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The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the
world around them and taking actions to advance specified goals. Put another way, AI
researchers aim to construct a synthetic homo economicus, the mythical perfectly rational
agent of neoclassical economics.We review progress toward creating this new species of
machine,machina economicus, and discuss some challenges in designing AIs that can reason
effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes
close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the
rules of interaction inmulti-agent systems that come to represent an economyof AIs.Theories of
normative design from economics may prove more relevant for artificial agents than human
agents, with AIs that better respect idealized assumptions of rationality than people, interacting
through novel rules and incentive systems quite distinct from those tailored for people.

E
conomics models the behavior of people,
firms, and other decision-makers as ameans
to understand how these decisions shape
the pattern of activities that produce value
and ultimately satisfy (or fail to satisfy) hu-

man needs and desires. In this enterprise, the
field classically starts from an assumption that
actors behave rationally—that is, their decisions
are the best possible given their available actions,
their preferences, and their beliefs about the out-
comes of these actions. Economics is drawn to
rational decisionmodels because they directly con-
nect choices and values in amathematically precise
manner. Critics argue that the field studies amythi-
cal species, homo economicus (“economic man”)
and produces theories with limited applicability
to how real humans behave. Defenders acknowl-
edge that rationality is an idealization but counter
that the abstraction supports powerful analysis,
which is often quite predictive of people’s behav-
ior (as individuals or in aggregate). Even if not
perfectly accurate representations, rational models
also allow preferences to be estimated from ob-
served actions and build understanding that can
usefully inform policy.
Artificial intelligence (AI) research is likewise

drawn to rationality concepts, because they pro-
vide an ideal for the computational artifacts it
seeks to create. Core to themodern conception of
AI is the idea of designing agents: entities that
perceive the world and act in it (1). The quality of
an AI design is judged by how well the agent’s
actions advance specified goals, conditioned on
the perceptions observed. This coherence among
perceptions, actions, and goals is the essence of
rationality. If we represent goals in terms of pref-
erence over outcomes, and conceive perception
and action within the framework of decision-

making under uncertainty, then the AI agent’s
situation aligns squarely with the standard eco-
nomic paradigm of rational choice. Thus, the AI
designer’s task is to build rational agents, or agents
that best approximate rationality given the limits
of their computational resources (2–4). In other
words, AI strives to construct—out of silicon (or
whatever) and information—a synthetic homo eco-
nomicus, perhaps more accurately termed mach-
ina economicus.
The shared rationality abstraction provides a

strong foundation for research that spans AI and
economics. We start this review by describing pro-
gress on the question of how to operationalize
rationality and how to construct AI agents that
are able to reason about other AIs. Supposing
that AI research succeeds in developing an agent
that can be usefullymodeled as rational (perhaps

more so than human agents), we turn to research
on the design of systems populated by multiple
AIs. These multi-agent systems will function as
AI economies, with AIs engaged in transactions
with other AIs as well as with firms and people.
This prospect has spawned interest in expanding
theories of normative design from economics, op-
timizing rules of encounter (5) to guidemulti-agent
interactions. Systems populated byAIsmay exhibit
new economic phenomena and thus require a new
science with which to understand the way they
function and to guide their design. For example,
although human cognitive constraints limit the
design of current markets, systems designed for
AIs may admit more complex interfaces, impose
greater calculation burdens, and demand more
stamina of attention.
At the same time, the ways in which the behav-

ior of AIs deviate from the behavior of people can
present new challenges. We can already glimpse
the future of economic AIs, with simple AI bots
pricing books for sale on Amazon and scanning
for restaurant tables on Opentable for resale at a
profit (6). Such AIs may introduce some efficien-
cies, but their lack of common sense and their
designer’s failure to anticipate interactions can
also lead to books priced at $23 million (7). More
sophisticated AI strategies, presumably more
carefully vetted, exert a large influence on finan-
cial markets, with automated trading algorithms
estimated to be responsible formore than 70% of
trades on U.S. stock markets (8). Given the conse-
quences, it is important to understand the effect
of ubiquitous automated agents on the perform-
ance of economic systems. As reasoning is shifted
from people to AIs—designed to learn our pref-
erences, overcome our decision biases, and make
complex cost-benefit trade-offs—how too should
the economic institutions that mediate everyday
transactions change?
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Fig. 1. A bounded reinforcement learning agent performs better by pursuing a designed reward
function different from the objective reward: its actual fitness evaluation. Results (left) from a
gridworld foraging domain (right), for various limits on the agent’s planning horizon (84). Unless the
agent is perfectly rational (i.e., no horizon limit)—not typically feasible in realistic applications—the
designer can often achieve better fitness by directing the agent to optimize an alternative measure.



