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Abstract

We present a decentralized market protocol for allocat-
ing tasks among agents that contend for scarce resources.
Agents trade tasks and resources at prices determined by an
auction protocol. We specify a simple set of bidding poli-
cies that, along with the auction mechanism, exhibits de-
sirable convergence properties. The system always reaches
quiescence. If the system reaches quiescence below the con-
sumer’s reserve price for the high level task, it will be in a
solution state. If the system finds a solution it will reach qui-
escence in a solution state. Experimental evidence supports
our conjecture that the system will converge to a solution
when one exists and the consumer bids sufficiently high. We
describe the system’s application to and implementation in
an agent-based digital library.

1. Introduction

In a multiagent system (MAS), we must often address
the problem of allocating resources and effort in such a way
that the resulting collection of agents can accomplish a com-
plex task. This problem is complicated if the agents con-
tend for limited resources, which may preclude the use of
simple greedy allocation strategies. Furthermore, because
the agents are autonomous, we must generally assume that
they have specialized knowledge about their own capabili-
ties but limited knowledge about other individuals and the
large-scale structure of the problem. Additionally, we may
have cause to compute the allocation of each resource indi-
vidually. Given the decentralized nature of the problem as
an exogenous constraint, we seek to design principled, ef-
fective, resource allocation protocols, noting that we can do
no better than if we were free to take a centralized approach.

*Extended version of a paper in Proceedings of the Third International
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We present a decentralized market protocol for allocating
tasks among agents under conditions of resource scarcity.
The protocol builds supply chains in a bottom-up fashion
using strictly local knowledge and communication. In the
market approach, agents’ decisions are coordinated by the
price system, and complex multilateral behaviors are imple-
mented via relatively simple bilateral exchanges. Moreover,
solution methods and analytical techniques from economics
can provide useful concepts for designing and understand-
ing market systems.

Our experience with the market-oriented programming
approach has verified that it works predictably and effec-
tively in several convex domains [13, 28], characterized
by infinite divisibility of resources and nonincreasing re-
turns to scale. However, many important resource allocation
problems—such as task allocation—are inherently discrete,
violating the standard general conditions for market effec-
tiveness.! Within economics, protocols for allocation of dis-
crete goods have been studied under the heading of auction
theory. Although much of the auction literature focuses on
the allocation of single items [6, 9, 24], several studies ad-
dress the more challenging problem of allocating multiple
items [4, 7, 8, 21], and recent experience with the United
States FCC radio spectrum auctions [10, 11] has prompted
further economic interest in these problems [12].

We describe the task allocation problem in Section 2. In
Section 3 we present a market system for task allocation.
We analyze the relationships between system quiescence
and solution convergence in Sections 4. In Section 5 we
describe the system’s application to and implementation in
an agent-based digital library. We discuss related work in
Section 6 and suggest extensions and future work in Sec-
tion 7.

L1t should not be surprising that discrete goods complicate matters, con-
sidering the relative difficulties of solving integer programming as com-
pared to linear programming problems. Bikhchandani and Mamer use the
correspondence between these constrained optimization problems to char-
acterize the conditions under which a given discrete problem will be prob-
lematic for a market [2].



2. The Task Allocation Problem

In the task allocation problem, we are interested in the
achievement of some task or tasks, and tasks may be per-
formed by various agents. In order to perform a particular
task, an agent may need to achieve some subtasks, which
may in turn be delegated to other agents, forming a sup-
ply chain through a hierarchy of task achievement. Con-
straints on the task assignment arise from resource con-
tention, where agents would need a common resource (e.g.,
a subtask achievement, or something tangible like a piece
of equipment) to accomplish their own tasks.

Tasks are performed on behalf of particular agents; if two
agents need a subtask then it would have to be performed
twice to satisfy them both. In this way, tasks are the same as
any other discrete resource. Hence, we make no distinction
in our model, and use the economic term “good” to refer to
any task or resource provided or needed by agents.

