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Abstract

This paper lays part of the groundwork for a domain theory of negotiation, that is,
a way of classifying interactions so that it is clear, given a domain, which negotiation
mechanisms and strategies are appropriate. We define State Oriented Domains, a general
category of interaction. Necessary and sufficient conditions for cooperation are outlined.
We use the notion of worth in an altered definition of utility, thus enabling agreements in a
wider class of joint-goal reachable situations. An approach is offered for conflict resolution,
and it is shown that even in a conflict situation, partial cooperative steps can be taken by
interacting agents (that is, agents in fundamental conflict might still agree to cooperate up
to a certain point).

A Unified Negotiation Protocol (UNP) is developed that can be used in all types of
encounters. It is shown that in certain borderline cooperative situations, a partial cooper-
ative agreement (i.e., one that does not achieve all agents’ goals) might be preferred by all
agents, even though there exists a rational agreement that would achieve all their goals.

Finally, we analyze cases where agents have incomplete information on the goals and
worth of other agents. First we consider the case where agents’ goals are private informa-
tion, and we analyze what goal declaration strategies the agents might adopt to increase
their utility. Then, we consider the situation where the agents’ goals (and therefore stand-
alone costs) are common knowledge, but the worth they attach to their goals is private
information. We introduce two mechanisms, one “strict,” the other “tolerant,” and ana-
lyze their affects on the stability and efficiency of negotiation outcomes.

1. Introduction

Negotiation has been a major research topic in the distributed artificial intelligence (DAI)
community (Smith, 1978; Malone, Fikes, Grant, & Howard, 1988; Kuwabara & Lesser,
1989; Conry, Meyer, & Lesser, 1988; Kreifelts & von Martial, 1991). The term negotiation,
however, has been used in a variety of different ways. To some researchers, negotiation
serves as an important mechanism for assigning tasks to agents, for resource allocation, and
for deciding which problem-solving tasks to undertake. In these systems, there is generally
some notion of global utility that the system is trying to maximize.
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Other researchers have focused on negotiation that might take place among agents that
serve the interests of truly distinct parties (Rosenschein & Genesereth, 1985; Sycara, 1988;
Kraus & Wilkenfeld, 1990; Zlotkin & Rosenschein, 1989). The agents are autonomous in
the sense that they have their own utility functions, and no global notion of utility (not
even an implicit one) plays a role in their design. Negotiation can be used to share the work
associated with carrying out a joint plan, or to resolve outright conflict arising from limited
resources.

Despite the varied use of terminology, it is clear to the DAI community as a whole
that the operation of interacting agents would be enhanced if they were able to exchange
information to reach mutually beneficial agreements.

The work described in this paper follows the general direction of previous research
by the authors (Rosenschein & Genesereth, 1985; Zlotkin & Rosenschein, 1989) in treating
negotiation in the spirit of game theory. The focus of this research is to analyze the existence
and properties of certain kinds of deals and protocols among agents. We are not here
examining the computational issues that arise in discovering such deals, though the design
of efficient, possibly domain-specific, algorithms will constitute an important future phase
of this research. Initial work in building a domain theory of negotiation was previously
undertaken (Zlotkin & Rosenschein, 1993a), and is expanded and generalized in the current
paper. This analysis serves as a critical step in applying the theory of negotiation to real-
world applications.

1.1 Applying Game Theory Tools to Protocol Design for Automated Agents

Our ongoing research has been motivated by one, focused premise: the problem of how to
get computers to interact effectively in heterogeneous systems can be tackled through the
use of game theory tools.

Our concern is with computer systems made up of machines that have been programmed
by different entities to pursue differing goals. One approach for achieving coordination under
these circumstances is to establish mutually accepted protocols for the machines to use in
coming to agreements.

The perspective of our research is that one can use game theory tools to design and
evaluate these high-level protocols. We do not intend, with this paper, to make contributions
to game theory itself. We are not defining new notions of equilibria, nor are we providing
new mathematical tools to be used in general game theory. What we are doing is taking
the game theory approach, and some of its tools, to solve specific problems of high-level
protocol design.

While game theory makes contributions to the understanding of many different fields,
there is a particularly serendipitous match between game theory and heterogeneous com-
puter systems. Computers, being pre-programmed in their behavior, make concrete the
notion of “strategy” that plays such a central role in game theory—the idea that a player
adopts rules of behavior before starting to play a given game, and that these rules entirely
control his responses during the game. This idealized player is an imperfect model of human
behavior, but one that is quite appropriate for computers.

While we are not the first to apply game theoretic ideas to computer science, we are
using the tools in a new way. While others have used game theory to answer the question,
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“How should one program a computer to act in a given specific interaction?” we are ad-
dressing the question of how to design the rules of interaction themselves for automated
agents. The approach taken in this paper is, therefore, strongly based on previous work
in game theory, primarily on what is known as “Nash’s Bargaining Problem” (Nash, 1950;
Luce & Raiffa, 1957) or “Nash’s Model of Bargaining” (Roth, 1979), “mechanism design”
or “implementation theory” (Binmore, 1992; Fudenberg & Tirole, 1992), and “correlated
equilibrium theory” (Aumann, 1974, 1987; Myerson, 1991; Forges, 1993). A short overview
of game theory results that are used or referred to in this paper can be found in Section 9.1.

1.2 Overview of the Paper

In previous work, we began laying the groundwork for a domain theory of negotiation, that
is, a way of classifying interactions so that it is clear, given a domain, which negotiation
mechanisms and strategies are appropriate. Previously, we considered Task Oriented Do-
mains (Zlotkin & Rosenschein, 1989, 1993a), a restricted category of interactions. In this
paper, we define State Oriented Domains, a more general category of interaction.

In Section 4.4 we examine scenarios where interacting agents in State Oriented Domains
can find themselves in cooperative, compromise, and conflict encounters. In conflict situa-
tions, the agents’ goals cannot be simultaneously achieved. A joint-goal reachable situation
(i.e., where agents’ goals can be simultaneously achieved) can be cooperative or compro-
mise, depending on the cost of reaching a state that satisfies all agents compared to the
cost of each agent (alone) achieving his stand-alone goal.

In Section 4.1, necessary and sufficient conditions for cooperation are outlined. Coopera-
tive situations lend themselves to mixed-joint-plan-based negotiation mechanisms. However,
compromise situations require special treatment. We propose using the notion of worth in
an altered definition of utility, thereby enabling agreements in a wider class of joint-goal
reachable situations. An approach is offered for conflict resolution, and it is shown that
even in a conflict situation, partial cooperative steps can be taken by interacting agents
(that is, agents in fundamental conflict might still agree to cooperate up to a certain point).

A Unified Negotiation Protocol (UNP) is developed in Section 5.4 that can be used in all
types of encounters. It is shown that in certain borderline cooperative situations, a partial
cooperative agreement (i.e., one that does not achieve all agents’ goals) might be preferred
by all agents, even though there exists a rational agreement that would achieve all their
goals.

The UNP is further enhanced in Section 6 to deal with the case where agents have
agssigned unlimited worth to their goals and this fact is common knowledge. Our solution
depends on the concept of “cleaning up after yourself,” or tidiness, as a new method of
evaluating agent utility. We show that two tidy agents are able to reach agreements in all
joint-goal reachable situations in State Oriented Domains.

In Section 7 we analyze cases where agents have incomplete information about the goals
and worth of other agents. First, we consider the case where agents’ goals are private
information, and we consider what goal declaration strategies the agents might adopt to
increase their utility.

We then consider, in Section 8, the situation where the agents’ goals (and therefore
stand-alone costs) are common knowledge, but the worth they attach to their goals is
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private information. There are many situations where an agent’s goals might be known,
but his worth is private. For example, two cars approaching an intersection may know
each other’s goals (because of the lanes in which they are located). The worth that each
associates with passing through the intersection to his target lane, however, is private. Goal
recognition techniques are suitable for discovering the other agent’s intentions; his worth,
however, is harder to discern from short-term external evidence.

The agents declare, in a —1-phase, their worths, which are then used as a baseline to
the utility calculation (and thus affect the negotiation outcome). We are concerned with
analyzing what worth declaration strategies the agents might adopt to increase their utility.
We introduce two mechanisms, one “strict,” the other “tolerant,” and analyze their affects
on the stability and efficiency of negotiation outcomes. The strict mechanism turns out to
be more stable, while the tolerant mechanism is more efficient.

2. Negotiation in State Oriented Domains

How can machines decide how to share resources, or which machine will give way while
the other proceeds? Negotiation and compromise are necessary, but how do we build our
machines to do these things? How can the designers of these separate machines decide on
techniques for agreement that enable mutually beneficial behavior? What techniques are
appropriate? Can we make definite statements about the techniques’ properties?

The way we address these questions is to synthesize ideas from artificial intelligence with
the tools of game theory. Assuming that automated agents, built by separate, self-interested
designers, will interact, we are interested in designing protocols for specific domains that
will get those agents to interact in useful ways.

The word “protocol” means different things to different people. When we use the word
protocol, we mean the rules by which agents will come to agreements. It specifies the kinds
of deals they can make, as well as the sequence of offers and counter-offers that are allowed.
Protocols are intimately connected with domains, by which we mean the environment in
which our agents operate. Automated agents who control telecommunications networks are
operating in a different domain (in a formal sense) than robots moving boxes. Much of our
research is focused on the relationship between different kinds of domains, and the protocols
that are suitable for each.

Given a protocol, we need to consider what agent strategy is appropriate. A strategy
is the way an agent behaves in an interaction. The protocol specifies the rules of the
interaction, but the exact deals that an agent proposes are a result of the strategy that his
designer has put into him. As an analogy, a protocol is like the rules governing movement
of pieces in the game of chess. A strategy is the way in which a chess player decides on his
next move.

2.1 Attributes of Standards

What are the attributes that might interest protocol designers? The set of attributes, and
their relative importance, will ultimately affect their choice of interaction rules.

We have considered several attributes that might be important to system designers.
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1. Efficiency: The agents should not squander resources when they come to an agree-
ment; there should not be wasted utility when an agreement is reached. For example,
it makes sense for the agreements to satisfy the requirement of Pareto Optimality
(no agent could derive more from a different agreement, without some other agent
deriving less from that alternate agreement). Another consideration might be Global
Optimality, which is achieved when the sum of the agents’ benefits are maximized.
Global Optimality implies Pareto Optimality, but not vice versa. Since we are speak-
ing about self-motivated agents (who care about their own utilities, not the sum of
system-wide utilities—no agent in general would be willing to accept lower utility just
to increase the system’s sum), Pareto Optimality plays a primary role in our efficiency
evaluation. Among Pareto Optimal solutions, however, we might also consider as a
secondary criterion those solutions that increase the sum of system-wide utilities.

2. Stability: No agent should have an incentive to deviate from agreed-upon strategies.
The strategy that agents adopt can be proposed as part of the interaction environment
design. Once these strategies have been proposed, however, we do not want individual
designers (e.g., companies) to have an incentive to go back and build their agents with
different, manipulative, strategies.

3. Simplicity: It will be desirable for the overall interaction environment to make low
computational demands on the agents, and to require little communication overhead.
This is related both to efficiency and to stability: if the interaction mechanism is
simple, it increases efficiency of the system, with fewer resources used up in carrying
out the negotiation itself. Similarly, with stable mechanisms, few resources need to be
spent on outguessing your opponent, or trying to discover his optimal choices. The
optimal behavior has been publicly revealed, and there is nothing better to do than
just carry it out.

4. Distribution: Preferably, the interaction rules will not require a central decision
maker, for all the obvious reasons. We do not want our distributed system to have a
performance bottleneck, nor collapse due to the single failure of a special node.

5. Symmetry: We may not want agents to play different roles in the interaction sce-
nario. This simplifies the overall mechanism, and removes the question of which agent
will play which role when an interaction gets under way.

These attributes need not be universally accepted. In fact, there will sometimes be trade-
offs between one attribute and another (for example, efficiency and stability are sometimes
in conflict with one another; see Section 8). But our protocols are designed, for specific
classes of domains, so that they satisfy some or all of these attributes. Ultimately, these are
the kinds of criteria that rate the acceptability of one interaction mechanism over another.

As one example, the attribute of stability assumes particular importance when we con-
sider open systems, where new agents are constantly entering and leaving the community of
interacting machines. Here, we might want to maintain stability in the face of new agents
who bring with them new goals and potentially new strategies as well. If the mechanism is
“self-perpetuating,” in that it is not only to the benefit of society as a whole to follow the
rules, but also to the benefit of each individual member, then the social behavior remains
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stable even when the society’s members change dynamically. When the interaction rules
create an environment in which a particular strategy is optimal, beneficial social behavior
is resistant to outside invasion.

2.2 Side Effects in Encounters

Various kinds of encounters among agents, in various types of domains, are possible. In pre-
vious work (Zlotkin & Rosenschein, 1989, 1993a, 1994, 1996b) we examined Task Oriented
Domains (TODs), which encompass only certain kinds of encounters among agents. State
Oriented Domains (SODs) describe a larger class of scenarios for multiagent encounters
than do TODs. In fact, as we will see below, the set of Task Oriented Domains is actually a
proper subset of State Oriented Domains. Most classical domains in Artificial Intelligence
have been instances of State Oriented Domains.

The main attribute of general SODs is that agents’ actions can have side effects. In Task
Oriented Domains, no side effects exist and in general all common resources are unrestricted.
Thus, when an agent achieves his own set of tasks in a TOD it has no positive nor negative
effects on the other agent whatsoever. It does not hinder the other agent from achieving his
goal, and it never satisfies the other agent’s goals “by accident.” To enable another agent to
carry out your task, such as for example in the Postmen Domain (Zlotkin & Rosenschein,
1989), it is necessary explicitly to declare the existence of the letter, and hand it over, so
that it will be delivered. The absence of side effects rules out some positive and all negative
interactions among agent goals. The only positive interactions that remain are those that
are explicitly coordinated by the agents.

In general State Oriented Domains, where side effects exist, agents can unintentionally
achieve one another’s goals, and thus benefit from one another’s actions. The flip side of
side effects, however, is that negative interactions between goals can also exist. Thus, an
SOD is a domain that is (unlike TODs) not necessarily cooperative, because of those action
side effects. In SODs, agents have to deal with goal conflict and interference, as well as the
possibility of unintended cooperation.!

For example, consider the Blocks World situation in Figure 1. The simplest plan to

achieve On(White, Gray) has the side effect of achieving Clear(Black).

|
H O

Figure 1: Side Effects in State Oriented Domains

1. For interesting discussions of the issue of conflict and its role in human encounters, see (Schelling, 1963,
1984).
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2.3 Domain Definition

Consider a group of agents who co-exist in some environment. Each agent has a goal that it
is interested in achieving. What does it mean to achieve a goal? In State Oriented Domains,
it is the classic Al notion of goal achievement: it means to carry out a sequence of actions
(a plan) that results in the transformation of the environment to a state where the goal is
satisfied.

Imagine, for example, a person who is interested in getting to work. His goal is to be
at work; in the current state, he is not at work. His plan will be the sequence of actions
that get him to work (driving his car, or calling a taxi, or walking, or riding a bicycle,. .. ).
The final, or goal, state, may differ depending on which plan was executed (e.g., where his
car is, where his bicycle is). All the states in which he is at work, however, satisfy his goal.
Let’s assume that the optimal plan (from the time point of view) involves driving the car
to work.

The specification of the goal states may be implicit. The fact that needs to be true
(the goal) may be given. Any situation in which that fact is true, i.e., the goal is satisfied,
is acceptable. In a State Oriented Domain, any goal is described by the set of states that
satisfy it.

Now imagine that this person’s wife is interested in being at her own place of work.
There are states that will satisfy both the husband’s and wife’s goals, and plans that will
achieve such a state (e.g., one of them takes the car, while the other calls a taxi). However,
there are certain plans that are suitable for either spouse in isolation, but which cannot
coexist. For example, the husband taking the car is a perfectly good plan (and optimal) if
he were alone in the world. Similarly, his wife’s taking the car is a good plan (and optimal)
if she were alone. Together, another plan may be suitable (husband drives wife to her
work, continues on with car to his work). In this case, extra work was required from the
husband’s point of view, because the wife is present in his world; there is a certain burden
to the coordination.

In the example above, the agents carry out a sequence of activities, suitably synchro-
nized, to reach the goal state satisfying both. The husband and wife enter the car, after
which the husband drives to a particular location, the wife exits, and so on. In any environ-
ment, there are primitive operations that each agent alone can do. When these operations
are combined into a coherent sequence of actions specifying what both agents are to do (and
the order in which they are to be done), we say that the agents are executing a joint plan. A
joint plan in general transforms the world from some initial state to a goal state satisfying
both agents (when possible). The plan above transforms the world from the initial state
where both husband and wife are at home to the goal state (satisfying both agents) where
the wife is at work, and the car and husband are at his place of work. This is the final state,
one of many goal states.

In Task Oriented Domains the cost of the coordinated plan need never be worse than
the stand-alone plan—at the very worst, each agent just achieves his own set of tasks. In
our husband/wife sharing one car example, however, the coordinated plan may be worse
for one or both agents than their stand-alone plans. This is an example of one attribute
of State Oriented Domains, namely negative interactions, or what are sometimes called
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“deleted-condition interactions” (Gupta & Nau, 1992). This is because taking the car has
the side effect of depriving the other agent of the car.

Imagine a new situation, that arises during the weekend. The husband is interested
in doing carpentry in the garage (currently occupied by the car). The wife is interested in
taking the car to the baseball game. By themselves, each agent has an optimal plan to reach
a goal state (e.g., the husband moves the car out of the garage, parks it outside, does his
carpentry). However, when his wife takes the car to the game, executing her stand-alone
optimal plan, the husband benefits from the side effect of the car being moved, namely,
the garage is emptied. This is an example of another typical attribute of State Oriented
Domains—accidental achievement of goals, or “enabling-condition interactions” (Gupta &
Nau, 1992) or “favor relations” (von Martial, 1990) among goals.

When agents carry out a joint plan, each one plays some “role.”

Our theory assumes
that there is some way of assessing the cost of each role. This measure of cost is essential
to how an agent evaluates a given joint plan. Among all joint plans that achieve his goal,
he will prefer those in which his role has lower cost.

We express the intuitive ideas above in the precise definition below.

