of
degrees of freedom. Four mobile robots traveled within an enclosure collecting small disks
and transporting them to a destination region. There were three enhancements to the basic
Q-learning algorithm. Firstly, pre-programmed signals called progress estimators were used to
break the monolithic task into subtasks. This was achieved in a robust manner in which the
robots were not forced to use the estimators, but had the freedom to profit from the inductive
bias they provided. Secondly, control was decentralized. Each robot learned its own policy
independently without explicit communication with the others. Thirdly, state space was bru-
tally quantized into a small number of discrete states according to values of a small number of
pre-programmed boolean features of the underlying sensors. The performance of the Q-learned
policies were almost as good as a simple hand-crafted controller for the job.

4. Q-learning has been used in an elevator dispatching task [29]. The problem, which has been
implemented in simulation only at this stage, involved four elevators servicing ten floors. The
objective was to minimize the average squared wait time for passengers, discounted into future
time. The problem can be posed as a discrete Markov system, but there are 10%? states
even in the most simplified version of the problem. Crites and Barto used neural networks
for function approximation and provided an excellent comparison study of their Q-learning
approach against the most popular and the most sophisticated elevator dispatching algorithms.
The squared wait time of their controller was approximately 7% less than the best alternative
algorithm (“Empty the System” heuristic with a receding horizon controller) and less than
half the squared wait time of the controller most frequently used in real elevator systems.

5. The final example concerns an application of reinforcement learning by one of the authors of
this survey to a packaging task from a food processing industry. The problem involves filling
containers with variable numbers of non-identical products. The product characteristics also
vary with time, but can be sensed. Depending on the task, various constraints are placed on
the container-filling procedure. Here are three examples:

e The mean weight of all containers produced by a shift must not be below the manufac-
turer’s declared weight W.

e The number of containers below the declared weight must be less than P%.

e No containers may be produced below weight W',

Such tasks are controlled by machinery which operates according to various setpoints. Con-
ventional practice is that setpoints are chosen by human operators, but this choice is not easy
as it is dependent on the current product characteristics and the current task constraints. The
dependency is often difficult to model and highly non-linear. The task was posed as a finite-
horizon Markov decision task in which the state of the system is a function of the product
characteristics, the amount of time remaining in the production shift and the mean wastage
and percent below declared in the shift so far. The system was discretized into 200,000 discrete
states and local weighted regression was used to learn and generalize a transition model. Prior-
itized sweeping was used to maintain an optimal value function as each new piece of transition
information was obtained. In simulated experiments the savings were considerable, typically
with wastage reduced by a factor of ten. Since then the system has been deployed successfully
in several factories within the United States.

Some interesting aspects of practical reinforcement learning come to light from these examples.
The most striking is that in all cases, to make a real system work it proved necessary to supple-
ment the fundamental algorithm with extra pre-programmed knowledge. Supplying extra knowledge
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comes at a price: more human effort and insight is required and the system is subsequently less au-
tonomous. But it is also clear that for tasks such as these, a knowledge-free approach would not
have achieved worthwhile performance within the finite lifetime of the robots.

What forms did this pre-programmed knowledge take? It included an assumption of linearity for
the juggling robot’s policy, a manual breaking up of the task into subtasks for the two mobile-robot
examples, while the box-pusher also used a clustering technique for the ) values which assumed
locally consistent ) values. The four disk-collecting robots additionally used a manually discretized
state space. The packaging example had far fewer dimensions and so required correspondingly
weaker assumptions, but there, too, the assumption of local piecewise continuity in the transition
model enabled massive reductions in the amount of learning data required.

The exploration strategies are interesting too. The juggler used careful statistical analysis to
judge where to profitably experiment. However, both mobile robot applications were able to learn
well with greedy exploration—always exploiting without deliberate exploration. The packaging task
used optimism in the face of uncertainty. None of these strategies mirrors theoretically optimal (but
computationally intractable) exploration, and yet all proved adequate.

Finally, it is also worth considering the computational regimes of these experiments. They were
all very different, which indicates that the differing computational demands of various reinforcement
learning algorithms do indeed have an array of differing applications. The juggler needed to make
very fast decisions with low latency between each hit, but had long periods (30 seconds and more)
between each trial to consolidate the experiences collected on the previous trial and to perform the
more aggressive computation necessary to produce a new reactive controller on the next trial. The
box-pushing robot was meant to operate autonomously for hours and so had to make decisions with
a uniform length control cycle. The cycle was sufficiently long for quite substantial computations
beyond simple Q-learning backups. The four disk-collecting robots were particularly interesting.
Each robot had a short life of less than 20 minutes (due to battery constraints) meaning that
substantial number crunching was impractical, and any significant combinatorial search would have
used a significant fraction of the robot’s learning lifetime. The packaging task had easy constraints.
One decision was needed every few minutes. This provided opportunities for fully computing the
optimal value function for the 200,000-state system between every control cycle, in addition to
performing massive cross-validation-based optimization of the transition model being learned.

A great deal of further work is currently in progress on practical implementations of reinforcement
learning. The insights and task constraints that they produce will have an important effect on
shaping the kind of algorithms that are developed in future.

9. Conclusions

There are a variety of reinforcement-learning techniques that work effectively on a variety of small
problems. But very few of these techniques scale well to larger problems. This is not because
researchers have done a bad job of inventing learning techniques, but because it is very difficult to
solve arbitrary problems in the general case. In order to solve highly complex problems, we must
give up tabula rasa learning techniques and begin to incorporate bias that will give leverage to the
learning process.

The necessary bias can come in a variety of forms, including the following:

shaping: The technique of shaping is used in training animals [45]; a teacher presents very sim-
ple problems to solve first, then gradually exposes the learner to more complex problems.
Shaping has been used in supervised-learning systems, and can be used to train hierarchical
reinforcement-learning systems from the bottom up [59], and to alleviate problems of delayed
reinforcement by decreasing the delay until the problem is well understood [37, 38].

local reinforcement signals: Whenever possible, agents should be given reinforcement signals
that are local. In applications in which it is possible to compute a gradient, rewarding the
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agent for taking steps up the gradient, rather than just for achieving the final goal, can speed
learning significantly [73].

imitation: An agent can learn by “watching” another agent perform the task [59]. For real robots,
this requires perceptual abilities that are not yet available. But another strategy is to have a
human supply appropriate motor commands to a robot through a joystick or steering wheel [89].

problem decomposition: Decomposing a huge learning problem into a collection of smaller ones,
and providing useful reinforcement signals for the subproblems is a very powerful technique
for biasing learning. Most interesting examples of robotic reinforcement learning employ this
technique to some extent [28].

reflexes: One thing that keeps agents that know nothing from learning anything is that they have
a hard time even finding the interesting parts of the space; they wander around at random
never getting near the goal, or they are always “killed” immediately. These problems can be
ameliorated by programming a set of “reflexes” that cause the agent to act initially in some
way that is reasonable [73, 107]. These reflexes can eventually be overridden by more detailed
and accurate learned knowledge, but they at least keep the agent alive and pointed in the right
direction while it is trying to learn. Recent work by Millan [78] explores the use of reflexes to
make robot learning safer and more efficient.

With appropriate biases, supplied by human programmers or teachers, complex reinforcement-
learning problems will eventually be solvable. There is still much work to be done and many interest-
ing questions remaining for learning techniques and especially regarding methods for approximating,
decomposing, and incorporating bias into problems.
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