2.1. Problem Specification

We provide a formal description of the problem in terms
of bipartite graphs. The two types of nodes represent goods
and agents, respectively. A task dependency network is a
directed, acyclic graph, (V, E), with vertices V = G U A:

G = thesetof goods,
A = TIUSU{c}, the set of agents,
IT = the set of producers,
S = the set of suppliers,
¢ = theend consumer,

and a set of edges E connecting agents with goods they can
make use of or can produce. There exists an edge (g, a)
from g € G to a € A when agent a can make use of one
unit of g, or an edge {a, g) when a can produce unit of g.

The edges can be further characterized by the type of
agent involved. A supplier can supply a primitive good
without requiring any input goods:

Forall s € Sthereisone g € G suchthat (s, g) €
E.

The consumer wishes to acquire some high-level good:
There is a unique g. € G such that {g.,c) € E.

We consider a single consumer to simplify analysis; it
is straightforward to extend the analysis to multiple con-
sumers (described in Section 7).

A producer can produce some output good conditional
on acquiring some input goods:

For all = € II there exists a nonempty subset G’
of Gandasingle g € G—G’suchthat(m,g) € E
and (¢',7) € Eforall g’ € G'.
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Figure 1. A task dependency network.

It is possible that a producer may require multiple units of a
particular good as input. In this case we treat each unit as a
separate edge. For instance, if 7 requires two units of ¢’ as
input, then its input edges are (¢, 7); and (t', 7)2.

A producer’s input requirements are complementary in
that it must acquire each of its inputs; it cannot accomplish
anything with only a partial set. The existence of differ-
ent producers with the same output corresponds to different
ways that a good can be produced.

Figure 1 shows an example network. Here the goods are
indicated by circles, the consumer and suppliers are labeled
as such in the boxes, and the producers are indicated by
ovals. An arrow from an agent to a good indicates that the
agent can supply that good, and an arrow from a good to
an agent indicates that the agent wishes to acquire the good.
For instance, producer labeled C-D-to-E requires one unit
each of inputs C and D to provide one unit of E.

A solution is a partial ordering of production defined by
a subgraph (V/,E') C (V,E). Fora € AnV'andg €
G NV’ anedge (a,g) € E' means that agent a provides
g, and if {g,a) € E', then a acquires g. To qualify as a
solution, a subgraph must satisfy the following constraints.

1. The consumer acquires the good it desires:
If {g,c) € Ethen{g,c) € E'.

2. An agent is part of the solution iff it acquires or sup-
plies a good:

a € V'NAiffthereexistsat € T such that
(t,a) € E'or{a,t) € E'.

3. All producers are feasible:

For all # € TI such that (mw,g) € E', if
{¢9',7) € Ethen (¢',m) € E'.

Note that the feasibility constraint does not exclude the
possibility that a producer acquires some inputs with-
out providing its output.

4. Every good in the solution is both acquired and pro-
vided:

Ifg € V'NGthenthereexistband s € AN
V' such that (g,b) € E' and (s, g) € E'.



5. There is a one-to-one mapping between acquiring
edges (g,b) € E' and providing edges {s,g) € E’
forg e GUE".

It is often natural to associate a cost, cost(g), with prim-
itive goods, that is, those provided by suppliers. In such
cases, we define the cost of a solution as the cost of its prim-
itive goods:

cost((V', E")) = cost(g).
{({s,g)EE'|s€SNV"}

2.2. Solving Task Allocation Problems

Our task dependency networks can be viewed as
AND/OR graphs, with the consumer at the root. Agents
correspond to AND nodes, and goods to ORs. One could
thus solve task allocation problems in a centralized manner
via AND/OR search techniques, with some extra bookkeep-
ing to account for the fact that agents may participate in the
solution in at most one way, and that the number of edges
leading into a good must be the same as the number leading
out in a solution (in other words, to treat these properly as
graphs rather than trees). But we assume that we are con-
strained to solve the problem in a decentralized fashion.

Task allocation problems can be addressed in a some-
what more decentralized manner by the CONTRACT NET
protocol [3]. However, because the contracting process
proceeds top-down, an agent must commit to supplying a
good before it is certain that it can actually acquire its in-
put goods. That is, the protocol allocates goods in a greedy
fashion, backward chaining from the consumer to the sup-
pliers. Without lookahead, CONTRACT NET might allocate
the production of good D to producer B-C-to-D in Figure 1
and thus fail to find a solution due to infeasibility.