Definition 1 A State Oriented Domain (SOD) is a tuple < S, A, J,c > where:
1. § is the set of all possible world states;
2. A={A, Ay, ... A} is an ordered list of agents;

3. J is the set of all possible joint (i.e., n-agent) plans. A joint plan J € J moves the
world from one state in S to another. The actions taken by agent k are called k’s role
in J, and will be written as J,. We can also write J as (J1,J3,...,Jn);

4. ¢ is a function ¢: J — (IRT)". For each joint plan J in J, ¢(J) is a vector of n positive
real numbers, the cost of each agent’s role in the joint plan. c(J); is the i-th element
of the cost vector, i.e., it is the cost of the i-th role in J. If an agent plays no role in

J, his cost is 0.

Our use of the term joint plan differs from other uses in the Al literature (Levesque &
Cohen, 1990; Cohen & Levesque, 1991). There, the term joint plan implies a joint goal,
and mutual commitment by the agents to full implementation of the plan (e.g., if one agent
dropped out suddenly, the other would still continue). In our use of the term, the agents
are only committed to their own goal and their part of the combined plan. Each may do
its part of the plan for different reasons, because each has a different goal to achieve. Were
one agent to drop out, the other agent may or may not continue, depending on whether it
suited his own goal.

The details of the description of the joint plans in 7 are not critical to our overall theory.
The minimal requirement is that it must be possible to evaluate the cost of the joint plan
for each agent (i.e., the cost of his role). In many domains, a joint plan will be a sequence of
actions for each agent with an associated schedule (partial order) constraining the actions’
parallel execution.

Note also that our cost function above relates only to the joint plan itself and not,
for example, to the initial state of the world. In fact, the cost function could be altered to
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include other parameters (like the initial state of the world), without affecting our discussion
below. Our model is not sensitive to the details of the cost function definition, other than the
requirement that the cost of a role be the same for all agents. This is called the symmetric
abilities assumption (see below, Section 2.4).

Definition 2 Anencounter within an SOD < 8, A, J,c > is a tuple < s,(G1,Ga,...,Gp) >
such that s € S is the initial state of the world, and for all k € {1...n}, Gy, is the set of all
acceptable final world states from S for agent Ay. Gy will also be called Ay ’s goal.

An agent’s goal is a fixed, pre-determined, set of states. An agent will, at the conclusion
of the joint plan, either achieve his goal or not achieve his goal. Goals cannot be partially
achieved. Domains in which goals can be partially achieved are called Worth Oriented
Domains (WODs) and are discussed in detail elsewhere (Zlotkin & Rosenschein, 1991c,
1996a).

One thing that we are specifically ruling out in SODs is one agent having a goal that
makes reference to another agent’s (as yet) unknown goal. For example, a specification
such as “Agent 1’s goal is to make sure that Agent 2’s goal will not be achieved, whatever
the latter’s goal is” cannot constitute part of the description of an encounter in a State
Oriented Domain, because it cannot be described as a static set of goal states. However,
this meta-goal might exist within an agent, and give rise to a well-defined set of states in a
specific encounter (e.g., given G, GGy is its complement). Similarly, one agent might have
as its goal that another agent have a specific goal Gy—the first agent wants the world to
be in a state where the other agent has the specific goal G,.

We will only consider sets of goal states that can be specified in a finite way, either
because the set itself is finite, or the infinite set can be specified by a closed formula in
first-order logic (i.e., no free variables; all states that satisfy the formula, and only those
states, are in the goal set). As an example, an agent might have the goal that “There exists
a block @ such that block B is on z.”

We will also consider further restrictions on the kind of goals agents may have. For
example, below we will consider domains in which agents’ goals are restricted to sets of
grounded predicates (i.e., no variables) rather than to any closed formula.

2.3.1 REACHABILITY

It may be the case that there exist goal states that satisfy both agents’ goals, but that
there are constraints as to the reachability of those states. For example, it may be the case
that a state satisfying each goal can be reached by an agent alone, but a state satisfying
the combined goal cannot be reached by any agent alone. More generally, reaching any
state might require n agents working together, and be unreachable if fewer than n agents
are involved (we will call n the “parallelism factor” of the goal). When the goal in the
intersection cannot be reached by any number of agents working in parallel, we will say the
parallelism factor is infinite. The parallelism factor is a particularly appropriate concept
when there are multiagent actions that are possible or required in the domain (e.g., carrying
a heavy table).
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2.4 Assumptions

Throughout this paper, we will be making a number of simplifying assumptions that enable
us to lay out the foundation for our theory of mechanism design for automated agents.
Here, we present those assumptions.

1. Expected Utility Maximizer: Designers will design their agents to maximize ex-
pected utility. For example, we assume that a designer will build his agent to prefer
a 51% chance of getting $100, rather than a sure $50.

2. Isolated Negotiation: An agent cannot commit himself as part of the current ne-
gotiation to some behavior in a future negotiation, nor can he expect that his current
behavior will in any way affect a future negotiation. Similarly, an agent cannot expect
others to behave in a particular way based on their previous interaction history, nor
to act differently with him because of his own past behavior. Each negotiation stands
alone.

3. Interagent Comparison of Utility: The designers have a means of transforming
the utilities held by different agents into common utility units.

4. Symmetric Abilities: All agents are able to perform the same set of operations in
the world, and the cost of each operation is independent of the agent carrying it out.

5. Binding Commitments: Designers will design their agents to keep explicit public
commitments. We assume nothing about the relationship between private preferences
and public behavior, only that public commitment be followed by public performance
of the commitment. This can be monitored, and if necessary, enforced.

6. No Explicit Utility Transfer: Although agents can compare their respective util-
ities, they have no way of explicitly transferring utility units from one to the other.
There is, for example, no “money” that can be used to compensate one agent for
a disadvantageous agreement. Utility transfer does occur, however, implicitly. This
implicit transfer of utility forms the basis for agreement among agents.

3. Examples of State Oriented Domains

In this section, we present several examples of State Oriented Domains. These specific
examples illustrate some of the nuances of describing this class of domains.

3.1 The Blocks Domain

In the Blocks Domain, there is a table of unlimited size, and a set of blocks. A block can
be on the table or on some other block, and there is no limit to the height of a stack of
blocks. One state in this domain can be seen in Figure 2.

World States and Goals: The basic predicates that make up world states and goals are:

e On(z,y): such that 2 and y are blocks; its meaning is that block z is (directly)
on block .
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Figure 2: A State in the Blocks Domain

Figure 3: A State in the Slotted Blocks Domain

e On(x,Table): such that x is a block; its meaning is that block 2 is (directly) on
the table.

e Clear(z): such that x is a block; its meaning is that there is no block on z, i.e.,

Clear(z) = =3y On(y, z).

As this is an SOD, goals are sets of world states. These world states can be expressed
as a first order closed formula over the above predicates. Sample goals are:

e —Clear(R) — Block R is not clear.
e 320n(R,z) — Block R is not on the table.

e VzOn(z, Table) — All blocks are on the table (and therefore, implicitly, all blocks
are also Clear).

Atomic Operation: There is one operation in this world: Move(z,y). This operation moves
a clear block z onto the top of another clear block y.

Cost: Each move operation has a cost of 2.

3.2 The Slotted Blocks Domain

The domain here is the same as the Blocks Domain above. However, on the table there are
only a bounded number of slots into which blocks can be placed. One state in this domain
can be seen in Figure 3.

World States and Goals: The basic predicates that make up world states and goals are:

e On(z,y): such that 2 and y are blocks; its meaning is that block z is (directly)
on block .
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e At(z,n): such that x is a block and n is a slot name; its meaning is that block
z is (directly) on the table at slot n.

e Clear(z): such that z is a block; its meaning is that there is no block which is
on z, i.e., Clear(z) = -3y On(y, z).

Atomic Operations: There are two operations in the Slotted Blocks Domain:

e PickUp(¢) — Pick up the top block in slot ¢ (can be executed whenever slot 7 is
not empty);

e PutDown(i) — Put down the block that is currently being held into slot . An
agent can hold no more than one block at a time.

Cost: Each operation has a cost of one.

This Slotted Blocks Domain is different from the Blocks Domain above in two ways:

1. The table of unlimited size is replaced by a bounded table with distinguishable loca-
tions that we call “slots.”

2. The atomic “Move” operation is broken into two sub-operations PickUp and PutDown.
This allows more cooperation among the agents. For example, if we want to swap the
blocks in slot 1 in Figure 3 it would take one or more agents minimally a total of
4 Move operations, i.e., each block (Black and White) is touched twice. However, if
we allow the agents to use the PickUp and PutDown operations two agents can do
the swap with two PickUp and two PutDown operations (which is equivalent to two
move operations), i.e., each block is touched only once. The finer granularity of the
operations allows more flexibility in scheduling within the joint plan.

3.3 The Delivery Domain with Bounded Storage Space

In this Delivery Domain, there is a weighted graph G = G(V, F). Fach v € V represents a
warehouse, and each e € E represents a road. The weight function w: £ — R ™ is the length
of any given road. For each edge e € E, w(e) is the length of e or the “cost” of e. Each
agent has to deliver containers from one warehouse to another. To do the deliveries, agents
can rent trucks, an unlimited supply of which are available for rental at every node. A
truck can carry up to 5 containers. Each warehouse also has a limited capacity for holding
containers.

Atomic Operations: The operations in this domain are:

e Load(ec,t) — loads a container ¢ onto a truck ¢. The preconditions are:

— Container ¢ and truck ¢ are at the same warehouse h;

— Truck ¢ has less than 5 containers on board, where 5 is the capacity limit of
each truck.

The results of the operation are:

— Warehouse h has one container less;
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— Truck ¢ has one container more.
A Load operation costs 1.
e Unload(c,t) — unloads a container ¢ from a truck ¢. The preconditions are:

— Container ¢ is on truck ¢;
— Truck t is at some warehouse h;
— Warehouse h is not full.

The results of the operation are:

— Warehouse h has one container more;

— Truck ¢ has one container less.
The Unload operation costs 1.

e Drive(t,h) — Truck ¢ drives to warehouse h. There are no preconditions on this
operation. The result is that truck ¢ is at warehouse h. The cost of this operation
is equal to the distance (i.e., the minimal weighted path) between the current
position of truck ¢t and warehouse h.

World States and Goals: The full description of a world state includes the location of each
container (either in some warehouse or on some truck) and the location of each truck
(either in some warehouse or on some road). However, we will restrict goals so that
they can only specify which containers need to be at which warehouses.

3.4 The Restricted Usage Shared Resource Domain

In this domain, there is a set of agents that are able to use a shared resource (such as a
communication line, a shared memory device, a road, a bridge...). There is a restriction
that no more than m > 1 agents can use the resource at the same time (m denotes the
maximal capacity of the resource).

Atomic Operations: The atomic operations in the Shared Resource Domain are:

e Use — an agent is using the shared resource for one time unit. The Use operation
costs 0.

e Wait — an agent is waiting to use the shared resource for one time unit. The
operation costs 1, i.e., waiting for one time unit to access the shared resource
costs 1.

o NOP — an agent does not need the resource and therefore neither uses it nor
waits for it. This operation costs 0.

The objective here is to find a schedule such that at any time unit no more than m
agents are performing the Use operation.

World States and Goals: A world state describes the current activity of the agents and their
accumulated resource usage since time 0 (i.e., not their accumulated cost). The goal
of an agent is to be in a state where it has accumulated a target number of time units
using the resource, and is currently doing the NOP operation. Formally, a state is an
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Joint Plan

World States

Al A2 A3 Al A2 A3
T 0| Use | Use | Wait (Use,0) | (Use,0) | (Wait,0)
i 1| Use | Use | Wait (Use,1) | (Use,1) | (Wait,0)
m 2 | NOP | Use | Use (NOP,2) | (Use,2) | (Use,0)
e 3 | NOP | NOP | Use (NOP,2) | (NOP,3) | (Use,l)
1 [ NODP | NOP | NOP | [ (NOP2) [ (NOP3) | (NOP.2)

Figure 4: Joint Plan and States in the Restricted Usage Shared Resource Domain

n-element vector, one element for each agent, where each element is a pair consisting
of the agent’s current operation and his accumulated number of time units using the
resource (i.e., the set of all states is ({Wait,Use,NOP} x IN)").

Assume, as an example, that there are three agents, and one resource that has a maximal
capacity of two. Agents 1 and 3 need two units of the resource, while agent 2 needs three
units of the resource. A joint plan can be seen at the left side of Figure 4, described by a
matrix. For each time ¢ and agent A;, the entry in column ¢ and row ¢ is agent A;’s action
at time ¢t. The resulting world state after each time unit of the joint plan can be seen at
the right side of Figure 4. The final state satisfies all agents’ goals.

4. Deals, Utility, and Negotiation Mechanisms

Now that we have defined the characteristics of a State Oriented Domain, and looked at a
few simple examples, we turn our attention to how agents in an SOD can reach agreement
on a joint plan that brings them to some agreed-upon final state. Hopefully, this final state
will satisfy both agents’ goals. However, this isn’t always possible. There are three such
cases:

1. It might be the case that there doesn’t exist a state that satisfies both agents’ goals
(i.e., the goals contradict one another);

2. It might be the case that there exists a state that satisfies them both, but it cannot
be reached with the primitive operations in the domain (see Section 2.3.1 above);

3. It might be the case that there exists a reachable state that satisfies them both, but
which is so expensive to get to that the agents are unwilling to expend the required
effort.

4.1 A Negotiation Mechanism

We will start by presenting a simple mechanism that is suitable for cases where there exists a
reachable final state (that is, reachable by a sufficiently inexpensive plan) that satisfies both
agents’ goals. We call this a cooperative situation. Later, we will enhance the mechanism
so that it can handle all possible encounters in State Oriented Domains, i.e., so that it can
handle conflict resolution.

176



MECHANISMS FOR AUTOMATED NEGOTIATION

Definition 3 Given an SOD < S, A, J,c >, we define:

o P C J to be the set of all one-agent plans, i.e., all joint plans in which only one agent
has an active role.

o The cost ¢(P) of a one-agent plan in which agent k has the active role, P € P,
1s a vector that has at most one non-zero element, in position k. When there is no
likelihood of confusion, we will use ¢(P) to stand for the k-th element (i.e., for ¢(P),),
rather than the entire vector.

Definition 4 Best Plans

A [ is the minimal cost one-agent plan in P in which agent k plays the active role
and moves the world from state s to state [ in S.

o If a plan like this does not exist then s LA [ will stand for some constant plan > that
costs infinity to agent k and 0 to all other agents.

o Ifs=f thens LA [ will stand for the empty plan A that costs 0 for all agents.

o s L F (where s is a world state and F is a set of world states) is the minimal cost
one-agent plan in P in which agent k plays the active role and moves the world from
state s to one of the states in F':

k . k
)= .
(s = F) min c(s = f)

As we mentioned above, for the moment we will be restricting our attention to encounters
where there does exist one or more states that satisfy both agents’ goals. What if more
than one such state exists? Which state should the agents choose to reach? And what if
there is more than one joint plan to reach those states? Which joint plan should the agents
choose?

For example, let’s say that there are two states that satisfy both agents’ goals. State 1
has two possible roles, with one of the roles costing 6 and the other costing 3. State 2 has
two roles also, with both of them costing 5. While State 1 is cheaper overall to reach, State
2 seems to allow for a fairer division of labor among the agents.

Assuming that the agents want their agreement to be efficient, they will decide to reach
State 1. But which agent should do the role that costs 6, and which should do the role that
costs 37 Our approach will be to allow them to agree on a “lottery” that will equalize the
benefit they derive from the joint plan. Although eventually one agent will do more than
the other, the expected benefit for the two agents will be identical (prior to holding the
lottery). These plans that include a probabilistic component are called mized joint plans.

Throughout this paper, we limit the bulk of our discussion about mechanisms to two-
agent encounters. Initial work on the generalization of these techniques to encounters among
more than two agents can be found elsewhere (Zlotkin & Rosenschein, 1994). That research
considers issues of coalition formation in n-agent Task Oriented Domains.

Definition 5 Deals Given an encounter in a two-agent SOD < s,(G1,G3) >:
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o We define a Pure Deal to be a joint plan J € J that moves the world from state s to
a state in G N Gs.

o We define a Deal to be a mized joint plan J:p; 0 < p <1 € R such that J is a Pure
Deal.

The semantics of a Deal is that the agents will perform the joint plan (Jy,.J2) with
probability p, or the symmetric joint plan (Jg,.J;) with probability 1 — p (where the agents
have switched roles in J). Under the symmetric abilities assumption from Section 2.4,
both agents are able to execute both parts of the joint plan, and the cost of each role is
independent of which agent executes it.

Definition 6

o [f6 = (J:p) is a Deal, then Cost;(8) is defined to be pc(J);, + (1 — p)e(J), (where k

is t’s opponent).
e If 6 is a Deal, then Utility;(¢) is defined to be ¢(s — G;) — Cost;(6).

The utility (or benefit) for an agent from a deal is simply the difference between the
cost of achieving his goal alone and his expected part of the deal. Note that we write (for

example) ¢(s — G;) rather than ¢(s & (1), since the cost of the plan is independent of the
agent that is executing it.

Definition 7
e A Deal ¢ is individual rational if, for all i, Utility,(6) > 0.

e A Deal ¢ is pareto optimal if there does not exist another Deal that dominates it—
there does not exist another Deal that is better for one of the agents and not worse
for the other.

e The negotiation set NS s the set of all the deals that are both individual rational and
pareto optimal.

A necessary condition for the negotiation set not to be empty is that there be no con-
tradiction between the two agents’ goals, i.e., Gy NGy # . All the states that exist in the
intersection of the agents’ goal sets might, of course, not be reachable given the domain of
actions that the agents have at their disposal. The condition of reachability is not sufficient
for NS not to be empty, however, because even when there is no contradiction between
agents’ goals, there may still not be a cooperative solution for them. In such a situation,
any joint plan that satisfies the union of goals will cost one agent (or both) more than he
would have spent achieving his own goal in isolation (that is, no deal is individual rational).

As an example in the Slotted Blocks Domain, consider the following encounter. The
initial state can be seen at the left in Figure 5. A;’s goal is “The White block is at slot 2
but not on the table” and A;’s goal is “The Black block is at slot 1 but not on the table.”