We focus here on some of the research direc-
tions we consider most salient for a future syn-
thesis of economics and AI engendered by the
emergence of machina economicus. Interesting
as they are, we only briefly mention here the
many exciting applications of AI to problems in
economics such as matching (9), market clearing
(10), and preference modeling for smart grids
(11). Nor will we showcase the many ways in
which economic theory is finding application
today within AI—for example, game-theoretic
approaches to multi-agent learning (12) and
voting procedures to combine the opinions of
AIs (13).

Building machina economicus

Constructing a rational AI raises a host of tech-
nical challenges not previously addressed in the
long tradition of rationalistic modeling in the
social sciences. For economics, the agent atti-
tudes (e.g., beliefs and preferences) underlying
rationality are conceptual abstractions. Econo-
mists need not explain how capabilities and
preferences, for example, are encoded, nor the
algorithm by which an agent plans what actions
to take conditional on its perceptions. Compu-
tation is abstracted away in the standard eco-
nomicmodel and is precisely what the AI scientist
must account for to operationalize rationality in a
realized agent.
This does not mean that an AI design needs to

incorporate data structures corresponding directly
to rationality constructs, although many AI archi-
tectures do feature direct representations for prop-
ositions, goals, and the like. Such representations
may simplify the analysis of AI systems—for exam-
ple, we can ask whether an inference algorithm
operating on logical expressions possesses desir-
able properties such as soundness: that all con-
clusions follow from the premises. Similarly, if an
AI’s beliefs are encoded as probability distribu-
tions, we can ask whether it updates its beliefs
from observations in proper accordwith Bayesian
theory. However, care must be taken in under-

standing an agent’s attitudes solely in terms of
its internal data structures. Imperfections in
decision-making may mean that the beliefs held
and objectives pursued by a computational agent,
in effect, vary systematically from those directly
encoded.
As an example illustrating this distinction,

machine-learning researchers adapted from ani-
mal learning the concept of reward shaping (14).
In reinforcement learning, the agent derives a
policy (mapping from perception sequences to
actions) based on rewards representing instan-
taneous value associated with a state and action.
A designer specifying the input reward can often
train the agent more efficiently by shaping the
reward signal over the learning process to facil-
itate convergence to behavior optimizing the
designer’s objective. The framework of optimal
rewards (15) provides a general treatment distin-
guishing reward specifications anddesigner goals.
As shown in Fig. 1, the optimal reward input to
the agent does not generally correspond to the
designer’s ideal reward. This perspective helps
explain the role of intrinsic motivations (e.g.,
curiosity) in a flexible learning agent.
Although the mantle of designing machina

economicus may not be adopted (particularly
in such explicit terms) by all AI researchers,
many AI advances over the past few decades
can be characterized as progress in operation-
alizing rationality. For instance, probabilistic
reasoning was largely eschewed by AI 30 years
ago but now pervades the field, thanks to
developments in representation and inference
using Bayesian networks and related graphi-
cal formalisms. Expressing uncertainty about
general relationships, beyond mere proposi-
tions, is routinely supported in probabilistic
modeling languages (16). Statistical approaches
now dominate machine learning and natural
language processing (17, 18). Likewise, prefer-
ence handling (including methods for eliciting
preferences from the designer of an AI agent,
compactly representing preferences over com-

plex domains, and enabling inference about pre-
ferences) is regarded as a necessary AI facility.
Planning, the AI subfield concerned with action
over time, now conventionally frames its prob-
lem as one of optimization, subject to resource
constraints, multiple objectives, and probabilistic
effects of actions.
Will AI succeed in developing the ideal ration-

al agent? Asmuch as we strive to createmachina
economicus, absolutely perfect rationality is un-
achievable with finite computational resources.
Amore salient question is whether AI agents will
be sufficiently close to the ideal as tomerit think-
ing about them and interacting with them in
rationalistic terms. Such is already the case, at
least in a limited sense. Whenever we anthropo-
morphize our machines, we are essentially treat-
ing them as rational beings, responding to them
in terms of our models of their knowledge, goals,
and intentions. A more refined version of the
question is whether our formal rationality the-
ories will fit well the behavior of AI agents in
absolute terms or compared to how well the
theories work for people. Without offering any
judgment on the question of howwell rationality
theories capture essential human behavior, we
note the irony in the prospect that social science
theories may turn out to apply with greater fidel-
ity to nonhuman agent behavior.