In the remainder of this paper, we develop a decentral-
ized protocol for solving task allocation problems, based on
a market for good production.

3. The Market System

We have implemented our market-based protocol
in  WALRAS, a research platform for computational
economies [28], and also the University of Michigan Dig-
ital Library (UMDL) experimental system. In each case,
the system finds solutions in a decentralized multiagent en-
vironment where agents have only local knowledge about
their own preferences or production technologies and the
goods and related auctions that directly interest them.

The agents negotiate for the goods through auction me-
diators, one for each good. An auction in turn determines
the price and allocation of its respective good as described
in Section 3.1.
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Figure 2. A valid solution to the example.

The agents are economically self-interested. The con-
sumer is willing to buy its good of interest for no more than
some fixed reserve price R.. A supplier, s, is willing to sell
its good for no less than some fixed reserve price, R, (a
natural choice might be the cost of the supplied good). Pro-
ducers desire to make a profit while maintaining feasibility.

We say that a solution is valid if the consumer pays no
more than its reserve price:

price(gc) < Re,

each supplier in the solution sells its good for at least its
reserve price:
price(gs) > Rs

forall s € SNV’ such that (s, gs) € E',

and none of the active producers lose money:

price(gr) > 3 price(g,)

9 €lx

forall m € IIN V' where {7, g,) € E'and I, =
U g% such that (g, 7) € E'.

We make several further assumptions about the econ-
omy. The goods can be traded only in integer quantities, and
producers sell only a single unit of their output. The latter is
not a limitation to production because we can always repli-
cate producers. We consider only economies where there
are no potential cycles in production, that is no agent sup-
plies goods that could be used to assemble its inputs. If
negotiation resulted in such a production cycle, there would
be no way to execute the transaction sequence.

Figure 2 shows one possible valid solution for the prob-
lem shown in Figure 1, for a specified set of reserve prices.
Reserve prices are shown under their respective agents and
good prices are shown under their respective goods. Dashed
arrows indicate input/output relations not part of the solu-
tion. Observe that producers B-C-to-D and C-D-to-E both
require good C as an input. (Perhaps they are competing for
control of the same machine.) As a result, producer B-C-to-
D cannot be the agent that produces good D. If it were, then
B-C-to-D would have to be allocated good C, in which case
C-D-to-E could not produce good E for the consumer.



The agents negotiate the terms of the trades by exchang-
ing asynchronous messages with auctions. The auction
mechanism defines the rules for determining prices and al-
locations as a function of the agents” messages. The agents’
bidding policies govern their interaction with the auctions.
The key distinction is that the mechanism is under the con-
trol of the system designers, while the bidding policies are
determined by individual agents. Together, these elements
constitute a market protocol.

3.1. Auction Mechanism

The task allocation market includes a simultaneous auc-
tion for each good of potential value. Each agent regularly
sends new bid messages for some of the goods that it wishes
to buy or sell (if an agent does not wish to change its bid,
then it leaves its previous bid standing in the auction). A bid
specifies the price below/above which the agent is willing to
buy/sell. When an auction receives a new bid, it sends each
of its bidders a price quote message specifying the price that
would result if the auction ended in the current bid state.
Because multiple agents may have bid the same price, the
price quote also reports to each bidder the quantity it would
buy or sell in the current state. Agents may then choose to
revise their bids in response to the notifications.

When an auction sends a price quote to an agent, it in-
cludes the ID of the most recent bid received from that
agent. An agent only responds to a price quote that reflects
the most recent bid it sent. If an agent does not follow this
policy, it may have difficulty establishing feasibility in an
asynchronous system.?

Bidding continues until quiescence, a state where all
messages have been received, no agent chooses to revise
its bids, and no auction changes its allocation. At this point,
the auctions clear, and each bidder is notified of the final
prices and how many units it transacted in each good. Note
that a quiescent economy may not be in a solution state,
valid or invalid.