To achieve his goal alone, each agent has to execute one PickUp and then one PutDown;
c(s — G;) = 2. The two goals do not contradict one another, because there exists a state
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in the world that satisfies them both (where the White and Black blocks are each placed
on a Gray block). There does not exist a joint plan that moves the world from the initial
state to a state that satisfies the two goals with total cost less than eight?>—that is, no deal
is individual rational.

Initial State A/'s
B =
[ 1 [ 1 [ d| [ 1 [ IR J|
1 2 3 1 2 3
“ Joint plan
A)s ®
goal
[ JEL I d| [ d|
1 2 3 1 2 3

Figure 5: Conflict Exists Even Though Union of Goals is Achievable

The existence of a joint plan that moves the world from its initial state s to a mutually-
desired state in Gy NGy is a necessary (but not sufficient) condition for the negotiation set
to be non-empty. For the agents to agree on any joint plan, it should be individual rational.
This means that the sum of the roles that the agents play should not exceed the sum of their
individual stand-alone costs (otherwise, at least one of the agents would not get positive
utility, i.e., do more work than in his stand-alone plan). But even this condition is not
sufficient to guarantee an individual rational deal, since it can be the case that the minimal
role in the joint plan is still too expensive for the agent with the minimum stand-alone cost.
Even a probabilistic mixture of the two roles will not reduce the expected cost for that
agent below the cost of the minimal role (and thus that role will not be individual rational
for him).

We now show, however, that the combination of these conditions is necessary and suffi-
cient for the negotiation set not to be empty.

Theorem 1 A necessary and sufficient condition for the negotiation set not to be empty is
the existence of a joint plan that moves the world from its initial state s to a state in G1NGy
and also satisfies the following two conditions (the sum condition and the min condition):

o A joint plan J salisfies the sum condition if

2 2

Zc(s — Gy) > ZC(J)Z».

2. One agent lifts the white block, while the other agent rearranges the other blocks suitably (by picking
up and putting down each block once), whereupon the white block is put down. This is the best plan
because each block is picked up and put down only once.
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o A joint plan J satisfies the min condition if

2 2
Hl_l{l c(s — G;) > Hl_l{l c(J);.
Proof:
o If NS # (), then let J: p be some mixed joint plan in NS; thus, it is individual rational.
Vie {1,2}
Utility,(J:p) > 0
c(s — G;) — Costy(J:p) > 0
(s — Gy) > Cost(J:p)
(s = Gi) = pe(]);+ (1 =ple(J),
> mingegr 2ye(J),
Z (s —G) > Z e(J);
i€{1,2} i€{1,2}
min ¢(s — G;) >  min ¢(J),
i€{1,2} i€{1,2}

o Let J be a minimal total cost joint plan that moves the world from state s to a state
in G1 NGy, and also satisfies the sum and min conditions. To show that NS # @, it is
sufficient to show that there exists a deal that is both individual rational and pareto
optimal. Without loss of generality, we can assume that ¢(s — G3) > ¢(s — G1) and
c(J)y > ¢(J);. From the min condition, we see that ¢(s — Gy) > ¢(J);. There are
two cases:

— If ¢(s — Gg) > ¢(J),, then the deal J:1 is individual rational.

—If e¢(s — Gy) < ¢(J),, then the deal J:p (where p = 1 — %) is

individual rational.

J:p is also pareto optimal, because if there is another deal J': ¢ that dominates .J: p
then J': ¢ is also individual rational and therefore satisfies the min and sum conditions
(see the proof, above, of the initial half of this theorem).

Since J': ¢ dominates .J: p it also implies that

Z Utility,(J': q) Z Utility,(J: p).
1€{1,2} 1e{1,2}

This can be true only if

ST o< S el

ie{1,2} 1e{1,2}

But this contradicts the fact that J is the minimal total cost joint plan that satisfies
the sum and min conditions. O
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The sum condition states that the sum of roles does not exceed the sum of the individual
agents’ stand-alone costs. The min condition states that the minimal role in the joint plan
is less than the minimum stand-alone cost.

When the conditions of Theorem 1 are true, we will say that the encounters are cooper-
ative. In such encounters, the agents can use some negotiation mechanism over mixed joint
plans. The question we next examine is what kind of negotiation mechanism they should
use.

4.2 Mechanisms that Maximize the Product of Utilities

In general we would like the negotiation mechanism to be symmetrically distributed, and
we would also like for there to be a negotiation strategy (for that mechanism) that is in
equilibrium with itself. A symmetrically distributed mechanism is one in which all agents
play according to the same rules, e.g., there are no special agents that have a different re-
sponsibility in the negotiation process. When asymmetric negotiation mechanisms are used,
the problem of responsibility assignment needs to be resolved first (e.g., who will be the
coordinator agent). We would then need a special mechanism for the responsibility assign-
ment negotiation. If this mechanism is also asymmetric we will need another mechanism,
and so on. Therefore, it is better to have a symmetric negotiation mechanism to start with.

Among the symmetric mechanisms, we will prefer those that have a symmetric negoti-
ation strategy that is in equilibrium. Given a negotiation mechanism M, we will say that
a negotiation strategy S from M is in equilibrium if, under the assumption that all other
agents are using strategy S when using M, I (or my agent) cannot do better by using a
negotiation strategy different than 5.

Among all symmetrically distributed negotiation mechanisms that have a symmetric
negotiation strategy that is in equilibrium, we will prefer those that maximize the product
of agents’ utilities. This means that if agents play the equilibrium strategy, they will
agree on a deal that maximizes the product of their utilities. If there is more than one
product-maximizing deal, they will agree on a deal (among those product maximizers) that
maximizes the sum of utilities. If there is more than one such sum-maximizing product
maximizer, the protocol will choose among those deals with some arbitrary probability.
This definition implies both individual rationality and pareto optimality of the agreed-upon
deals.

Note that maximization of the product of the utilities is not a decision that agents are
assumed to be making at run-time; it is a property of the negotiation mechanism agreed
upon by the agent designers (i.e., we are exploring what happens when the protocol designers
would agree on this property). In more classic game theory terms (see Section 9.1), the
protocol acts as a kind of “mediator,” recommending “maximization of product of the
utilities” in all cases.

We will call this class of mechanisms the Product Mazimizing Mechanisms, or PMMs. In
previous work on TODs (Zlotkin & Rosenschein, 1989, 1993a) we presented the Monotonic
Concession Protocol and the One-Step Protocol, both of which are PMMs. As mentioned
above, this paper does not examine the computational issues that arise in discovering deals.

There are a number of existing approaches to the bargaining problem in game theory.
One of the earliest and most popular was Nash’s axiomatic approach (Nash, 1950; Luce
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& Raiffa, 1957). Nash was trying to axiomatically define a “fair” solution to a bargaining
situation. He listed the following criteria as ones that a fair solution would satisfy:

1. Individual rationality (it would not be fair for a participant to get less than he would
anyway without an agreement);

2. Pareto Optimality (a fair solution will not specify an agreement that could be improved
for one participant without harming the other);

3. Symmetry (if the situation is symmetric, i.e., both agents would get the same utility
without an agreement, and for every possible deal, the symmetric deal is also possible,
then a fair solution should also be symmetric, i.e., give both participants the same
utility);

4. Invariance with respect to linear utility transformations. For example, imagine two
agents negotiating over how to divide $100. If one agent measures his utility in
dollars while the other measures his in cents, it should not influence the fair solution.
Similarly, if one agent already has $10 in the bank, and evaluates the deal that gives
him z dollars as having utility 10 + = while the other evaluates such a deal as having
utility @, it should not influence the fair solution (i.e., change of origin doesn’t affect
the solution);

5. Independence of irrelevant alternatives. Imagine two agents negotiating about how
to divide 10,000 cents. The Nash solution will be 5,000 cents for each, due to the
symmetry assumption above. Now imagine that the same agents are negotiating over
$100. Even though there are now some deals that they can’t reach (for example, the
one where one agent gets $49.99, and the other gets $50.01), the solution should be
the same, because the original solution of 5,000 cents can still be found in the new
deal space.

Nash showed that the product maximizing solution not only satisfies the above criteria,
but it is the only solution that satisfies them. The first four criteria above are explicitly
or implicitly assumed in our own approach (in fact, for example, our version of the fourth
assumption above is more restrictive than Nash’s). The fifth criteria above is not assumed
in our work, but turns out to be true in some cases anyway. We use the Nash solution,
in general, as a reasonable bargaining outcome, when it is applicable. Nash, however,
had some assumptions about the space of deals that we do not have. For example, the
Nash bargaining problem assumes a bounded, convex, continuous, and closed region of
negotiation. In our agent negotiations, we do not assume that the space of deals is convex,
nor that it is continuous.

4.3 Worth of a Goal

When the encounter is cooperative, then agents can use some PMM over mixed joint plans.
Such a mechanism guarantees a fair and efficient cooperative agreement. The question now,
however, is what can be done in non-cooperative encounters?

Consider again the encounter from the Restricted Usage Shared Resource Domain where
there are three agents, and one resource which has a maximal capacity of two. Agents 1
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Agents Agents
Ay Ay As Ay Ay As
Use Use | Wait Use | Wait | Use
Use Use | Wait Use | Wait | Use
NOP | Use Use NOP | Use | NOP
NOP | NOP | Use NOP | Use | NOP
NOP | NOP | NOP NOP | Use | NOP
NOP | NOP | NOP

o8 ~
Wi O

QY| WIN |~ O

Figure 6: Two Joint Plans in the Restricted Usage Shared Resource Domain

and 3 need two units of the resource while agent 2 needs 3 units of the resource. FEach
agent, were it alone in the world, could achieve its goal at no cost (i.e., without waiting
for the resource). However, since the maximal capacity of the resource is two, the three
agents together cannot achieve their combined goal without some agent having to wait.
Two possible joint plans that achieve all agents’ goals can be seen in Figure 6. The left
joint plan gives agents 1 and 2 utility of 0, while giving agent 3 utility of —2. The right joint
plan gives agents 1 and 3 utility of 0, while giving agent 2 utility of —2. Globally, the plan
on the left finishes sooner. But from the perspective of the individual agents, the two plans
are really comparable—in one, agent 3 suffers by waiting two time units, and in the other,
agent 2 suffers by exactly the same amount. We have assumed, however, that the agents
are not concerned with the global aspects of resource utilization, and are only concerned
about their own local cost. In addition, both plans are Pareto Optimal, and neither of them
is individual rational (because one agent gets negative utility).

If there exists a joint plan J that brings the world to a state that satisfies all agents’
goals, but either the min condition or the sum condition is not true, then for the agents
cooperatively to bring the world to a state that satisfies all agents’ goals, at least one of
them will have to do more than if he were alone in the world and achieved only his own
goals. Will either one of them agree to do extra work? It depends on how important each
goal is to each agent ¢, i.e., how much ¢ is willing to pay to bring the world to a state in ;.

For example, in the Shared Resource encounter above, agent 2 or 3 might be willing
to wait two time units so as to get its turn at the resource. Although they could have
done better were they alone in the world, they must cope with the presence of those other
agents. With our original definition of utility, no deal that achieves all agents’ goals will
be individual rational—someone will have to wait, and thus get negative utility. So with
that utility definition, no agent should be willing to wait. The agents will fail to reach
agreement, and no one will achieve his goal. This is because utility was calculated as the
difference between the cost of an agent’s plan were it alone in the world and the cost of his
role in the joint plan with other agents.

However, why should the agents use stand-alone cost as their baseline for determining
utility? It may be the case that agents will be willing, in the presence of other agents, to
admit the need to pay an extra cost, a sort of “coordination overhead.” The fact that with
other agents around they have to do more does not necessarily make it irrational to do more.
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In Task Oriented Domains (Zlotkin & Rosenschein, 1989, 1993a, 1994), it is reasonable to
use stand-alone cost as the utility baseline since there was never any coordination overhead.
In the worst case, an agent could always achieve his goal at the stand-alone price, and
coordination could only improve the situation. In State Oriented Domains, however, it
makes sense to consider altering the utility baseline, so that agents can rationally coordinate
even when there exists a coordination overhead. One way of doing this is to assume that
each agent has some upper bound on the cost that he is willing to bear to achieve his goal.
Then, the agent’s utility can be measured relative to this upper bound. We call this upper
bound the worth of the agent’s goal.

Even in TODs, one can conceive of stand-alone cost as the worth that an agent assigns
to achieving a goal. The stand-alone cost is then the maximum that an agent is willing to
expend. In a TOD, this maximum need never be violated, so it’s a reasonable worth value
to use.

When such an upper bound does not exist, i.e., an agent is willing to achieve his goal
at any cost, other techniques can be used (see Section 6 below).

Definition 8 Given an encounter in a two-agent SOD < s,(G1,G3) >, let w; be the maa-
imum expected cost that agent @ is willing to pay in order to achieve his goal G;. w;
will be called the worth of goal G; to agent . We will denote this enhanced encounter by
< s, (Gl, Gz), (wl, wz) >

The definition of Utility can be usefully altered as follows:

Definition 9 Given an encounter < s,(G1,G32), (wy,we) >, if 6 is a deal, i.e., a mived
joint plan satisfying both agents’ goals, then Utility () is defined to be w; — Cost;(6).

The utility for an agent of a deal is the difference between the worth of its goal that is
being achieved, and the cost of his role in the agreed-upon joint plan. If an agent achieves
his goal alone, his utility is the difference between the worth of the goal and the cost that
he pays to achieve the goal. The point is, that an agent might be better off alone but still
derive positive utility from a joint plan, when we use worth as the utility baseline. With
the new definition of utility, it may be rational to compromise.

Theorem 2 If in Theorem 1 we change every occurrence of ¢(s — G;) to w;, then that
theorem s still true.
Proof: Substitute w; for every occurrence of ¢(s — G;) in the proof of Theorem 1. O

By introducing the worth concept into the definition of an encounter, we have enlarged
the number of encounters that have a non-empty negotiation set. Cooperative behavior is
enhanced. Qur negotiation mechanism, that makes use of any product maximizing protocol,
becomes applicable to more SOD encounters.

4.4 Interaction Types

From the discussion above, we have begun to see emerging different kinds of encounters
between agents. In TOD meetings, agents really benefit from coordination. In SODs, this
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isn’t necessarily the case. Sometimes agents benefit, but sometimes they are called upon to
bear a coordination overhead so that everyone can achieve their goals. In even more extreme
situations, agents’ goals may simply be in conflict, and it might just be impossible to satisfy
all of them at the same time, or the coordination overhead may exceed the willingness of
agents to bear the required burden.

We have four possible interactions, from the point of view of an individual agent:

o A symmetric cooperative situation is one in which there exists a deal in the negotiation
set that is preferred by both agents over achieving their goals alone. Here, both agents
welcome the existence of the other agent.

o A symmetric compromise situation is one where there are individual rational deals
for both agents. However, both agents would prefer to be alone in the world, and to
accomplish their goals alone. Since each agent is forced to cope with the presence of
the other, he would prefer to agree on a reasonable deal. All of the deals in NS are
better for both agents than leaving the world in its initial state s.

e A non-symmetric cooperative/compromise situation is one in which one agent views
the interaction as cooperative (he welcomes the existence of the other agent), while
the second views the interaction as compromise (he would prefer to be alone in the

world).

o A conflict situation is one in which the negotiation set is empty—mno individual rational
deals exist.

In a general SOD, all four types of interaction can arise. In a TOD, only the symmetric
cooperative situation ever exists.

m

Figure 7: The Symmetric Cooperative Situation

Each of these situations can be visualized informally using diagrams. The symmetric
cooperative situation can be seen in Figure 7, the symmetric compromise situation in Fig-
ure 8, the non-symmetric cooperative/compromise situation in Figure 9, and the conflict
situation in Figure 10. A point on the plane represents a state of the world. Fach oval
represents a collection of world states that satisfies an agent’s goal. s is the initial state of
the world. The triple lines emanating from s represent a joint plan that moves the world
to a final state. Each of the agents will share in the carrying out of that joint plan. The
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Figure 8: The Symmetric Compromise Situation

Figure 9: The Non-Symmetric Cooperative/Compromise Situation

overlap between ovals represents final states that satisfy the goals of both agents A; and
As. Informally, the distance between s and either oval represents the cost associated with
a single-agent plan that transforms the world to a state satisfying that agent’s goal.

Note that in Figure 8, the distance from s to either agent’s oval is less than the distance
to the overlap between ovals. This represents the situation where it would be easier for each
agent to simply satisfy his own goal, were he alone in the world. In Figure 7, each agent
actually benefits from the existence of the other, since they will share the work of the joint

S

1o/

G

o

Figure 10: The Conflict Situation
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plan. Note that in Figure 9, one agent benefits from the existence of the other, while the
other would prefer to be alone in the world.

Let’s consider some simple examples in the slotted blocks world domain of cooperative,
compromise, and conflict situations. In the initial situation depicted in Figure 11, the white
block is in slot 1 and the black block is in slot 2. Agent A; wants the white block alone in
slot 2, while agent 45 wants the black block alone in slot 1. Were either of the agents alone
in the world, it would cost each of them 4 pickup/putdown operations to achieve their goal.
For example, A; would have to pick up the black block in slot 2 and move it to slot 3, then
pick up the white block in slot 1 and move it to slot 2. The two agents together, however,
are able to achieve both goals with a total cost of 4. They can execute a joint plan where
they simultaneously pick up both blocks, and then put them in their appropriate places.
Each role in this joint plan costs 2, and each agent derives a utility of 2 from reaching an
agreement with the other. This is a cooperative situation. Coordination results in actual
benefit for both agents.

Initial State A,'sgoal
L J| F'.W L J| L L L J|
1 2 3 1 2 3
A,’'sgoal
®

Figure 11: Cooperative Situation

Now let’s consider a more complicated, compromise, situation. In the initial state shown
in Figure 12, there is a white block in slot 1, a black block in slot 2, and two gray blocks
in slot 3. Agent A;’s goal is to have the white block somewhere at slot 2, but not on the
table. Similarly, agent Ay’s goal is to have the black block somewhere at slot 1, but not on
the table. Alone in the world, agent A; would only have to do one pickup and one putdown
operation, just moving the white block onto the black block in slot 2. In the same way,
agent A, alone in the world can achieve his goal with two operations. But since each is
(in his stand-alone plan) using the other’s block as a base, the achievement of a state that
satisfies both agents’ goals requires additional blocks and operations.

The best plan for achieving both agents’ goals requires moving one gray block from slot
3 to slot 1 and the other gray block to slot 2 so that they act as bases for the white and
black blocks. Each block needs to be picked up and put down at least once; the best plan
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has each block moving only once at a total cost of 8. Obviously, one or both agents will need
to do extra work (greater than in the stand-alone situation) to bring about this mutually
satisfying state.

Initial State A/'s
B =
[ 1 [ 1 [ d| [ 1 [ IR J|
1 2 3 1 2 3
“ Joint plan
A)s ®
goal
[ JEL I d| [ d|
1 2 3 1 2 3

Figure 12: Compromise Situation

The best plan has two roles, one requiring 6 operations and one requiring 2 operations.
One agent will lift the black (or white) block, while the other agent rearranges all the
other blocks appropriately. The first agent will then put down the black (or white) block,
completing the plan. If both agents’ worths satisfy the min and sum conditions (meaning,
here, that the sum of the worths is greater than or equal to 8, and each worth is greater
than or equal to 2), then they can reach an agreement that gives them both positive utility
(using worth as the new baseline for evaluating utility).

For example, let’s say that agent Ay assigned a worth of 3 to achieving his goal, while
agent Aj assigned a worth of 6 to achieving his goal. Since one role in the best joint plan
costs 2 while the other costs 6, there is one unit of utility to be shared between the agents.
Any mechanism that maximizes the product of their utilities will split this one unit equally
between the agents. How is this done in our case? There is one deal in the negotiation set
that gives both agents the same expected utility of %, namely the mixed joint plan that
has agent Ay doing the cost-2 role with probability %, and the cost-6 role with probability
%. Agent A; of course assumes the complementary role. Agent A;’s expected utility is
3—2(L)—6(1) = %, which is equal to agent A’s expected utility of 6 — 2(%) — 6(%) = 1.
This division of utility maximizes the product of expected utility among the agents.

There is an interesting phenomenon to note in this deal. Both agents are apparently
in a symmetric situation, apart from their internal attitude towards achieving their goals
(i.e., how much they are willing to pay). But as can be seen above, the more you are
willing to pay, the more you will have to pay. The agent that has a worth of 3 ends up
having less expected work than the agent with a worth of 6. This gives agents an incentive
to misrepresent their true worth values, pretending that the worth values are smaller than
they really are, so that the agents’ positions within the negotiation will be strengthened. An
agent can feign indifference, claim that it really doesn’t care all that much about achieving
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its goal, and come out better in the negotiation (with lower expected cost). We will examine
this question in greater detail below in Section 8.

Our final example here is of a conflict situation, shown in Figure 13. Again, the white
block is in slot 1 and the black block is in slot 2—the same initial state that we had above in
the cooperative and compromise examples. In the cooperative example, the agents wanted
the blocks moved to another, empty slot. In the compromise example, the agents wanted to
blocks moved to a specific non-empty slot. Here, in the conflict example, the agents want
the blocks moved onto a specific other block in a specific slot. Agent A; wants the white
block on top of the black block in slot 2; agent A; wants the black block on top of the white
block in slot 1. Here, there is a real contradiction between the two agents’ goals. There
exists no world state that satisfies them both. In the next section, we will discuss what
kinds of coordination mechanisms can be used in a conflict situation.

Initial State A/'s
B *
[ T [ T [ 1 [ I JL J|
1 2 3 1 2 3
[ 31 )
I -
* B
[ 1 [ J| L n [ I J|
1 2 3 1 2 3

Figure 13: Conflict Situation

When the negotiation set is not empty, we can distinguish between compromise and
cooperative situations for a particular agent ¢ using the following algorithm:

1. If w; < ¢(s — G;), then agent 7 is in a cooperative situation.

2. If w; > ¢(s — G;), then agent 7 might be in a cooperative or a compromise situation.
The way to distinguish between them is as follows:

(a) Set wf = ¢(s — G;), and leave the other agent’s worths unchanged.
(b) If the resulting NS* is empty, then agent 7 is in a compromise situation.

(c) Otherwise, agent ¢ is in a cooperative situation.

5. Conflict Resolution and Cooperation

We have seen that in both cooperative and compromise encounters there exist deals that are
individual rational for both agents. Agents will negotiate over which of these deals should
be reached, if there is more than one. What, however, can be done when the agents are in
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a conflict situation, i.e., there are no individual rational deals? Here, the agents have a true
conflict that needs to be resolved, and are not merely choosing among mutually acceptable
outcomes.

5.1 Conflict Resolution

A simple approach to conflict resolution would be for the agents to flip a coin to decide who
is going to achieve his goal and who is going to be disappointed. See Figure 14. In this
case they will negotiate on the probabilities (weightings) of the coin toss. If they run into
a conflict during the negotiation (fail to agree on the coin toss weighting), the world will
stay in its initial state s.?

Initial State A,'sGoal
[ | F‘.W [ | [ 1 [ | F'.W
1 2 3 1 2 3
Flip a coin

A, sGoal O
® \J >
B R L
[ [ I |
1 2 3 1 2 3

Figure 14: Conflict Resolution

This deal can be visualized graphically in Figure 15. Single lines represent one agent
plans.

In conflict situations the agents can use some utility product maximizing protocol to
decide on the weighting of the coin. However, it turns out that in that case the probability
of % always results in the maximum product of the two agents’ utilities. If the agents are
to maximize their utility product, they will always agree on a symmetric coin. The only
exception is when the initial state already satisfies one agent’s goal. Then, that agent will
simply cause the negotiation to fail, rather than risk moving away from his goal-satisfying
state. Nevertheless, even here, the product maximizing deal would have the agents flip a
symmetric coin.

Why is a symmetric coin going to maximize the product of agent utilities? Some simple
mathematics shows the reason. Assume that agent Ay has a worth of wy, and the cost of
achieving his goal alone is ¢;. When A; wins the coin toss, he will have a utility of wy — ¢4.
His utility from a deal with coin weighting p will be p(wy — ¢1). His opponent’s utility

3. There is a special case where the initial state s already satisfies one of the agent’s goals, let’s say agent
1 (s cannot satisfy both goals since then we would not have a conflict situation). In this case, the only
agreement that can be reached is to leave the world in state s. Agent 1 will not agree to any other deal
and will cause the negotiation to fail.
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Figure 15: The Conflict Situation

from this deal will be (1 — p)(wz2 — ¢2). The product of the two agents’ utilities will be
(p— p*)(w1 — ¢1)(wz — ¢2). This function of p is maximized when p equals 1 for any values
of wy, wy, ¢1, and ¢ (simply take the derivative of the function and set it equal to zero).

This may seem like a “fair” solution, but it is certainly not an efficient one. While
maximizing the product of the agents’ utilities, it does not maximize their sum. The sum
of utilities will be maximized by simply having the agent with a larger w; — ¢; achieve his
goal. This, on the other hand, is certainly not a fair solution.

We might be able to be both fair and efficient if agents are able to transfer utility to one
another. In that case, one agent could achieve its goal but share part of that utility with
the other agent. The negotiation would then center on how much of the utility should be
transferred! Any product maximizing mechanism used to resolve this question will transfer
half of the gained utility to the other agent, because it is a constant sum game, and dividing
the utility equally maximizes the utility product.

The entire subject of explicit utility transfer through side payments is a complicated one
that has been treated at length in the game theory community. It is not our intention to
examine these questions in this paper. Even if utility is not explicitly transferable, agents
can make commitments to perform future actions, and in effect transfer utility through
these promises. Again, there are many complicated issues involved in assessing the value
of promises, when they should be believed, discount factors, and limits on the amount of
promising and debts that an agent can accrue. If agents can accumulate debt indefinitely,
it will be possible for them to always pay off previous commitments by making additional
commitments to others. Here, too, we are leaving these issues aside, returning to our
assumptions that each interaction stands on its own, and no explicit side payments are
possible.

5.2 Cooperation in Conflict Resolution

In both cooperative and compromise situations, agents were implicitly able to transfer utility
in a single encounter by doing more actions in the joint plan. The agent that does more
work in the joint plan relieves the other agent, increasing the latter’s utility. This can be
thought of as a kind of utility transfer. Here, we will see a similar kind of implicit utility
transfer that is possible even in conflict situations.
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The agents may find that, instead of simply flipping a coin in a conflict situation, it
is better for them to cooperatively reach a new world state (not satisfying either of their
goals) and then to flip the coin to decide whose goal will ultimately be satisfied.

Consider the following example. One agent wants the block currently in slot 2 to be in
slot 3; the other agent wants it to be in slot 1. In addition, both agents share the goal of
swapping the two blocks currently in slot 4 (i.e., reverse the stack’s order). See Figure 16.
Assume that W7 = Wy = 12. The cost for an agent of achieving his goal alone is 10. If the
agents decide to flip a coin in the initial state, they will agree on a weighting of %, which
brings them a utility of 1 (i.e., %(12— 10)). If, on the other hand, they decide to do the swap
cooperatively (at cost of 2 each), and then flip a coin, they will still agree on a weighting
of 1, which brings them an overall utility of 4 (i.e., 1(12 — 2 — 2)).

Initial State A, sgoal

1 2 3 4 1 2 3 4

Semi-cooper ative

A, sgoal deal D ﬁ

/1 ——1 ——1 — Eﬁﬂﬁ
1 2 3 4

Figure 16: Cooperation up to a Certain Point

The fact that agents, even in a conflict situation, can get more utility by first coopera-
tively working together, and only then flipping a coin, can be exploited by defining a new
kind of deal, called a Semi-Cooperative Deal. We want agents to be able to negotiate over
and agree on a deal that allows them this mixed cooperative/conflict resolution interaction.
Changing the deal type is enough to make this possible. It ends up increasing the expected
utility that agents can derive from an encounter.

Definition 10 A Semi-Cooperative Deal is a tuple (t,J,q) where t is a world state, J is a
mixed joint plan that moves the world from the initial state s to intermediate state t, and
0 <g<1€lR is the weighting of the coin toss—the probability that agent Ay will achieve
his goal.

The semantics of this kind of deal is that the two agents will perform the mixed joint
plan J, and will bring the world to intermediate state ¢. Then, in state ¢, they will flip a
coin with weighting ¢ to decide who continues the plan towards their own goal. This allows
the agents to handle conflict between their goals, while still cooperating up to a certain
point.
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The utility of a semi-cooperative deal for an agent can be defined as follows. If he loses
the coin toss in intermediate state ¢, he simply has a negative expected utility equal to the
expected cost of his role in the joint plan that reached state ¢t. If he wins the coin toss in
intermediate state ¢, then his expected utility is the difference between the worth of his goal
and the costs of his role in the joint plan that reached ¢ as well as the stand-alone cost of
moving from ¢ to his goal state. This can be written formally as follows:

Definition 11

Utility;(¢,J,q) = qi(w; —e(J); —c(t — Gy);) — (L —q)e(J);
= qi(wi —c(l = Gi);) — e(J);

This assumes, of course, that the agents’ goals are in conflict—the state that satisfies
one agent will be of no worth to the other.

The Semi-Cooperative Deal can be visualized graphically in Figure 17. This figure is
similar in spirit to the figures presented above in Section 4.4, which represented cooperative,
compromise, and conflict encounters. Again, a triple line represents a joint plan while a
single line represents a one-agent plan.

Figure 17: Semi-Cooperative Deal

5.3 Semi-Cooperative Deals in Non-Conflict Situations

In cooperative and compromise situations, the agents negotiate on deals that are mixed
joint plans, J:p (cooperative deals). In a conflict situation, the agents negotiate on deals
of the form (¢, J, ¢) (semi-cooperative deals).

Even though semi-cooperative deals were intended to be used in conflict situations, they
can also be used in cooperative and compromise situations (with a minor generalization in
the definition of utility, discussed below). The question is, what kinds of agreements will
agents in a non-conflict situation reach, if they are negotiating over semi-cooperative deals?
Will they do better than using standard cooperative (mixed joint plan) deals? Or will they
do worse?

A cooperative deal which is a mixed joint plan J: p can also be represented as (J(s), J: p,0)
where J(s) is the final world state resulting from the joint plan J when the initial state is s.
In other words, mixed deals are a proper subset of semi-cooperative deals, and any mixed
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deal can be represented as a semi-cooperative deal of a special form. The intermediate state
t is taken to be the final state of the agents’ cooperative joint plan. Since that final state
satisfies both agents’ goals, the result of the coin flip is irrelevant—mneither of the agents
wants to change the world state anyway.

Therefore, by having agents in a non-conflict situation negotiate over semi-cooperative
deals, we are only enlarging their space of agreements. Any deal that can be reached when
negotiating over the subset (i.e., mixed joint plans) can also be reached when negotiating
over the larger set (i.e., semi-cooperative plans). So the agents in a non-conflict situation
will certainly do no worse, when using semi-cooperative deals. But will they do better?

There are two potential ways in which agents could do better. The first would be if
agents find a cheaper way to achieve both goals. It turns out that this is impossible—
semi-cooperative deals will not uncover a more efficient way of achieving both agents’ goals.
However, there is a more surprising way in which agents can benefit from semi-cooperative
deals. Agents can benefit by not always achieving their goals. When using semi-cooperative
deals, they can give up guaranteed goal satisfaction, and gain expected utility.

To see what we mean, consider the following example in the Slotted Blocks World. The
initial situation in Figure 18 consists of 5 duplications of the example from Figure 5, in slots
1 to 15. In addition, two slots (16 and 17) each contain a stack of 2 blocks. Agent A;’s goal
is “White blocks are in slots 2,5,8,11 and 14 but not on the table; the blocks in slots 16
are swapped, and the blocks in slot 17 are swapped (i.e., each tower is reversed).” Agent
Ag’s goal is “Black blocks are in slots 1,4,7,10 and 13 but not on the table; the blocks in
slot 16 are swapped, and the blocks in slot 17 are swapped.”

Initial State
AN [[HE NN
13 14 15 16 17

A,'sgoal . .

L 1 [—— [—
1 2 3 13 14 15 16 17

. A, sgoal . . .
L]

o 1 [ 1 [ 1 ... 1 [ 1 [ ] 1 0
1 2 3 13 14 15 16 17

Figure 18: Semi-Cooperative Agreement in a Cooperative Situation

The stand-alone cost of both agents is: ¢(s — G;) = 26 = (5 x2)+ (2 x 8). Let’s assume
that w; = 26 is also the worth of each goal. The minimal cost joint plan that achieves both
agents’ goals has 7 parts:

e Cooperative swap in slot 17 in which each agent does one pickup and one putdown;

e The same swap in slot 16;
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e Iive duplications of the joint plan from Example 5. Each of those joint plans has a
role that costs 6 and a role that costs 2.

Thus the average cost of each agent’s role in the joint plan is 24, namely (2 x 2) +
(5 X £(6 + 2)). Since the stand-alone cost is 26, this situation is cooperative—each agent
welcomes the existence of the other. For both agents, the expected utility of the joint plan
is 2 (i.e., 26 — 24). This cooperative deal achieves both agents’ goals.

Can we find a semi-cooperative deal that is better? What if the agents only cooperated
on swapping the blocks in slots 16 and 17, and then tossed a coin to see who gets to fulfill his
own goal (leaving the other’s goal unsatisfied)? This semi-cooperative deal actually turns
out to be better for both agents.

Let the intermediate state ¢ be the state where the blocks in slots 16 and 17 are swapped,
and the other slots are unchanged. Each agent invests 4 operations as his part of the two
swaps. He then has a chance of % of continuing on his own to achieve his goal, and a chance
of % of losing the coin toss and having wasted his initial investment. If he wins the coin toss,
he will have an additional 10 operations (5 x 2), but achieve his goal of worth 26. Overall
utility will be 26 — 10 — 4, i.e., 12. If he loses the coin toss, he has just wasted his initial
investment of 4, so his utility is —4. The expected utility is the average of these two cases,
i.e., 4. This is better than the utility of 2 the agents got using the cooperative deal!

In other words, in this case, the agents would prefer not to guarantee themselves their
goal, and take a gamble with a semi-cooperative deal. Their expected utility doubles, if
they are willing to take a risk. So even in this cooperative situation, the agents benefit from
negotiating over semi-cooperative deals.

Now, it turns out that this is a borderline situation, brought about because w; is low. As
long as w; is high enough, any semi-cooperative deal that agents agree on in a cooperative
situation will be equivalent to a cooperative deal. If achieving your goal isn’t worth too much
to you (your profit margin is small), you might be willing to forgo guaranteed achievement
in exchange for a higher expected utility.

So semi-cooperative deals, used in a non-conflict situation, will sometimes result in better
agreements (when forgoing guaranteed goal achievement is beneficial), and will never result
in worse agreements. Clearly, it is worthwhile for agents to negotiate over semi-cooperative
deals, regardless of whether they are in cooperative, compromise, or conflict situations.

5.4 Unified Negotiation Protocols (UNP)

In this section, we will make the necessary generalizations so that agents can use semi-
cooperative deals in all types of encounters. We will call all product maximizing mechanisms
based on semi-cooperative deals “Unified Negotiation Protocols (UNP),” since they can be
used for conflict resolution, as well as for cooperative agreements.*

As mentioned above, we will need to generalize the previous definition of the utility
of a semi-cooperative deal, to enable UNPs. Before, we assumed (since we had a conflict
situation) that the final state would be of no benefit to the agent that lost the coin toss.

4. An earlier version of this subsection and the next two appeared in (Zlotkin & Rosenschein, 1991a). The
current treatment incorporates new material on multi-plan deals, recasts the protocols in the context of
domain theory, and alters the notation to correspond to the more general domain framework.
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Now, even though a semi-cooperative deal is being used, the final state might still satisfy
both agents’ goals, and not just the goal of the agent that wins the coin toss.

If (¢, J, q) is a semi-cooperative deal, then we’ll define f; to be the final state of the world
when agent ¢ wins the coin toss in state . f; = (t — G;)(t) € G;. The worth for agent i of
any state r, which we will write as W;(r), will be his goal worth w; if r is a goal state, and
0 otherwise. Now, we can revise our definition of utility for semi-cooperative deals:

Definition 12  Utility, (¢, J,¢) = ¢;(w; — c(t — G;);) + (1 — ¢i)wi(f;) — ¢(J);

The utility of a semi-cooperative deal (¢,.J,¢) for an agent is now defined to be the
expected worth of the final state minus the expected cost. The worth of the expected final
state, of course, depends on the weighting of the coin, and whether both possible final
states (or only one) are goal states for the agent. Similarly, the expected cost depends on
the weighting of the coin (whether the agent only participates in the first, joint, plan, or
also continues with the second, lone, plan).