Each auction runs according to (A +1)st-price rules [19,
20, 31]. The (M + 1)st price auction is the uniform price
generalization of the second price Vickrey Auction [24] that
allows for the sale and purchase of multiple units of a good.
Given a set of bids including M units offered for sale, the
(M + 1)st-price auction sets a price equal to the (M + 1)st
highest of all of the bids. The price can be said to separate
the winners from the losers, in that the winners include all
sell bids strictly below the price and all buy bids strictly
above the price. In order to maximize trade, some agents

2|f the producer relies on a price quote for its output that does not reflect
its most recent bid, it may incorrectly think it is winning its output. Based
on the policy described in Section 3.2 it may then increase its bids on its
inputs. This can result in situations where producers continue to incorrectly
raise their bids and never establish feasibility. This problem does not occur
with the ID reporting.

that bid at the (M + 1)st price also win according to a tie
breaking rule. Winning buy and sell bids are matched one-
to-one.

Because producers’ technologies are complementary,
ensuring feasibility is a challenging problem. Inspired by
the FCC actions, we designed our auctions to run simul-
taneously and reject an agent’s bid if it does not increase
over its previous bid (see [12] for a preliminary analysis of
simultaneous ascending auctions). This design helps give
producers an accurate indication of the relative prices for
inputs and outputs. As we show in Section 4, the bid restric-
tion also serves a key role in establishing the relationships
between system quiescence and solution convergence of the
economy.

3.2. Bidding Policies

Although MAS designers do not generally have control
over the agents’ behaviors, any conclusions about the out-
come of a protocol must be based on some assumptions
about these behaviors. Our analysis assumes that the agents
follow a simple bidding policy, described in this section.
Other variations may be reasonable, or perhaps better in
some respects than the policies we describe. Rather than
explore the range of possibilities, we chose in this work to
investigate a particular set of policies in depth. Our cho-
sen policies respect the ascending bid restriction enforced
by the auction as well as agent autonomy, in that no agent
utilizes private information of other agents in the system.

The suppliers’ and consumer’s optimization problems
are simply to maximize or minimize, respectively, the dif-
ference between their reserve price and prices at which they
transact. We assume that these agents do not behave strate-
gically, and instead simply place fixed bids at their respec-
tive reserve prices. The auction rules ensure that this policy
will result in a nonnegative surplus value.

A producer’s optimization problem is much more com-
plex, namely to maximize the difference between the price
it receives for its output and the total price it pays for its in-
puts, while remaining feasible. A producer places a new bid
for its output at a price equal to the sum of its expected input
prices, if this sum exceeds its previous bid. For a given in-
put good, we define the expected price for producer = to be
the last price quote if that price quote indicated it was win-
ning, or some small finite amount A, above the last price
quote if that price quote indicated that it was losing.

A producer initially bids zero for each of its input goods
and gradually increases its bids to ensure feasibility. A pro-
ducer 7 will raise its bid for an input good by a small finite
amount ¢, if and only if the price quotes indicate that it is
losing that good but winning its output.

Note that, throughout the negotiation, the producers
place bids for their output goods before they have received



commitments on their input goods. Producers counteract
potential risk by continually updating their bids based on
price changes and their feasibility status.

4. System Quiescence and Solution Conver-
gence

In this analysis, we assume that all messages are deliv-
ered in a finite period of time, that is, messages are never
lost.

We define the level of a producer with output w as fol-
lows: one if no producer has w as input, and k& + 1 if the
maximum level of any producer with input w is k.

A given run of the market protocol has the following pa-
rameters:

e ¢ =the maximum level of any producer in the graph,

e T =the maximum number of input goods for any pro-
ducer,

o A= maxeen by,

e A = maxem Ar.
Lemmal No agent places a buy bid above R, + 2¢A.

Proof. Clearly this holds for the consumer. We prove by
induction on the producer level that no producer at level &
places a buy bid above R, + 2kA. Because k < ¢ for all
producers, the lemma follows immediately.

Only the consumer may wish to acquire the output of a
producer 7 at level one. Thus 7 can only win its output
bid if the expected price of its inputs is no greater than R..
Assume that 7 will raise its bid for input £ from 3 to 3/,
where R, + A < 3' < R, + 2A. Because 6, < A, = must
bid 8’ before bidding above R, + 2A. Similarly, it must be
that 3 > R.. It must also be that 7 is losing its bid for &,
otherwise it would not raise the bid. But then the current
price quote of & is greater than R.. Thus, 7 will bid greater
than R, for its output. Because bids are nondecreasing, it
will never again win its output bid, and hence will never
again raise an input bid. Thus a level one producer will
never place a buy bid above R, + 2A.