The definition of utility given above is completely consistent with the earlier definition
of the utility of cooperative deals, and can be viewed as a generalization of that earlier
definition. In other words, if a cooperative deal (a mixed joint plan) is mapped into a
semi-cooperative deal (%, .J, ¢) using the transformation discussed above, then the definition
of utility for a mixed joint plan (Definition 9) and this definition of utility (Definition 12)
for a semi-cooperative deal yield the same number.

A sufficient condition for the negotiation set to be non-empty over semi-cooperative
deals is that agents’ worths be high enough, so that each agent would be able to achieve its
own goal alone:

Theorem 3 If for each agent v the worth of its goal is greater than or equal to his stand-
alone cost (i.e., Yi w; > ¢(s — (;)), then the negotiation set over semi-cooperative deals is
not empty.

Proof: To show that NS # (), it is sufficient to show that there is an individual rational
semi-cooperative deal. The existence of pareto-optimal deals among the individual rational
deals is due to the compactness of the deal space (since there is only a finite number of
agent operations, and the worth of agent goals is bounded). (s, A, ¢), where A is the empty
joint deal, is individual rational for any g¢. O

The above condition is sufficient, but is not necessary, for the negotiation set to be non-
empty. For example, consider again the situation given in Figure 16, but with the agents’
worths being equal to 8 (instead of 12). Neither agent can achieve its goal alone, and thus
the conditions of the theorem above are not satisfied. However, there is a perfectly good
semi-cooperative deal that gives both agents positive utility—they perform a joint plan that
swaps the blocks in slot 4, then flip a coin to see whether the block in slot 2 goes to slot 1
or 3. This mixed deal gives each agent an expected utility of 1. So the negotiation set is
not empty.

It turns out that if there is a semi-cooperative deal in the negotiation set, and one of
the agents, winning the coin toss, will bring the world into a state that satisfies both agents’
goals, then there exists another deal in the negotiation set with the same utility for both
agents in which the intermediate state already satisfies both agents’ goals.
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Theorem 4 For a semi-cooperative deal (t,J,q) € NS, if there exists an i such that f; €
G1 N Gy, then this semi-cooperative deal is equivalent to some cooperative deal.

Proof: There are two cases: both final states, or only one final state, is in G1 N G.

o If f1, fo € G1 NG5, then we can view the last step as performing a mixed joint plan
that moves the world from state t to a state in G7 N Gs.

c(t— Gh) =c(t = G1NGy) = et — Gy),

because if X C Y and (t — Y)(t) € X, then ¢(t — X) = ¢(t — Y). f1, fo are not
necessarily the same state, but this deal is equivalent to a deal where f; = f;. We
can look at the concatenation of the two mixed joint plans (the first being J from s
to ¢, the second ¢ — G4 N Gy), as a mixed joint plan P from s to G1 NGy, Pis a
cooperative deal that is equivalent to (¢, J, ¢), because

Utility,; (¢, J,q9) = qi(w; — c(t — Gi)) + (1 — ¢;)(w;) — ¢(J);
w; — (gic(t — Gi) + c(J);)
w; — ¢(P);
—  Utility,(P).

o If 1 € Gy NGy and fy € G N Gy, then agent 2 would prefer to lose the coin toss
at state t and let agent 1 achieve the goal for him without his spending any more.
The deal (t,J,1) is better for 1 and can only be better for 2 as well, so it dominates
(t,J,q); but (¢,J,q) € NS, so they are equivalent. (¢,.J,1) is equivalent to the mixed
joint plan P in which the agents perform the joint plan J until ¢, and then agent 1
performs the one-agent plan t — G N G5. P is a cooperative deal.

|

In other words, if there exists a semi-cooperative deal in the negotiation set that some-
times satisfies both agents’ goals (depending on who wins the coin toss), then there also
exists another semi-cooperative deal in the negotiation set that always satisfies both agents’
goals (equivalent to a cooperative deal). Even though semi-cooperative deals constitute a
superset of cooperative deals, no extra utility is derived from using semi-cooperative deals
if the agreement preserves mutual satisfaction of both agents (i.e., if it’s equivalent to a
cooperative deal).

In a cooperative situation, agents cannot extract more utility from a semi-cooperative
deal, unless they are willing to agree on a deal that will never satisfy both agents’ goals.
The example above (Section 5.3) is the prototype of that situation. Agents increase their
utility by using a semi-cooperative deal in a cooperative situation. They do this by forgoing
guaranteed mutual satisfaction. The above theorem implies that this is the only way they
can increase their utility with semi-cooperative deals.

5.5 Multi-Plan Deals

In semi-cooperative deals, we assume that the agents cooperate, flip a coin, then the winner
proceeds alone to achieve his goal. This arrangement only requires that the agents engage
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in “pre-flip cooperation.”

What if the agents were willing (or required) to also engage in
“post-flip cooperation”? Then, an entirely new dimension of agreements would be opened
up. In this section, we consider a kind of deal that exploits cooperation after the coin toss.

To illustrate the potential of this new kind of deal, consider the following encounter,

shown in Figure 19.

I nitial . A/'s u
State ’—‘ Goal .
[ I I J| L L L d|
1 2 3 1 2 3

[ 20
A,’s . .
[ | ]
[ M [T N [T J| [ T [T N [T J|
1 2 3 1 2 3

Figure 19: Post-Flip Cooperation can be Helpful

The initial state s of the world can be seen in Figure 19. A;’s goal is to swap the position
of the blocks in slot 3, but to leave the blocks in slot 2 in their initial position. As’s goal is
to swap the position of the blocks in slot 2, but to leave the blocks in slot 3 in their initial
position.

To achieve his goal alone, each agent needs to do at least 8 pickup or putdown operations.
Apparently, there is very little room for cooperation. Not only is there no final state that
satisfies both agents’ goals, there is no intermediate state (other than the initial state) to
which the agents can cooperatively bring the world, before tossing a coin (as in a semi-
cooperative deal).

Negotiating over semi-cooperative deals, agents will agree to flip a coin in the initial
state, and whoever wins the coin toss will by himself bring the world into his goal state
(at a cost of 8). Assume that the worth of each agent’s goal is 10. Then negotiating over
semi-cooperative deals brings each agent an expected utility of 1. This is a compromise
situation (alone in the world, each agent would have utility of 2).

What if the agents could reach the following agreement (as shown in Figure 20): they
flip a coin in the initial state. Whoever wins the toss gets his goal satisfied. However, no
matter who wins, the agents commit themselves to work together in a joint plan to achieve
the chosen goal.

Doing either swap jointly costs a total of 4 for the two agents (2 each). The agent that
wins the coin toss gets a utility of 10 — 2 (his goal is satisfied and he expends 2 in the
joint plan). The agent that loses gets a utility of —2 (he just expends 2 in the joint plan
that achieves his opponent’s goal). If each agent has an equal chance of winning the coin
toss, his expected utility will be 3. This is better than the semi-cooperative deal that gave
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Figure 20: Multi-Plan Deal

the agents each a utility of 1. It’s even better than the stand-alone utility of 2 that the
agents could get if they were alone! Suddenly, the situation has become cooperative. The
agents welcome each other’s existence, even though their goals have nothing in common.
There is no goal state that satisfies both agents; there are no subgoals that the agents have
in common; there are no positive interactions between the agents’ stand-alone plans. The
goals are completely decoupled, and yet the situation is cooperative.

The agreement above, of course, requires “post-flip cooperation.” With semi-cooperative
deals, the “pre-flip cooperation” contributed potentially to either agents’ benefit—either
agent might win the coin toss and exploit the early work. But with this new deal type, even
the agent who loses the coin toss will be required to expend effort, knowing that it is just
for the benefit of the other agent.

If agents will commit themselves to post-flip cooperation, then this new deal type is
possible. Agents could then negotiate over deals that are pairs of mixed joint plans. We
will call these new deals multi-plan deals. By committing to post-flip cooperation, agents
enlarge the space of agreements, and this potentially improves their expected utility.

Definition 13

e A Multi-Plan Deal is (61,82, q), where each 6; is a mized joint plan that moves the
world to a state that satisfies i’s goal. 0 < ¢ < 1 € R is the probability that the agents
will perform 61 (they will perform 6z with probability 1 — q).

o Assuming j is i’s opponent, we have Utility;(61,62,9) = q(w; — Cost;(6;)) — (1 —
q)Cost;(6;).

So a multi-plan deal has agents agreeing on two joint plans, and deciding which to exe-
cute by tossing a coin. This deal can be visualized informally in Figure 21, as in Section 4.4
above. A triple line represents a joint plan, carried out by multiple agents.

Note that here the symmetric abilities assumption from Section 2.4 may not be essential
(i.e., with the multi-plan deal type agents may not need to be able to perform the same
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Figure 21: Multi-Plan Deal

plans at equivalent cost). The two mixed joint plans that comprise a multi-plan deal might
be pure (i.e., p can be 0 or 1) without overly restricting the agents’ ability to divide the
utility accurately, since the agents have the additional ¢ probability that they can adjust.

Just as semi-cooperative deals can be used in cooperative situations, multi-plan deals can
also be used in cooperative situations (since, as we will see below, they are a generalization
of semi-cooperative deals). All that is needed is to enhance the definition of multi-plan deal
utility appropriately, as was done for semi-cooperative deals (Definition 12).

Consider the following example, which shows the increased utility available for the agents
to share when they negotiate over multi-plan deals instead of over mixed joint plans.

R

Multi-plan deal
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o

e 3
i "
A A

Figure 22: Relationship of the Multi-Plan Deal Type to Mixed Joint Plans

The initial state s of the world can be seen in Figure 22. A;’s goal is to swap the position
of the blocks in slot 3, but to leave the blocks in slot 2 in their initial position (there is only
one state that satisfies this goal; call it f1). A’s goal is to swap the position of the blocks
in slot 2, but to leave the blocks in slot 3 in their initial position ( f2).

To achieve his goal alone, each agent needs to do at least 8 pickup or putdown operations
(each with a cost of 1). Assume that A;’s worth function assigns 10 to f; and 0 to all other
states, and that Ay’s worth function assigns 10 to f; and 0 to all other states. In this case,
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the negotiation set includes the deals (s — f1,A): 1 and (A,s — f2):0. Using the protocol
mentioned above, the agents will break the symmetry of this situation by flipping a coin.
The utility of each agent from this deal is 1 = £(10 — 8).

Negotiation over the multi-plan deal type will cause the agents to agree on (61,82): %,
where 6; is the mixed joint plan in which both agents cooperatively achieve ¢’s goal. The
best joint plan for doing the swap in one of the slots costs 2 pickup/putdown operations
for each agent. The utility for each agent from this deal is 3 = (3(10 — 2) + $(-2)). By
negotiating using the multi-plan deal type instead of mixed joint plans, there is more utility
for the agents to share, 6 instead of 2.

5.6 The Hierarchy of Deal Types — Summary

There exists an ordering relationship among the various kinds of deals between agents that
we have considered; we call this relationship the “deal hierarchy.” At the bottom of the
hierarchy are pure deals and mized deals. These first two types of deals in the hierarchy can
be used only in cooperative situations. For negotiation in general non-cooperative domains,
additional types of deals were needed.

Next in the hierarchy come semi-cooperative deals. As we have shown, semi-cooperative
deals are a superset of mixed deals. Even in cooperative situations, there may be some
semi-cooperative deals that do not achieve all goals, but which dominate all other mixed
joint plans that do achieve both agents’ goals.

Finally, at the top of the hierarchy, come multi-plan deals, which are a superset of semi-
cooperative deals. This is the most general deal type in our deal hierarchy. This deal type
can also serve as the foundation for a class of Unified Negotiation Protocols.

In summary, our hierarchy looks as follows:

{J}y C{J:p} C{t,6,q} C{(61,682):q}

Pure Deals C Mixed Deals C Semi-Cooperative Deals C Multi-Plan Deals

6. Unbounded Worth of a Goal—Tidy Agents

In Section 4.3, we assumed that each agent assigns a finite worth to achieving his goal,
which is the upper bound on cost that he is willing to spend to achieve the goal. What if
such an upper bound does not exist? There may be situations and domains in which there is
no limit to the cost that an agent is willing to pay in order to achieve his goal-—he would be
willing to pay any cost. Similarly, there may be situations when an agent is simply unable,
by design, to evaluate the worth of its goal. However, even though the worth is unbounded
or unevaluable, the agent is still interested in expending the minimum necessary to achieve
its goal. The agent gets more utility when it spends less, and can determine an ordinal
ranking over all possible deals, even though it has difficulty assigning cardinal values to the
utility derived from those deals.

Nevertheless, we really are interested in having cardinal values that can be used in our
negotiation mechanisms. Qur whole approach to negotiation is founded on the existence of
these inter-agent comparable cardinal utility functions. When worth is unbounded for both
agents, we seem to be deprived of the tool on which we have depended.
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We would like to identify a different baseline by which to define the concept of utility.
Originally, above, we used the baseline of “stand-alone cost,” ¢(s — ), taking the utility
of a deal for an agent to be the difference between the cost of achieving the goal alone and
the agent’s part of the deal. Then, we used the baseline of “worth” in a similar manner,
linearly transforming the utility calculation. Utility of a deal for an agent was then the
difference between the maximum cost he was willing to pay and the agent’s part of the
deal. When worth is unbounded, however, that linear transformation obviously cannot be
used.

In other work (Zlotkin & Rosenschein, 1993b), we present an alternative baseline that
can satisfy our desire for symmetry, fairness, simplicity, stability, and efficiency. It turns
out to constitute the minimum sufficient baseline for agents to reach agreements.

The minimum cost that an agent must offer to bear in a compromise encounter, where
neither agent has an upper bound on its worth, is that which leaves the other agent with
less cost than the latter’s stand-alone cost. In other words, the first agent will offer to
“clean up after himself,” to carry out a sufficient portion of the joint plan that achieves
both goals such that the other agent’s remaining part of the joint plan will cost him less
than his stand-alone cost. We call an agent who is willing to clean up after himself a tidy
agent; the formal definition appears elsewhere (Zlotkin & Rosenschein, 1993b). It is shown
that in any joint-goal reachable encounter (i.e., there exists a joint plan that achieves both
agents’ goals), if both agents are tidy, the negotiation set is not empty.

7. Negotiation with Incomplete Information

All the mechanisms considered in the sections above can be straightforwardly implemented
only if both agents have full information about each other’s goals and worths. In many
situations, this won’t be the case, and in this section we will examine what happens to our
negotiating mechanisms in State Oriented Domains when agents don’t necessarily have full
information about each other.

We consider incomplete information about goals, and incomplete information about
worths, as two separate issues. An agent, for example, might have particular information
about worth, but not about goals, or vice versa. There are thus four possible cases, where
worths are known or not known, combined with goals that are known or not known. In
previous sections, we considered the case where both goals and worth were known. In this
section we consider two of the other three situations, where neither goals nor worth are
known, and where goals are known and worth is not. We do not analyze situations where
worth is known but the goals are not.

The general conclusion is that a strategic player can gain benefit by pretending that its
worth is lower than it actually is. This can be done directly, by declaring low worth (in
certain mechanisms), or by declaring a cheaper goal (in the case where stand-alone cost is
taken to be the implicit worth baseline).

In this first section, we consider the space of lies that are available in different types of
interactions, and with different types of mechanisms.

There are several frameworks for dealing with incomplete information, such as incre-
mental goal recognition techniques (Allen, Kautz, Pelavin, & Tenenberg, 1991), but the

framework we explore here is that of a “—1 negotiation phase” in which agents simultane-
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ously declare private information before beginning the negotiation (this was also introduced
elsewhere (Zlotkin & Rosenschein, 1989, 1993a) for the case of TODs). The negotiation then
proceeds as if the revealed information were true. In the TOD case, we have analyzed the
strategy that an agent should adopt for playing the extended negotiation game, and in
particular, whether the agent can benefit by declaring something other than his true goal.
Here, we will take a similar approach, and consider the —1-phase game in State Oriented
Domains. Will agents benefit by lying about their private information? What kinds of
mechanisms can be devised that will give agents a compelling incentive to only tell the
truth?®

A negotiation mechanism that gives agents a compelling incentive to only tell the truth
is called (in game theory) incentive compatible. Although we are able to construct an
incentive compatible mechanism to be used when worths are unknown, we are unable to
construct such a mechanism in State Oriented Domains to be used when the other’s goals
are unknown.

7.1 Worth of a Goal and its Role in Lies

We again assume that agents associate a worth with the achievement of a particular goal.
Sometimes, this worth is exactly equal to what it would cost the agent to achieve that goal
by himself. At other times, the worth of a goal to an agent exceeds the cost of the goal to
that agent. The worth of a goal is the baseline for calculating the utility of a deal for an
agent; in this section, we will always assume that worth is bounded.

The worth of a goal is intimately connected with what specific deals agents will agree on.
First, an agent will not agree on a deal that costs him more than his worth (he would have
negative utility from such a deal). Second, since agents will agree on a deal that maximizes
the product of their utilities, if an agent has a lower worth, it will ultimately reduce the
amount of work in his part of the deal. Thus, one might expect that if agent A; wants to
do less work, he will try to fool agent A; into thinking that, for any particular goal, A;’s
worth is lower than it really is. This strategy, in fact, often turns out to be beneficial, as
seen below.

Let’s consider the following example from the Slotted Blocks World.

The initial state can be seen at the left in Figure 23. (7 is “The Black block is on a
Gray block which is on the table at slot 2” and G5 is “The White block is on a Gray block
which is on the table at slot 17.

To achieve his goal alone, each agent has to execute four PickUp and four PutDown
operations that cost (in total) 8. The two goals do not contradict each other, because there
exists a state in the world that satisfies them both. There also exists a joint plan that moves
the world from the initial state to a state that satisfies both goals with total cost of 8—one
agent lifts the black block, while the other agent rearranges the other blocks suitably (by
picking up and putting down each block once), whereupon the black block is put down. The
agents will agree to split this joint plan with probability %, leaving each with an expected
utility of 4.

5. Some of these issues, in everyday human contexts, are explored in (Bok, 1978). Our immediate motivation
for discouraging lies among agents is so that our negotiation mechanisms will be efficient.

203



ZLOTKIN & ROSENSCHEIN

Initial State A/'s .

[t 1 [ 1 [ d| [t T [ T [ 1|
1 2 3 1 2 3
“ Joint plan
A)s ®
goal
[ I J d| [ |
1 2 3 1 2 3

Figure 23: Agents Work Together Equally

7.2 Beneficial Lies with Mixed Deals

What if agent Ay lies about his true goal above, claiming that he wants a black block on
any other block at slot 27 See Figure 24. If agent 4; were alone in the world, he could
apparently satisfy this relaxed goal at cost 2. Assuming that agent A, reveals his true goal,
the agents can only agree on one plan: agent Ay will lift a block (either the white or black
one), while agent Ay does all the rest of the work. The apparent utility for agent A; is then
0 (still individual rational), while agent Ay has a utility of 2. In reality, agent Ay has an
actual utility of 6. Agent A;’s lie has benefited him.
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Figure 24: Agent Ay Relaxes his Goal
This works because agent Ay is able to reduce the apparent cost of his carrying out his

goal alone (which ultimately causes him to carry less of a burden in the final plan), while
not compromising the ultimate achievement of his real goal. The reason his real goal is
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“accidentally” satisfied is because there is only one state that satisfies agent As’s real goal
and agent Ay’s apparent goal, coincidentally the same state that satisfies both of their real
goals.

The lie above is not agent A1’s only beneficial lie in this example. What if agent A4
claimed that his goal is “Slot 3 is empty and the Black block is clear”? See Figure 25.
Interestingly, this goal is quite different from his real goal. If agent A; were alone in the
world, he could apparently satisfy this variant goal at cost 4. The agents will then be forced
again to agree on the deal above: A; does two operations, with apparent utility of 2, and
agent A, does six operations, with utility of 2. Again, agent Ay’s actual utility is 6.

o
@ 2 3 1 2
L

l
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K

Figure 25: Agent A; Makes Up an Entirely New Goal

1 2 3

In Task Oriented Domains (Zlotkin & Rosenschein, 1989, 1993a), we also saw something
similar to this lying about a goal. There, for example, an agent could hide a task, and lower
the apparent cost of its stand-alone plan. Similarly, in the first lie above the agent in the
Blocks World relaxed his true goal, and lowered the apparent cost of his stand-alone plan
(and thus of his worth). The set of states that will satisfy his relaxed goal is then a superset
of the set of states satisfying his true goal.

However, there is a major difference between lying in SODs and lying in TODs: in the
latter, there can never be any “accidental” achievement of hidden goals. The lying agent
will always find it necessary to carry out the hidden goal by himself, and this is the main
reason why in subadditive TODs hiding goals is not beneficial. In SODs, a hidden goal
might be achieved by one’s opponent, who carries out actions that have side effects. Thus,
even when you hide your goal, you may fortuitously find your goal satisfied in front of your
eyes.

This situation can be visualized informally in Figure 26, as other SOD interactions were
in Section 4.4 above. In the figure, agent A;’s expanded apparent goal states are represented
by the thicker oval and labeled G|. Note that the expansion of the goal states is toward
the initial state s. This is the meaning of lowering one’s apparent cost, and is necessary for
a beneficial lie.
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Figure 26: Expanding Apparent Goal States with a Lie

Alternatively, the agent can manufacture a totally different goal for the purposes of
reducing his apparent cost, as we saw in Figure 25. Agent Ay did this when he said he
wanted slot 3 empty and the Black block clear. Consider Figure 27, where agent Aj’s
altered apparent goal states are again represented by the thick outline and labeled Gf.
Note again, that the expansion of the goal states is toward the initial state s.

Figure 27: Altering Apparent Goal States with a Lie

The agent then needs to make sure that the intersection of his apparent goal states and
his true goal states is not empty. Although this is a necessary precondition for a successful
lie, it is of course not a sufficient precondition for a successful lie. Both of the lies in the
above example will be useful to agent A; regardless of the negotiation protocol that is being
used: pure deal, mixed deal, semi-cooperative deal, or multi-plan deal.

7.3 Beneficial Lies with Semi-Cooperative Deals

It might seem that when agents are in a conflict situation, the potential for beneficial lies
is reduced. In fact, beneficial lying can exist in conflict situations.

“Conflict” between agents’ goals means that there does not exist a mixed joint plan
that achieves both goals and is also individual rational. This is either because such a state
does not exist, or because the joint plan is too costly to be individual rational. Even when
conflict exists between goals, there might be common subgoals, and therefore a beneficial
lie may exist.
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Taking Advantage of a Common Subgoal in a Conflict Situation: Let the initial
state of the world be as in Figure 28. One agent wants the block currently in slot 2 to be
in slot 1; the other agent wants it to be in slot 3. In addition, both agents share the goal of
swapping the two blocks currently in slot 4 (i.e., reverse the stack’s order).

The cost for an agent of achieving his goal alone is 10. Negotiating over the true goals
using semi-cooperative deals would lead the agents to agree to do the swap cooperatively
(at cost of 2 each), and then flip a coin, with a weighting of %, to decide whose goal
will be individually satisfied. This deal brings them an overall expected utility of 2 (i.e.,
(10— 2) — 2).

Figure 28: Taking Advantage of a Common Subgoal

What if agent Ay lies and tells agent A, that his goal is: “The Black block is clear at
slot 1 and the White block is on the Gray block”? Agent A; thus hides the fact that his
real goal has the stack of blocks at slot 4, and claims that he does not really care if the
stack is at slot 2, 3 or 4. The cost for agent Ay of achieving his apparent goal is 6, because
now he can supposedly build the reversed stack at slot 3 with a cost of 4. Assuming that
agent A, reveals his true goal, the agents will still agree to do the swap cooperatively, but
now the weighting of the coin will be %. This deal would give agent A; an apparent utility
of 12 (i.e., 2(8 — 2) — 2) which is also Ay’s real utility (i.e., 2(10 — 2) — 2). A;’s real utility,
however, is 22 = 2(10 — 2) — 2. This lie is beneficial for A;.

The situation is illustrated in Figure 29, where agent A;’s lie modifies his apparent goal
states so that they are closer to the initial state, but the plan still ends up bringing the

world to one of his real goal states.

In the example above, the existence of a common subgoal between the agents allowed
one agent to exploit the common subgoals (assuming, of course, that the lying agent knew
its opponent’s goals). The lying agent relaxes his true goal by claiming that the common
subgoal is mainly its opponent’s demand—as far as he is concerned (he claims), he would
be satisfied with a much cheaper subgoal. If it is really necessary to achieve the expensive
subgoal (he claims), more of the burden must fall on his opponent.
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Figure 29: Lying in a Conflict Situation

One might think that in the absence of such a common subgoal, there would be no
opportunity for one agent to beneficially lie to the other. This, however, is not true, as we
see below.

7.4 Beneficial Lies with Multi-Plan Deals

Another Example of Beneficial Lying in a Conflict Situation: The initial state s
can be seen in Figure 30, similar to the example used in Section 5.5 above. A;’s goal is
to reverse the blocks in slot 2, and to leave the blocks in slot 1 in their initial position.
Ag’s goal is to reverse the blocks in slot 1, and to leave the blocks in slot 2 in their initial
position. To achieve his goal alone, each agent needs to do at least 8 PickUp/PutDown
operations. This is a conflict situation.

Figure 30: Example of Interference Decoy Lie

Negotiation over multi-plan deals will cause the agents to agree on (61, 62): %, where §;
is the mixed joint plan in which both agents cooperatively achieve ¢’s goal. The best joint
plan for doing the reverse in either one of the slots costs 2 PickUp/PutDown operations for
each agent. Each agent’s utility from this deal is 2 = (1(8 —2) — 3(2)).
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Agent Ay might lie and claim that his goal is to reverse the blocks in slot 1 and leave the
blocks in slot 2 in their initial position (his real goal) OR to have the white block be alone
in slot 2. It costs Ay 6 to achieve his apparent goal alone. To do the reverse alone would
cost him &8, and thus to achieve the imaginary part of his goal is cheaper. The agreement
will be (61, 62): %, where §6; is again the mixed joint plan in which both agents cooperatively
achieve i’s goal. It turns out to be cheaper for both agents to cooperatively carry out
Aq’s real goal than it is to cope with A;’s imaginary alternative. A;’s apparent utility will
be 12 = 2(6 — 2) — 2(2). This is also Ay’s utility. Ay’s actual utility, however, will be
22 = (8 — 2) — 2(2), which is greater than the unvarnished utility of 2 that A; would get
without lying. So even without a common subgoal, A; had a beneficial lie. Here we have
been introduced to a new type of lie, a kind of “interference decoy,” that can be used even
when the agents’ have no common subgoals.

8. Incomplete Information about Worth of Goals

Consider the situation where two agents encounter one another in a shared environment.
Their individual goals are commonly known (because of prior knowledge about the type of
agent, some goal recognition process, etc.), as well as the cost of achieving those goals, were
each agent to be alone in the world. In addition, there is no conflict between these goals.
There exists some non-empty set of states that satisfies both agents’ goals.

The agents have upper bounds on their worth, but (in contrast to the public goals)
each upper bound is private information, not known to the other agent. This is a common
situation; as agents queue up to access a common resource, their goals will often be self-
evident. For example, two agents approaching a narrow bridge from opposite ends may
know that the other wants to cross, but not know what the crossing is worth for the other
(e.g., how long it is willing to wait). The agents need to agree on a deal (for example, who
will go first, and who will wait).

One simple way to design a negotiation mechanism that handles the lack of information
is to have agents exchange private information prior to the actual negotiation process. This
pre-negotiation exchange of information is another variant on the —1-phase game mentioned
above. In the current case, agents exchange private information about worth. In this section,
we only consider the situation where agents are negotiating over mixed joint plans.

One question, then, is how should agents play this —1-phase game to best advantage?
As was mentioned above in Sections 4.4 and 7.2, an agent generally has an incentive to
misrepresent the worth of his goal by lowering it—the less an agent is willing to pay, the
less it will have to pay in a utility product maximizing mechanism (PMM). However, if
everyone lowers their worth they may not be able to reach any agreement at all, whereas
if they declared their true worth agreement would have been reached. Agents might lower
their worth too much and be driven to an inefficient outcome. This is an instance of the
free rider problem. FEvery agent is individually motivated to lower his worth, and have
someone else carry more of the burden. The group as a whole stands to suffer, particularly
if agreements are not reached when they otherwise would have been.

We can exert control over this tendency to lower one’s apparent worth by careful design
of the post-exchange part of the negotiation mechanism. We are interested in designing a
mechanism that satisfies our desire for efficient, symmetric, simple, and stable outcomes. In
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our research on TODs, we managed (in certain cases) to provide a post-exchange mechanism
that satisfied all these attributes, and was also found to be incentive compatible—the agents’
best strategy was to declare their true goals. In this section, we introduce two mechanisms
for private-worth SODs, one “strict,” the other “tolerant,” and analyze their affects on the
stability and efficiency of negotiation outcomes. The strict mechanism turns out to be more
stable, while the tolerant mechanism is more efficient.

8.1 Strict and Tolerant Mechanisms

There are several cases that need to be addressed by any mechanism, and can be treated
differently by different mechanisms. For example, what should happen if one agent declares
his worth as being lower than his stand-alone cost (i.e., apparently he would not achieve
his goal were he to be alone, it is not worth it to him)? Should the other agent then still
be allowed to offer a deal, or is the negotiation considered to have failed at this point?
Both mechanisms that we present below start the same way. The agents simultaneously
declare a worth value, claimed to be the worth they assign to the achievement of their goal.

¢ Both goals are apparently achievable alone: If both agents declare a worth
greater than their stand-alone cost (which is commonly known), the negotiation pro-
ceeds as if the worth declarations were true. The agents then use some product
maximizing mechanism over the negotiation set of mixed joint plans, with their de-
clared worths as the baseline of the utility calculations. The result will be an equal
division of the apparent available utility between them.

¢ Only one agent’s goal is apparently achievable alone: If one agent declares a
worth greater than stand-alone cost, and the other doesn’t, then the former agent is
free to decide what to do. He can either propose a take-it-or-leave-it deal to the other
agent (if it’s refused, he’ll carry out his own goal alone), or he can simply bypass the
offer and just carry out his own goal. Since his declared worth is greater than his
stand-alone cost, it is rational for him to accomplish his goal by himself.

¢ Both agents’ goals are apparently unachievable alone: If both agents declare
worths lower than their stand-alone costs, our two mechanisms differ as to how the
situation is handled:

— Strict Mechanism: There is a conflict, and no actions are carried out. The
agents derive the utility of the conflict deal.

— Tolerant Mechanism: The agents continue in their negotiation as in the first
case above (i.e., they use mixed joint plans, and divide the apparent available
utility between them). Even though both agents claim to be unwilling to achieve
their goals alone, it may certainly be the case that together, they can carry out
a rational joint plan for achieving both of their goals.

The tolerant mechanism gives the agents a “second chance” to complete the negotiation
successfully and reach a rational agreement, whereas the strict mechanism does not forgive
their low worth declarations, and “punishes” them both by causing a conflict. Of course, if
both agents’ true worths are really lower than their stand-alone costs, the strict mechanism
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causes an unnecessary failure (and is thus inefficient), while the tolerant mechanism still
allows them to reach a deal when it is possible. We will see below, however, that tolerance
can sometimes lead to instability.

Our approach through the rest of this section will be to consider the various relationships
among the two agents’ worth values, their cost values, the interaction types, and the joint
plans that achieve both agents’ goals. For each such relationship, we’ll analyze the strategies
available to the agents. As mentioned above, we are here only considering situations where
both agents’ goals are achievable by two-agent mixed joint plans (e.g., there are reachable
states that satisfy both agents’ goals).

The idea of tidy agents and an agent cleaning up after himself, introduced above in
Section 6, was used in situations where agents were willing to pay any price to achieve their
goals—their worths were unbounded. There, worth could not be used as a baseline for the
utility calculation. Instead, we found that there was a “minimal sufficient” value to the
utility baseline that gave rise to an efficient and fair mechanism. A similar idea will also
be useful in our analysis below. The tidy agent baseline, explored above, also serves as a
minimal sufficient declaration point when worths are private information.

8.2 The Variables of Interest

In general, an agent would like to declare as low a worth as possible, but without risking a
conflict. The lower the declaration of worth, the smaller his share of the joint plan will be.
Unfortunately for the agent, if his declared worth is too low, it may eliminate the possibility
of reaching an agreement. A necessary and sufficient condition for the negotiation set not
to be empty is that the sum and min conditions, from Section 4.1, will hold (given the
declarations of worth). Since we assume that there is a joint plan that achieves both
agents’ goals, agreement will still be possible if among those plans there is at least one that
satisfies the sum and min conditions.

There are several variables that will play a role in our analysis below. First, each agent
i has a stand-alone cost (known to all, and dependent only on his goal), denoted by «¢;.
Second, each agent has a true worth (privately known) that he assigns to the achievement
of his goal, denoted by w;. T is the total cost of the minimal (total cost) joint plan that
achieves both agents’ goals. M, is the cost of the minimal role among all such joint plans
of cost T'. Below, we will analyze all possible configurations of these variables.

The analysis is presented according to each interaction type other than conflict, i.e., sym-
metric cooperative, non-symmetric cooperative/compromise, and symmetric compromise.

For each type, we will consider three subcases that depend on the relationships between ¢;,
w;, T', and M,.

8.3 Symmetric Cooperative Situation

In symmetric cooperative situations, one strategy that an agent can use is to declare as his
worth the minimum between his true worth, and the maximum of his stand-alone cost and
the minimal role in the joint plan:

Min-Sufficient Strategy = min(w;, max(c;, M,)).
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The motivation here is that the agent wants to declare the minimal worth sufficient for
there to be an agreement. Declaring ¢; satisfies the sum condition, but to make sure that
it also satisfies the min condition, the agent must declare max(¢;, M,). To make sure that
this declaration is individual rational, he must not make a declaration greater than his true
worth, w;; thus, he takes the minimum between w; and the (¢;, M, ) maximum.

The Min-Sufficient Strategy is only one possible strategy that might be adopted. How-
ever, if both agents adopt it, the strategy is in equilibrium with itself (in most cases), and
agreement is guaranteed. We will analyze the characteristics of this strategy below in six
cases.

8.3.1 BoTH GOALS ARE ACHIEVABLE ALONE

In this situation (as shown in Figure 31), both agents would be able to achieve positive
utility if the other agent were not around, and they achieved their stand-alone goal by

themselves.
T
Equilibrium Point

W1
[ ] conflict

C1 A1 decides

Mr [ | Negotiation
B A2 decides

Mr c2 Tw2

Figure 31: Both Goals are Achievable Alone

The diagram in Figure 31 describes, in a sense, the game in normal form. Fach agent
can declare as its worth any number from 0 to infinity. The outcome depends on the two
numbers declared; every point in the plain is a possible result. The colors of the regions
denote the types of outcomes.

Note, for example, that if agent A; declares less than ¢y, while agent A, declares more
than ¢y, the outcome is that A, will decide what to do (offering Ay a take-it-or-leave-it deal,
or going it alone). If A; and Az both offer too little (so that the sum is less than T'), they
will reach conflict. Because we assume the agents are rational, we only consider the areas
in the plain framed by wy and wy (rational agents would not declare a worth greater than
their true worths).

The difference between the Strict and Tolerant mechanisms mentioned above is the color
of the triangle to the lower left of the ¢y /¢y point. With the Strict mechanism, it would be
white (conflict), while with the Tolerant mechanism it is still a region that allows subsequent
negotiation to occur. The only point that is in equilibrium in both mechanisms is the ¢y /¢
point, which is reached by the Min-Sufficient Strategy given above. Thus, that strategy is
both stable and efficient in both Strict and Tolerant mechanisms in this situation.
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8.3.2 ONE GOAL IS ACHIEVABLE ALONE

Assume that we have the situation shown in Figure 32, where only one agent would be able
to achieve positive utility if the other agent were not around (though they both ultimately
can benefit from the other’s existence, one more than the other).