Now assume that no producer at any level i, where i < k,
places a buy bid above R, + 2iA, to prove that no producer
at level k places a buy bid above R.+2kA. By the inductive
assumption, no producer at level £ can win its output bid for
more than R, + 2(k — 1)A. It is straightforward to apply
the reasoning for level one to prove the inductive case. O

Lemma 2 The price of no good exceeds R, + 2¢A.

Proof. Assume, contrary to which we wish to prove, that
there is a good with price p > R. + 2¢A. According to the
auction protocol, there must be M + 1 bids at or above p.
By Lemma 1 these must all be sell bids. But, by definition,
there are only M sell bids, which is a contradiction. O

Lemma 3 No producer places a sell bid above Y (R, +
20A + N).

Proof. By Lemma 2, the expected price for any input to
any producer does not exceed R. + 2¢A + A. No producer
has more than T inputs, and thus by the producer bidding
strategy, no producer places a sell bid above T (R, +2¢A +
A). O

Theorem 4 The market protocol reaches quiescence within
a finite period of time.

Proof. According to Lemmas 1 and 3, there is a bound
on each producer’s bids. If the system is not in quiescence,
at least one producer 7 raises at least one bid by at least
min(Ar, d,). This can happen at most a finite number of
times before a producer exceeds the bound on its bids, there-
fore the system must reach quiescence. O

If all sell bids for g, the good desired by the consumer,
rise above the consumer’s reserve price, then the economy
will necessarily reach quiescence in a hon-solution state. If,
however, quiescence is reached before the price reaches the
consumer’s reserve price, we have a valid solution.

Theorem 5 If the market reaches quiescence with
price(g.) < R., then the system’s state represents a valid
solution.

Proof. Each producer must be feasible, otherwise it
would change some its input bids and the economy would
not have reached quiescence. For any active producer, the
price of its output good must be no less than the total price
of its input goods, otherwise it would increase its output bid
and the economy would not have reached quiescence.

Because the price of g. is less than the consumer’s re-
serve price it must have won its bid for g.. The auction
guarantees that suppliers receive at least their reserve price
if they win. Finally, the auction guarantees that there is a
one-to-one mapping between successful buy bids and suc-
cessful sell bids for any good.

Each of the constraints for a valid solution are satisfied
in the given quiescence conditions. O

Lemma 6 If the economy is in a valid solution state, then
the subsequent behavior of the agents obeys the following
properties:

1. No agent changes any buy bids.



2. No agent reduces any sell bids.

3. Each agent that won a sell bid does not bid above the
price quote for that good.

Proof. Recall that the consumer always bids its reserve
price. Because we have a valid solution, each producer is
feasible and thus will not raise any of its buy bids for inputs.
Hence property 1 is satisfied.

Property 2 is satisfied because agents never decrease
their bids.

A producer that won a sell bid must not have bid above
the current quote for that good. By the definition of a valid
solution, if a producer is active then the current price of its
output good is no less than the total current price of its in-
puts. Thus an active producer will bid no higher than the
current price of its output good. This, combined with the
fact that suppliers do not change their bids, satisfies prop-
erty 3. O

We say that tie breaking is consistent if, in any consecu-
tive clearings with the same set of bids, the auction breaks
ties in the same way.

Theorem 7 If the economy is in a valid solution state, all
auctions break ties consistently, and no sell bids are cur-
rently lost due to tie breaking, then after the subsequent
price quote from each auction, the economy will be in a
quiescent state with a valid solution.

Proof. We refer to the three properties enumerated in
Lemma 6.

Recall that the current price (along with tie breaking)
separates the winning bids from the losing bids submitted
prior. From property 1 we know that the current price and
the consistent tie breaking will also separate the same win-
ning buyers from the same losing buyers in the next price
quote. Properties 2 and 3, and the fact that no sell bids are
currently lost to tie breaking, ensure that the current price
will also separate the same winning sellers from the same
losing sellers in the next price quote. It follows that the allo-
cations will not change after the next price quote. Also, be-
cause the current price will separate the winners from losers
in the next price quote, the price will not change in the next
price quote.

Since the prices and allocations do not change in the next
set of price quotes, no agent will further change its bids,
and the economy will be quiescent. Furthermore, because
the economy is in a valid solution state based on the current
price quotes, it must be in a valid solution state based on the
next price quotes. O

We note here that consistent tie breaking itself is not
sufficient to ensure that the allocation to sellers does not
change. The properties established by Lemma 6 do not ex-
clude a producer from increasing its next sell bid up to the
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Figure 3. The minimum-price valid solution.
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Figure 4. The minimum-price quiescent valid
solution for A = 6 = 0.1.

price quote. If this occurs, then, regardless of consistency,
tie breaking of sell bids at the (M + 1)st price may be dif-
ferent in the next price quote.

Let ¥ to denote the minimum price quiescent valid so-
lution in the economy, with associated price price(¥) for
g.. To reach a valid solution configuration, the consumer’s
reserve price must be no less than price(¥). Note that
price(¥) will generally be greater than the minimum price
of any valid solution. Consider the example shown in Fig-
ure 2. The minimum price for good E is $6, as shown in
Figure 3. However, if producer B-C-to-D has a A less than
$0.5, then it will be willing to sell good D for less than
$4, and the prices and allocations shown cannot constitute a
quiescent solution (it follows that our protocol would never
generate the allocation shown in Figure 3). Because C-D-
to-E is the only producer that sells E, the good C must be
allocated to C-D-to-E rather than to B-C-to-D. Hence, in or-
der for a valid solution to be quiescent, the price of C must
be high enough such that B-C-to-D cannot win a bid to sell
D. If the A and § for all producers is .1 then ¥ (with the
constraint of no tie breaking) is as shown in Figure 4.

Our experiments suggest that if the consumer’s reserve
price is sufficiently higher than price(¥), then the economy
will reach a quiescent valid solution. How much higher the
reserve price must be depends on the A and ¢ values as well
as the structure of the economy. For instance, in our running
example the system actually computes the prices shown in
Figure 2, rather than those in ¥. Good B is bid up higher
than $1 because at some times either A-B-to-D or B-C-to-D
won its output bid yet did not win its bid for B.



Conjecture8 For any economy for which a valid solution
exists, there exists a minimum reserve price such that if the
consumer bids above this price then the economy will reach
a quiescent valid solution with the specified auctions and
bidding policies.

Note that our conjecture does not claim that solutions
found are those with minimum cost. Indeed, valid but sub-
optimal solutions appear in our experiments. Of course, the
cost of any solution found is bounded by the consumer’s
reserve price.

We do not yet have a proof of this conjecture. How-
ever our intuition of its correctness is supported by a bat-
tery of randomly generated experiments. Each economy
had a number of goods, suppliers, and two-input produc-
ers, each selected independently from the uniform distribu-
tion [3, 53]. Each supplier’s price was uniformly distributed
on [0,10], A = § = 0.1 for all producers, and the con-
sumer’s reserve price was set sufficiently high. Over 3000
economies converged to a quiescent valid solution. Only
economies with no solution failed.

That identifying convergent protocols is nontrivial is
supported by our experience with several variants that fail
to reliably terminate in a solution state. For example, the
ascending price restriction appears pivotal in achieving the
desired behavior. As a further test, we ran a set of task allo-
cation exercises involving 25 human agents playing the role
of producers, with the same price quote information avail-
able to our software agents. The humans failed to reach so-
lutions in any of the ten problems (five different, run twice
each), despite the fact that there were a multiplicity of so-
lutions, found easily by agents pursuing the simple policy
presented here.3

5. Task Allocation in an Agent-Based Digital
Library

In an agent-based digital library, teams of specialized
agents work together to provide users with information con-
tent and services. In the University of Michigan Digital Li-
brary (UMDL) [5, 29], mediators help user interface agents
(UIAS) find and process information provided by collection
interface agents (CIAs). An auction is a particular type of
mediator that provides mediated negotiation service.