T
Equilibrium Point
W1
[ ] conflict
Cl Al decides
Mr I Negotiation
I A2 decides
Mr w22 T

Figure 32: One Goal is Achievable Alone

We have a phenomenon similar to that in Section 8.3.1. The negotiation triangle to the
lower left of ¢;/wy will be white (conflict) in the Strict mechanism and negotiable in the
Tolerant mechanism. In both mechanisms, the ¢y /w9 point is in equilibrium, which is the
point that results if both agents play the Min-Sufficient Strategy. Again, that strategy is
both stable and efficient in both Strict and Tolerant mechanisms in this situation.

8.3.3 BorH GoALs ARE NOT ACHIEVABLE ALONE

Now consider the situation as shown in Figure 33, where neither agent could achieve positive
utility were it alone in the world—the only way to achieve their goals is by cooperating.

T
Resulting
Non-equilibrium Point
[ ] conflict
Cl i
Wi ~ Al decides
Mr [ ] Negotiation
B A2 decides

Mr W2 C2 T

Figure 33: Both Goals are Not Achievable Alone
Again, the negotiation triangle to the lower left of wy/w, will be white (conflict) in the

Strict mechanism, and no agreement can be reached in any situation (the whole plain is, in
fact, white). Though the Min-Sufficient Strategy is not efficient with the Strict mechanism,
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it is stable. With the Tolerant mechanism, the Min-Sufficient Strategy is efficient (it results
in the wy/w;y point), but it unfortunately is not stable—assuming that one agent declares
w1, the other agent can benefit by declaring T' — wq instead of ws,.

In fact, the agents do not actually know what situation they are in (the one in Figure 32
or Figure 33), so guaranteed beneficial divergence from the equilibrium point would really
require total knowledge of the situation and what your opponent is playing. Thus, although
the Min-Sufficient Strategy is not stable, agents may be unlikely to diverge because of
real-world constraints on their knowledge.

8.4 Non-Symmetric Cooperative/Compromise Situation

In this section we continue our analysis into situations where for one agent, the situation is
cooperative, while for the other, it is a compromise situation. We will continue to analyze
the case where both agents use the Min-Sufficient Strategy. Agreement can only be reached
when the compromising agent contributes more than his stand-alone cost to the joint plan;
this is because the minimal role is greater than his stand-alone cost. The only way for
agents to reach an agreement is when the compromising agent is willing to do more than
its stand-alone cost—otherwise, there will be a conflict.

8.4.1 COMPROMISE IS SUFFICIENT

In the situation described by Figure 34, the true worth for the compromising agent (wsz) is
greater than both the minimal role and ¢,.

Equilibrium Point

I

conflict
A1 decides
Negotiation

A2 decides

C2 Mr W2 T

Figure 34: Compromise is Sufficient

It is sufficient for the compromising agent to declare M, as his true worth. If he declared
less than that, and the other agent declared more than ¢, they can reach conflict; by
declaring M, , he guarantees that his goal will be achieved. The diagram is the same for
both the Strict and Tolerant Mechanisms. The Min-Sufficient Strategy brings both agents
to the ¢1 /M, point, which is both a stable and efficient result (for both mechanisms).
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8.4.2 CaN COMPROMISE, BUT NoT ENOUGH

Consider the situation, portrayed in Figure 35, where wy is less than M,, and it is not
rational for agent A, to compromise and declare a worth greater than wy. The Min-
Sufficient Strategy brings the agents to the ¢y /wy point, which is a conflict.

T
W1
C1
[ ] conflict
A1l decides
Mr [ | Negotiation
I A2 decides
C2W2Mr T

Figure 35: Can Compromise, But Not Enough

The picture is identical for both the Strict and Tolerant mechanisms. If the agents
use the Min-Sufficient Strategy, the resulting point (¢1/wz) is not efficient, even though
it is stable.® However, if we enhanced the mechanism with conflict-resolution techniques,
and allowed the agents to negotiate over multi-plan deals from Section 5.5 (or even semi-
cooperative deals from Section 5.3), we conjecture that the result ¢q/wy; would be both
stable and efficient. That enhancement, however, is beyond the scope of the work described
in this paper.

8.4.3 No REasoN ToO COMPROMISE

In the situation shown in Figure 36, the non-compromising agent A; cannot achieve his
goal alone. The Min-Sufficient Strategy will have him declare something less than ¢; (either
wy or M, ), and the result will be that agent A, will have the option to decide on what to
do—and the only reasonable decision will be for A3 to achieve his goal alone (there is no
reason to compromise).

This result is both efficient and stable, in both the Strict and Tolerant mechanisms.

8.5 Symmetric Compromise Situation

In this section we continue our analysis into situations where for both agents, they are in
a compromise situation. Both agents will have to do more than their stand-alone costs in
order to achieve both goals.

6. Conflict is not efficient because the result in which one agent achieves his goal, rather than both agents
doing nothing, would be more efficient.
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T Equilibrium Point

N

w1l
[ ] conflict

A1 decides

Mr
I nNegotiation
I A2 decides

Cc2 Mr W2 T

Figure 36: No Reason to Compromise

In this section, we will propose another strategy that agents could use, namely the
Min-Concession Strategy:

T —
Min-Concession Strategy = min(w;, (¢; + y))

In this situation, the agent is choosing to propose (as his true worth) more than his
stand-alone cost, to ensure that an agreement can be reached. However, he would like to
propose the minimal sufficient concession, just enough to enable an agreement. The Min-
Concession Strategy has both agents make the same concession. The overall strategy that we
are analyzing (and that covers all cases in this section) is to use the Min-Concession Strategy
in symmetric compromise situations, but otherwise to use the Min-Sufficient Strategy (as
presented above). Agents know which kind of situation they are in (and thus what strategy
to use) because stand-alone costs are common knowledge.

8.5.1 AGENTSs CaN COMPROMISE EQUALLY

If agents are in a situation where both can compromise equally (as shown in Figure 37),
and they both use the Min-Concession Strategy, they end up at the point (¢; + A)/(c2+ A)
(where A = (T — ¢; — ¢3)/2). This point is both efficient and stable, under both the Strict
and Tolerant mechanisms.

8.5.2 NON-SYMMETRIC COMPROMISE, BUT (GOALS CAN BE ACHIEVED

If agents are in a symmetric compromise situation, but one in which one agent needs to
compromise more than the other (as in Figure 38), the use of the Min-Concession Strategy
results in the point (¢1 + A)/wq. This point is a conflict, and is unfortunately neither stable
nor efficient.

The result is not stable because A; could make a greater compromise and benefit from
it. The result is not efficient because even if only one agent could achieve its goal, that
would be superior to the conflict outcome. It is not difficult to imagine other strategies that
would lead the agents to efficient solutions (e.g., declare T' — ¢; for each agent ¢, as a Tidy
Agent would do in Section 6), but they would not be stable, either. On the other hand, if
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T Equilibrium Point
W1

[ ] conflict

Cl+A A1l decides

C1l

I Negotiation
Mr

I A2 decides

Mr C2 C2+A W2 T

Figure 37: Agents Can Compromise Equally

-
w1
[ ] conflict
CL+A A1 decides
c1
Mr [ | Negotiation
I A2 decides

Mr C2W2C2+A T

Figure 38: Non-Symmetric Compromise, but Goals can be Achieved
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the negotiation mechanism is enhanced with conflict-resolution techniques (such as multi-
plan deals or semi-cooperative deals), we conjecture that the Min-Concession Strategy will
be both stable and efficient. This enhancement, however, is also beyond the scope of the
work described in this paper.

8.5.3 ONE AGENT CaANNOT COMPROMISE

Consider the situation where one agent cannot compromise (because he could not even
achieve his own goal alone), shown in Figure 39. In this case, if both agents use the Min-
Concession Strategy, the result will be (¢q +A)/wq. Agent 1 will choose to then achieve his
own goal alone (and not compromise). This outcome is both stable and efficient.

Equilibrium Point

W1
[ ] conflict
Cl+A

Al decides
C1
Mr [ Negotiation
B A2 decides

Mr w2 C2 C2+A T

Figure 39: One Agent Cannot Compromise

8.6 Summary of Strict and Tolerant Mechanisms

The results of the analysis above are summarized in Figure 40. The tradeoff between
efficiency and stability is apparent only in the symmetric cooperative case, where neither
agent is able to achieve its goal alone. With the strict mechanism, a conflict is caused simply
because each agent will not declare a worth higher than its stand-alone cost, and thus will
bring about immediate conflict. The tolerant mechanism gives the agents a second chance
to reach agreement, but is unstable (as described above).

The above mechanism is not incentive compatible. The agents do not have an incentive
to declare their true worths; rather, they use the Min-Sufficient Strategy to decide what
their optimal declaration is.

9. Related Work in Game Theory and DAI

In this section we review research in game theory and in distributed artificial intelligence
related to our own work.

9.1 Related Work in Game Theory

As mentioned at the beginning of this paper, our research relies heavily on existing game
theory tools that we use to design and evaluate protocols for automated agents. Here, we
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Strict Tolerant

Efficientl Stable Efficientl Stable
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Compromise is insufficient

No reason to compromise
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One agent can’t compromise

Figure 40: Summary of Strict and Tolerant Mechanisms

review the game theory work on Bargaining Theory, Mechanism Design and Implementation
Theory, and Correlated Equilibria.

9.1.1 BARGAINING THEORY

Classic game theory (Nash, 1950; Zeuthen, 1930; Harsanyi, 1956; Roth, 1979; Luce & Raiffa,
1957) talks about players reaching “deals,”
each player). A bargaining game can end up in some possible outcome (i.e., a “deal”). Each
player has a full preference order over the set of possible outcomes; this preference order
is expressed by his utility function. For each deal, there is a utility vector which is the
list of the utilities of this deal for every participant. There is a special utility vector called
“conflict” (or sometimes the “status quo point”) which is the utility each player assigns to
a conflict (that is, lack of a final agreement). Classic game theory deals with the following
question: given a set of utility vectors, what will be the utility vector that the players
will agree on (under particular assumptions)? In other words, classic bargaining theory is
focused on prediction of outcomes, under certain assumptions about the players and the
outcomes themselves.

which are defined as vectors of utilities (one for

Nash (Nash, 1950, 1953) showed that under some rational behavior assumptions (i.e.,
individual rational and pareto optimal behavior), and symmetry assumptions, players will
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reach an agreement on a deal that maximizes the product of the players’ utility (see Sec-
tion 4.2 for a more complete discussion).

An alternative approach to negotiation, which looks upon it as a dynamic, iterative pro-
cess, is discussed in the work of Rubinstein and Osborne (Rubinstein, 1982, 1985; Osborne
& Rubinstein, 1990).

Game theory work on negotiation assumes that the negotiation game itself is well-
defined. It assumes that there is a set of possible deals that the players are evaluating using
certain utility functions. Therefore, the deals and the players’ utility functions induce a set
of utility vectors that forms the basis for the negotiation game.

In contrast to this analysis of a given, well-defined negotiation encounter, we are ex-
ploring the design space of negotiation games. Given a multiagent encounter (involving, for
example, task redistribution), we design an assortment of negotiation games, by formulating
various sets of possible deals and various kinds of utility functions the agents may have.
For any given negotiation game, we then use the above game theory approaches to analyze
it and to evaluate the negotiation mechanisms we propose.

Game theorists are usually concerned with how games will be played, from both a
descriptive and normative point of view. Qurs is essentially a constructive point of view;
since game theory tells us, for any given game, how it will be played, we endeavor to design
games that have good properties when played as game theory predicts.

9.1.2 EQUILIBRIUM

Game solutions in game theory consist of strategies in equilibrium; if somehow a social
behavior reaches an equilibrium, no agent has any incentive to diverge from that equilibrium
behavior. That equilibrium is considered to be a solution to the game. There may be one
or more (or no) strategies in equilibrium, and there are also different notions of equilibrium
in the game theory literature.

Three levels of equilibrium that are commonly used in game theory are Nash equilibrium,
perfect equilibrium, and dominant equilibrium (Binmore, 1990; Rasmusen, 1989). Each level
of equilibrium enumerated above is stronger than the previous one. Two strategies 5, T are
in Nash equilibrium if, assuming that one agent is using .5, the other agent cannot do better
by using some strategy other than 7', and vice versa. Perfect equilibrium means that when
the game has multiple steps, and one player is using .5, there exists no state in the game
where the other player can do better by not sticking to his strategy T. There do exist
situations where strategies might be in Nash equilibrium, but not in perfect equilibrium;
in that case, although strategy T was best at the start of the game, as the game unfolds it
would be better to diverge from T. Dominant strategy equilibrium means that no matter
what strategy your opponent chooses, you cannot do better than play strategy T'; strategies
S and T are in dominant strategy equilibrium when 5 is the dominant strategy for one
player, and T is the dominant strategy for the other.

In our work, we generally use Nash equilibrium (the weakest equilibrium concept) as our
requirement of a solution; this provides us with the widest range of interaction solutions.
At times, because the solution is not inherently in perfect equilibrium, we have introduced
additional rules on the interaction, to compel agents to follow particular Nash equilibrium
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strategies as the game progresses (such as introducing a penalty mechanism for breaking a
public commitment).

This provides an interesting example of the power we wield as designers of the game.
First, we would normally require perfect equilibria in multiagent encounters, but we can
adopt Nash equilibria as sufficient for our needs, then impose rules that keep agents from
deviating from their Nash equilibrium strategies. Second, the very strong requirement of
dominant equilibrium, which might be desirable when two arbitrary agents play a given
game, is not needed when the recommended strategies are commonly known—Nash equi-
librium is then sufficient.

9.1.3 MECHANISM DESIGN AND IMPLEMENTATION THEORY

There are also groups of game theorists who consider the problem of how to design games
that have certain attributes. It is this area of mechanism design that is closest to our own
concerns, as we design protocols for automated agents.

Mechanism design is also known in the game theory literature as the implementation
problem. The implementation question (Binmore, 1992; Fudenberg & Tirole, 1992) asks
whether there is a mechanism (also called a game form) with a distinguishable equilibrium
point (dominant strategy, or perfect, or merely Nash) such that each social profile (i.e.,
group behavior) is associated, when the players follow their equilibrium strategies, with the
desired outcome.

In other words, there are assumed to be a group of agents, each with its own utility
function and preferences over possible social outcomes. There is also a social welfare function
that rates all those possible social outcomes (e.g., a socially efficient agreement may be
rated higher than a non-efficient one) (Arrow, 1963). The question is then, can one design
a game such that it has a unique solution (equilibrium strategies), and such that when each
individual agent behaves according to this equilibrium strategy, the social behavior will
maximize the social welfare function. If such a game can be designed, then it is said that
the game implements the social welfare function.

As an example of a social welfare function, consider minimization of pollution. While
everyone may be interested in lowering pollution levels, everyone is interested in others
bearing the associated costs. A mechanism to implement this social welfare function might
include, for example, taxes on polluting industries and tax credits given for the purchase of
electric cars. This is precisely the kind of mechanism that would cause agents, following an
equilibrium strategy, to minimize pollution.

Given a negotiation game that we have designed (i.e., a set of deals and utility functions),
we also have to design the actual negotiation mechanism. One of the important attributes
of the negotiation mechanism is efficiency, i.e., maximization of the total group’s utility.
This is the social welfare function that we are trying to implement. When we assume that
agents have incomplete information about one another’s utility function, we basically have
a (negotiation) mechanism design problem.

However, unlike classic mechanism design in game theory, we are satisfied with a (negoti-
ation) mechanism that has some Nash equilibrium point that implements efficiency. We do
not need uniqueness, nor do we need a stronger notion of equilibrium (i.e., dominant equilib-
rium). The negotiation mechanism we design is intended as a suggestion to the community
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of agents’ designers, along with a negotiation strategy. The negotiation mechanism and the
strategy are both part of the suggested standard. To make the standard self-enforcing it is
sufficient that the strategy that is part of the standard be in Nash equilibrium.

9.1.4 CORRELATED EQUILIBRIUM

Players can sometime communicate prior to actually playing the game. By communicating,
the players can coordinate their strategies or even sign binding contracts about the strategies
they are about to use. Contracts can be of various types. An agent can commit himself to
playing a pure strategy if the other agent commits to playing another pure strategy. Agents
can also commit themselves to a contract in which they flip a coin and play their strategy
according to the coin.

A contract can thus be seen as an agreement between the players to correlate their
strategies. A correlated strategy in the general case is a probability distribution over all
possible joint activities (i.e., strategy combinations) of the players. In order for the players
to play according to some correlated strategy, there should be a mediator to conduct the
lottery, choose the joint activity according to the agreed probabilities, and then suggest this
strategy to the players. In some cases the mediator is assumed to release to each player
information only about that player’s action (strategy) in the chosen joint action, but not
the other player’s action.

Contracts between players can be binding; however, we cannot assume that contracts
are binding in all cases. Even when contracts are not binding, some of them can be self-
enforcing. A contract is self-enforcing if each player that signs the contract cannot do
better by not following the contract, under the assumption that other agents are following
the contract. If the mediator’s communications are observable by all the players, then
the only self-enforcing non-binding contracts are those that randomize among the Nash
equilibria of the original game ((Myerson, 1991), pp. 251).

Self-enforcing contracts on correlated strategy are called correlated equilibria. Aumann
introduced the term correlated equilibrium (Aumann, 1974); he defined the correlated equi-
librium of a given game to be a Nash equilibrium of some extension of the game, where
the players receive private signals before the original game is actually played. Aumann also
showed (Aumann, 1987) that correlated equilibrium can be defined in terms of Bayesian
rationality. Forges extended this approach to games with incomplete information (Forges,

1993).

Myerson showed that correlated equilibrium is a specific case of a more general con-
cept of equilibrium, which he called communication equilibrium, in games with incomplete
information (Myerson, 1982, 1991).

Some of the deal types that we have defined above involve coin flipping. This is, of
course, directly related to the notion of correlated strategies. As in the correlated equilib-
rium theory, we also assume that agents are able to agree on deals (i.e., contracts) that
involve some jointly observed random process (e.g., a coin toss). However, unlike correlated
equilibrium theory, we do assume that contracts are binding. Therefore, we assume that
agents will follow the contract (whatever the result was of the coin flip) even if it is no
longer rational for the agent to do so. Relaxation of the binding agreement assumption,
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and designing negotiation mechanisms that are based on self-enforcing correlated strategies,
are part of our future research plans.