In our model of task allocation in the UMDL, the salient
tasks are searching for information and revising queries
to improve the search. A task planning agent (TPA) pro-
vides search coordination service to a UIA, and delegates

3The exercise is described at ht t p: / / ai . eecs. umi ch. edu/
peopl e/ wel | man/ cour ses/ eecs498/ wo7/ PS3. htm . We do
not draw any serious conclusions from such an uncontrolled experiment,
but report the outcome as suggestive of the subtlety of the underlying prob-
lem.

the subtasks of revising queries to a terminology broaden-
ing/narrowing agent and a thesaurus agent. In our scenario,
each agent must reserve high priority computation on one
of two servers to avoid degradation of service; this good is
the scarce resource that must be correctly allocated.

In the UMDL, agents and auctions run as separate pro-
cesses with no central controller. Because the system is
asynchronous and fully decentralized, it is a non-trivial task
to detect system quiescence.

Each UMDL auction clears after a specified interval of
inactivity. We prefer short inactivity periods, to minimize
overall latency. But we have observed that bidding activ-
ity may not be uniform across all auctions. Thus if the
inactivity period is too short, there is a danger that one
auction may clear before quiescence is reached. In situa-
tions where a greater degree of centralization is allowed,
we could run groups of auctions in a single process or allow
them to communicate directly to determine when a global
quiescent state is reached. This would be appropriate in
situations where human designers can identify groups of
auctions that should reach quiescence in concert. It is an
interesting question whether one can identify appropriate
clusters automatically based on local analysis of the task
dependency network. For situations where this approach is
not viable, we are also developing a more decentralized pro-
tocol — involving only communication between agents and
their auctions — to detect when quiescence is reached.

6. Related Work

Rosenschein and Zlotkin [16] define a class of task allo-
cation problems called task-oriented domains (TODs). In
a TOD, any agent can potentially perform any subset of
tasks, at designated costs. They analyze properties of proto-
cols by which agents repartition the tasks to decrease their
own costs. Sandholm [18] generalizes the model to in-
clude agent-dependent costs, and describes the implications
of various restrictions on exchanges for achieving optimal
allocations.

As noted in Section 2.2, the CONTRACT NET protocol
attempts to allocate tasks by top-down hierarchical refine-
ment. Sandholm [17] describes a variant of CONTRACT
NET, in which tasks can be clustered to allow individ-
ual agents to bid for complementary inputs as a bundle.
Bundling of interdependent resources is an important fea-
ture, the subject of much recent research in auction design
[1, 15, 23, 30].

Auctions have been applied to various other discrete
resource allocation problems in the distributed computing
literature. The SPAWN system uses auctions to dynami-
cally allocate underutilized processors [25]. Our analysis
of market-based decentralized scheduling addresses equi-
librium properties of and candidate market protocols for



such problems [26].

Finally, some other recent work addresses the issue of
convergence in market-based negotiation protocols. For ex-
ample, Sierra et al. [22] specify a variety of bilateral nego-
tiation policies, and present theoretical and empirical evi-
dence bearing on their convergence and performance.

7. Extensions and Future Work

We have presented a decentralized market-based proto-
col for allocating tasks and scarce resources among agents.
Analytical and experimental studies have indicated conver-
gent behavior. As described in Section 5, we are explor-
ing methods to detect quiescence in a decentralized fashion.
We must also address the problem of executing the trans-
actions. A transaction protocol would potentially include
mechanisms for breaking local contracts when a global so-
lution does not form.

Although we focus our attention on a single consumer,
the economy also works if multiple consumers, perhaps
with different reservation prices, wish to purchase the same
good. If we substitute the value of the highest consumer re-
serve price for R, in the definition of a valid solution and in
each lemma and theorem, then all results continue to hold.

In a practical multiagent system, auctions may not exist
for all goods of interest, and agents may not know a priori
how to contact those auctions that do exist. Work is being
performed by others in the UMDL to design mechanisms
and policies for starting and maintaining auctions [14], and
to create a goods description language and agents to inter-
pret it to help bidders find the auctions they need [27].

We are using the current protocol as a basis for studying
more general resource allocation problems. We are explor-
ing the possibility of combining our task allocation protocol
with our market-based scheduling model [26] to solve the
problem of constructing supply chains with time dependen-
cies.
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