9.2 Related Work in Distributed Artificial Intelligence

There have been several streams of research in Distributed Artificial Intelligence (DAI)
that have approached the problem of multiagent coordination in different ways. We here
briefly review some of this work, categorizing it in the general areas of multiagent planning,
negotiation, social laws, and economic approaches.

9.2.1 MULTIAGENT PLANNING

One focus of DAI research has been that of “planning for multiple agents,” which considers
issues inherent in centrally directed multiagent execution. Smith’s Contract Net (Smith,
1978, 1980) falls into this category, as does other DAI work (Fox, Allen, & Strohm, 1982;
Rosenschein, 1982; Pednault, 1987; Katz & Rosenschein, 1993). A second focus for research
has been “distributed planning,” where multiple agents all participate in coordinating and
deciding upon their actions (Konolige & Nilsson, 1980; Corkill, 1982; Rosenschein & Gene-
sereth, 1985; Rosenschein, 1986; Durfee, Lesser, & Corkill, 1987; Zlotkin & Rosenschein,
1991b; Ephrati & Rosenschein, 1991; Pollack, 1992; Pope, Conry, & Mayer, 1992).

The question of whether the group activity is fashioned centrally or in a distributed
manner is only one axis of comparison. Another important issue that distinguishes between
various DAI research efforts is whether the goals themselves need to be adjusted, that is,
whether there may be any fundamental conflicts among different agents’ goals. Thus, for
example, Georgeff’s early work on multiagent planning assumed that there was no basic
conflict among agent goals, and that coordination was all that was necessary to guarantee
success (Georgeff, 1983, 1984; Stuart, 1985). Similarly, planning in the context of Lesser,
Corkill, Durfee, and Decker’s research (Decker & Lesser, 1992, 1993b, 1993a) often involves
coordination of activities (e.g., sensor network computations) among agents who have no
inherent conflict with one another (though surface conflict may exist). “Planning” here
means avoidance of redundant or distracting activity, efficient exploration of the search
space, etc.

Another important issue is the relationship that agents have to one another, e.g., the
degree to which they are willing to compromise their goals for one another (assuming that
such compromise is necessary). Benevolent Agents are those that, by design, are willing to
accommodate one another (Rosenschein & Genesereth, 1985); they have been built to be
cooperative, to share information, and to coordinate in pursuit of some (at least implicit)
notion of global utility. In contrast, Multiagent System agents will cooperate only when
it is in their best interests to do so (Genesereth, Ginsberg, & Rosenschein, 1986). Still
another potential relationship among agents is a modified master-slave relationship, called
a “supervisor-supervised” relationship, where non-absolute control is exerted by one agent
over another (Ephrati & Rosenschein, 1992a, 1992b).

The synthesis, synchronization, or adjustment process for multiple agent plans thus con-
stitute some of the (varied) foci of DAI planning research. Synchronization through conflict
avoidance (Georgeff, 1983, 1984; Stuart, 1985), distribution of a single-agent planner among
multiple agents (Corkill, 1979), the use of a centralized multiagent planner (Rosenschein,
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1982), and the use of consensus mechanisms for aggregating subplans produced by mul-
tiple agents (Ephrati & Rosenschein, 1993b), have all been explored, as well as related
issues (Cohen & Perrault, 1979; Morgenstern, 1987; von Martial, 1992a, 1992b; Kreifelts
& von Martial, 1991; Kamel & Syed, 1989; Grosz & Sidner, 1990; Kinny, Ljungberg, Rao,
Sonenberg, Tidhar, & Werner, 1992; Ferber & Drogoul, 1992; Kosoresow, 1993).

In this paper, we have not been dealing with the classical problems of planning research
(e.g., the construction of sequences of actions to accomplish goals). Instead, we have taken
as a given that the agents are capable of deriving joint plans in a domain, and then consid-
ered how they might choose from among alternative joint plans so as to satisfy potentially
conflicting notions of utility. To help the agents bridge conflicts, we have introduced frame-
works for plan execution (such as flipping a coin to decide which of two joint plans will be
carried out), but the actual base planning mechanism is not the subject of our work.

9.2.2 AXIOMATIC APPROACHES TO GROUP ACTIVITY

There exists a large and growing body of work within artificial intelligence that attempts
to capture notions of rational behavior through logical axiomatization (Cohen & Levesque,
1990, 1991; Rao, Georgeff, & Sonenberg, 1991; Rao & Georgeff, 1991, 1993; Georgeff &
Lansky, 1987; Georgeff, 1987; Belegrinos & Georgeff, 1991; Grosz & Kraus, 1993; Konolige,
1982; Morgenstern, 1990, 1986; Kinny & Georgeff, 1991). The approach usually centers
on a formalized model of the agent’s beliefs, desires, and intentions (the so-called “BDI
model”) (Hughes & Cresswell, 1968; Konolige, 1986). The purpose of the formal model is
to characterize precisely what constitutes rational behavior, with the intent to impose such
rational behavior on an automated agent. The formal axioms might be used at run-time
to directly constrain an agent’s decision process, or (more likely) they could be used at
compile-time to produce a more efficient executable module.

The focus of this research, coming as it does from a single-agent artificial intelligence
perspective, is on the architecture of a single automated agent. For example, Cohen and
Levesque have explored the relationship between choice, commitment, and intention (Cohen
& Levesque, 1987, 1990)—an agent should commit itself to certain plans of action, and
remain loyal to these plans as long as it is appropriate (for example, when the agent discovers
a plan is infeasible, the plan should be dropped).

Even when looking at multiagent systems, these researchers have examined how a mem-
ber of a group should be designed—again, looking at how to design an individual agent so
that it is a productive group member. For example, in certain work (Kinny et al., 1992)
axioms are proposed that cause an agent, when he discovers that he will fail to fulfill his
role in a joint plan, to notify the other members of his group. Axiomatizations, however,
might need to deal with how groups of agents could have a joint commitment to accom-
plishing some goal (Cohen & Levesque, 1991), or how each agent can make interpersonal
commitments without the use of such notions (Grosz & Kraus, 1993). Another use for the
BDI abstractions is to allow one agent to reason about other agents, and relativize one’s
intentions in terms of beliefs about other agents’ intentions or beliefs.

Axiomatic approaches tend to closely link definitions of behavior with internal agent
architecture. Thus, the definition of commitment explored by Cohen and Levesque is in-
tended to constrain the design of an agent, so that it will behave in a certain way. Our
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work, on the other hand, takes an arms-length approach to the question of constraining
agents’ public behavior. The rules of an encounter are really a specification of the domain
(not of the agent), and an agent designer is free to build his agent internally however he
sees fit. The rules themselves, however, will induce rational designers to build agents that
behave in certain ways, independent of the agents’ internal architectures.

9.2.3 SocialL Laws FOR MULTIPLE AGENTS

Various researchers in Distributed Artificial Intelligence have suggested that it would be
worthwhile to isolate “aspects of cooperative behavior,” general rules that would cause
agents to act in ways conducive to cooperation. The hypothesis is that when agents act in
certain ways (e.g., share information, act in predictable ways, defer globally constraining
choices), it will be easier for them to carry out effective joint action (Steeb, Cammarata,
Hayes-Roth, & Wesson, 1980; Cammarata, McArthur, & Steeb, 1983; McArthur, Steeb, &
Cammarata, 1982).

Moses, Shoham, and Tennenholtz (Tennenholtz & Moses, 1989; Moses & Tennenholtz,
1990; Shoham & Tennenholtz, 1992b, 1992a; Moses & Tennenholtz, 1993; Shoham & Ten-
nenholtz, 1995), for example, have suggested applying the society metaphor to artificial
systems so as to improve the performance of agents operating in the system. The issues
that are to be dealt with when analyzing a multiagent environment concern synchroniza-
tion, coordination of the agents’ activities, cooperative ways to achieve tasks, and how safety
and fairness constraints on the system can be guaranteed. They propose coordinating agent
activity to avoid conflicts; the system will be structured so that agents will not arrive at
potential conflict situations.

Thus these social laws are seen as a method to avoid the necessity for costly coordination
techniques, like planning or negotiation. With agents following the appropriate social laws,
the need for run-time coordination will be reduced. This is important, because although
agent designers may be willing to invest a large amount of effort at design time in building
effective multiagent systems, it is often critical that the run-time overhead be as low as
possible.

There is a similarity between this use of pre-compiled, highly structured social laws,
and our development of pre-defined interaction protocols. However, the social law approach
assumes that the designers of the laws have full control over the agents; agents are as-
sumed to follow the social laws simply because they were designed to, and not because they
individually benefit from the social laws. Obeying the social laws may not be “stable”;
assuming that everyone else obeys the laws, an agent might do better by breaking them.
Our approach is concerned with social conventions that are stable, which will be suitable
for individually motivated agents.

9.2.4 DEcISION THEORETIC APPROACHES

There is related work in Artificial Intelligence that addresses the reasoning process of a single
agent in decision-theoretic terms. In certain work (Horvitz, 1988; Horvitz, Cooper, & Heck-
erma, 1989; Russell & Wefald, 1989), decision-theoretic approaches are used to optimize the
value of computation under uncertain and varying resource limitations. Etzioni considered
using a decision-theoretic architecture, with learning capabilities, to control problem solving
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search (Etzioni, 1991). For an introductory treatment of decision theory itself, see Raiffa’s
classic text on the subject (Raiffa, 1968).

Classical decision theory research considers an agent that is “playing against nature,”
trying to maximize utility in uncertain circumstances. A key assumption is that “nature’s”
behavior is independent of the decision made by the agent. Of course, this assumption does
not hold in a multiagent encounter.

The concept of “rationality,” usually expressed in decision-theoretic terms, has been
used to model agent activity in multiagent encounters (Rosenschein & Genesereth, 1985;
Genesereth et al., 1986). Here, axioms defining different types of rationality, along with
assumptions about the rationality of others, led agents to particular choices of action. In
contrast to this work, our research employs standard game theory notions of equilibrium
and rationality. Other discussions of the use of rationality in general reasoning can be found
in Doyle’s research (Doyle, 1985, 1992).

Another decision theoretic approach, taken by Gmytrasiewicz and Durfee, has been
used to model multiagent interactions (Gmytrasiewicz, Durfee, & Wehe, 1991a, 1991b;
Gmytrasiewicz & Durfee, 1992, 1993). It assumes no predefined protocol or structure to
the interaction (in marked contrast to our research on protocol design). The research uses
a decision-theoretic method for coordinating the activities of autonomous agents called the
Recursive Modeling Method. Fach agent models the other agents in a recursive manner,
allowing evaluation of the expected utility attached to potential actions or communication.

9.2.5 EcoNoMIC APPROACHES

There have been several attempts to consider market mechanisms as a way of efficiently
allocating resources in a distributed system. Among the Al work is that of Smith’s Contract
Net (Smith, 1978, 1980; Sandholm, 1993), Malone’s Enterprise system (Malone et al., 1988),
and Wellman’s WALRAS system (Wellman, 1992).

The Contract Net is a high-level communication protocol for a Distributed Problem
Solving system. It enables the distribution of the tasks among the nodes that operate in
the system. A contract between two nodes is established so that tasks can be executed;
each node in the net can act either as a manager or as a contractor. A task that has been
assigned to a node can be further decomposed by the contractor. A contract is established
by a bidding scheme that includes the announcement of the task by the manager, and bids
sent in by the potential contractors.

Enterprise (Malone et al., 1988) is a system that was built using a variation of the Con-
tract Net protocol. The Distributed Scheduling Protocol locates the best available machine
to perform a task. This protocol is similar to the Contract Net, but makes use of more
well-defined assignment criteria.

Another system (Wellman, 1992) that takes an economic approach in solving a dis-
tributed problem through the use of a price mechanism has been explored by Wellman.
Wellman uses the consumer/producer metaphor to establish a market pricing-based mech-
anism for task redistribution that ensures stability and efliciency. All agents act as both
consumers and producers. Fach distinct good has an auction associated with it, and agents
can get the good by submitting bids in the auction for that good. The system developed
by Wellman, WALRAS, computes for each market the equilibrium price.
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There are two main differences between these economic approaches and our work on
mechanism design. First, there is an underlying assumption in the economic approach that
utility is explicitly transferable (e.g., money can be used). Our work does not involve any
need for explicit utility transfer. Instead, we exploit various methods for implicit utility
transfer, for example, sharing work in a joint plan, tossing a coin, etc. Of course, this
constrains the available coordination mechanism, but removes an assumption (that is, the
existence of money) that may not be suitable in certain multiagent environments. Second,
the economic models can deal with n agents in a market, while our work above deals with
two-agent encounters; however, other work of ours deals with n-agent negotiation as a
coalition formation problem (Zlotkin & Rosenschein, 1994).

9.2.6 NEGOTIATION

Negotiation has been a subject of central interest in DAI, as it has been in economics and
political science (Raiffa, 1982). The word has been used in a variety of ways, though in
general it refers to communication processes that further coordination (Smith, 1978; Lesser
& Corkill, 1981; Kuwabara & Lesser, 1989; Conry et al., 1988; Kreifelts & von Martial,
1991; Kraus, Ephrati, & Lehmann, 1991). These negotiating procedures have included the
exchange of Partial Global Plans (Durfee, 1988; Durfee & Lesser, 1989), the communication
of information intended to alter other agents’ goals (Sycara, 1988, 1989), and the use of
incremental suggestions leading to joint plans of action (Kraus & Wilkenfeld, 1991).

Interagent collaboration in Distributed Problem Solving systems has been explored in
the ongoing research of Lesser, Durfee, and colleagues. Much of this work has focused on
the implementation and analysis of data fusion experiments, where systems of distributed
sensors absorb and interpret data, ultimately arriving at a group conclusion (Durfee &
Lesser, 1987; Decker & Lesser, 1993a; Laasri, Laasri, & Lesser, 1990). Agents exchange
partial solutions at various levels of detail to construct global solutions; much of the work has
examined effective strategies for communication of data and hypotheses among agents, and
in particular the kinds of relationships among nodes that can aid effective group analysis.
For example, different organizations, and different methods for focusing node activity, can
help the system as a whole be far more efficient.

There are two main distinctions between our work and the work of Lesser and his
colleagues. First, the underlying assumption of the bulk of Lesser’s work is that agents
are designed and implemented as part of a unified system, and work towards a global goal.
Our agents, on the other hand, are motivated to achieve individual goals. Second, unlike
our formal approach to mechanism design, Lesser’s work has historically been heuristic
and experimental, although his more recent work has explored the theoretical basis for
system-level phenomena (Decker & Lesser, 1992, 1993a, 1993b).

Sycara has examined a model of negotiation that combines case-based reasoning and
optimization of multi-attribute utilities (Sycara, 1988, 1989). In particular, while we assume
that agents’ goals are fixed during the negotiation, Sycara is specifically interested in how
agents can influence one another to change their goals through a process of negotiation
(information transfer, etc.).

Kraus and her colleagues have explored negotiation where the negotiation time itself is an
issue (Kraus & Wilkenfeld, 1991; Kraus, 1993; Kraus, Wilkenfeld, & Zlotkin, 1995). Agents
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may lose value from a negotiation that drags on too long, and different agents are asymmetric
with regard to the cost of negotiation time. Agents’ attitudes towards negotiation time
directly influences the kinds of agreements they will reach. Interestingly, however, those
agreements can be reached without delay. There is an avoidable inefficiency in delaying
agreement. Qur work, in contrast, assumes that agent utility remains constant throughout
the negotiation process, and so negotiation time does not influence the agreement. Some
of Kraus’ work also assumes explicit utility transfer (while our work, as mentioned above,
does not).

Gasser has explored the social aspects of agent knowledge and action in multiagent
systems (“communities of programs”) (Gasser, 1991, 1993). Social mechanisms can dy-
namically emerge; communities of programs can generate, modify, and codify their own
local languages of interaction. Gasser’s approach may be most effective when agents are
interacting in unstructured domains, or in domains where their structure is continuously
changing. The research we present, on the other hand, exploits a pre-designed social layer
for multiagent systems.

Other work that focuses on the organizational aspects of societies of agents exists (Fox,
1981; Malone, 1986).

Ephrati and Rosenschein used the Clarke Tax voting procedure as a consensus mecha-
nism, in essence to avoid the need for classical negotiation (Ephrati & Rosenschein, 1991,
1992c, 1993a). The mechanism assumes the ability to transfer utility explicitly. The Clarke
Tax technique assumes (and requires) that agents are able to transfer utility out of the
system (taxes that are paid by the agents). The utility that is transferred out of the system
is actually wasted, and reduces the efficiency of the overall mechanism. This, however, is
the price that needs to be paid to ensure stability. Again, the work we present in this paper
does not assume the explicit transfer of utility. Also, the negotiation mechanism ensures
stability without the inefficiency of transferring utility out of the system. However, voting
mechanisms like the Clarke Tax can deal with n-agent agreement (not the two-agent agree-
ment of our research), and also demonstrates a kind of dominant equilibrium (in contrast
to our weaker notion of Nash equilibrium).

10. Conclusions

In this paper we have explored State Oriented Domains (SODs). In State Oriented Domains
the current description of the world is modeled as a state, and operators cause the world
to move from one state to another. The goal of an agent is to transform the world into
one of some collection of target states. In SODs, real conflict is possible between agents,
and in general, agents may find themselves in four possible types of interactions, symmetric
cooperative, symmetric compromise, non-symmetric cooperative/compromise, and conflict.
Agents can negotiate over different deal types in each of these kinds of interactions; in
particular, we introduced the semi-cooperative deal, and multi-plan deals, for use in con-
flict situations. The Unified Negotiation Protocols, product maximizing mechanisms based
on either semi-cooperative deals or multi-plan deals, provide a suitable basis for conflict
resolution, as well as for reaching cooperative agreements.

Strategic manipulation is possible in SODs. In a State Oriented Domain, an agent might
misrepresent his goals, or his worth function, to gain an advantage in a negotiation. The
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general approach by a deceitful agent would be to pretend that its worth is lower than it
actually is. This can be done directly, by declaring low worth (in certain mechanisms), or
by declaring a cheaper goal (in the case where stand-alone cost is taken to be the implicit
worth baseline). We were able to construct incentive compatible mechanisms to be used
when worths are unknown, but were unable to do so for SODs when goals are unknown.
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