Reasoning about other agents

The issue of agent theorizing is not merely aca-
demic. If we can build one AI agent, then we can
build many, and these AIs will need to reason
about each other as well as about people. For AIs
designed to approximatemachina economicus, it
stands to reason that they should treat each other
as rational, at least as a baseline assumption. These
AIs would adopt a game-theoretic view of the
world, where agents rationally respond to each
others’ behavior, presumed (recursively) to be ra-
tional as well. A consequence is that agents would
expect their joint decisions to be in some form of
equilibrium, as in standard economic thinking.
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Fig. 2. Researchers produced steadyexponential progress on solving games of imperfect information from 1995 to the present. Up to 2007 (left), game
size was generally reported in terms of nodes in the game tree. Based on methods introduced around that time, it became more meaningful (right) to report size in
terms of the number of information sets (each many nodes), which represent distinct situations as perceived from the perspective of a player.The circled data
points correspond to the same milestone; combining the two graphs thus demonstrates the continual exponential improvement. Data are from (23, 35, 85–90).
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That AIs (or AI-human combinations) are rea-
sonablymodeled as approximately rational is the
premise of a growing body of AI research apply-
ing economic equilibrium models to scenarios
involving multiple agents (19). The approach has
achieved notable successes, providing evidence
for the premise, at least in particular circum-
stances. Just as single-agent rationality does not
require literal expected-utility calculations, appli-
cability of an equilibriummodel does not require
that agents themselves be explicitly engaged in
equilibrium reasoning. For example, the litera-
ture on learning in games (20) has identified
numerous conditions in which simple adaptive
strategies converge to strategic equilibria. We
can evaluate the effectiveness of economic mod-
eling by examining agents built by AI designers
for specified tasks. For instance, in a study of AI
trading agents competing in a shopping game
(21), an agent using standard price equilibrium
models from economics (specifically, Walrasian
equilibrium) achieved comparable prediction ac-
curacy to sophisticated machine-learning ap-
proaches without using any data, even though
none of the other agents employed equilibrium
reasoning.

In the rest of this section, we describe fur-
ther examples in which economic modeling, in
the form of game-theoretic algorithms, has pro-
vided an effective way for AIs to reason about
other agents. The first example is computer poker.
Althoughpoker is anartificial game,manyhumans
have invested a great deal of time and money
to develop their playing skills. More important,
poker’s uncertainty and complexity have made
it a compelling challenge problem for AI tech-
niques. Early approaches aimed to capture the
knowledge of expert human players (22), but
over the past decade, game-theoretic algorithms
have predominated. Technically, poker is a game
of imperfect information, where each player
knows elements of history (cards dealt to them)
that are secret from others. As uncertainty gets
partially resolved over time, through card turns
and betting, players must update their beliefs
about both card outcomes and the beliefs of
others.
A major milestone in computer poker was

achieved in 2014 with the effective solution of
“heads up limit hold’em” (HULHE), which is a
standard two-player version of the most popular

poker game (23). HULHE is the largest game of
imperfect information ever solved (with more
than 1013 information sets after removing sym-
metries) and the first imperfect-information
game widely played by humans to be solved. The
solution was the culmination of two decades of
effort by a series of researchers (see Fig. 2),
beginning with the exact solution of simplified
poker games, and proceeding to the approxi-
mate solution of abstracted versions of the full
game (24). Computing the approximate Nash
equilibrium of the full game required massive
computation and new methods for equilibrium
search based on regret-matching techniques from
machine learning. The result is a strategy against
which even a perfect opponent cannot earn a
detectable profit.
In general, the optimal strategy against perfect

opponents may not be the ideal strategy against
the more typical fallible kind. Despite consider-
able effort, however, researchers have not found
poker algorithms that perform considerably bet-
ter than game-theoretic solutions, even against
natural distributions of opponents. It has also
turned out that game-theoretic approaches have
been more successful than alternatives, even for

poker variants that are far frombeing exactly solved,
such as no-limit (where bets are unrestricted)
(25), or games with three or more players (26).
Much of the interest in game-theoretic rea-

soning for AI is driven by its applicability to real-
world problems. The most prominent area of
application in recent years, and our second exam-
ple, is that of security games, based on a pioneer-
ing series of systems developed by Tambe et al.
(27). In these systems, an agent decides how to
defend facilities (e.g., airport security through
placement of checkpoints) by solving a game
where an attacker is presumed to rationally plan
in response to the defender’s decision. This ap-
proach has been successfully deployed in a variety
of domains, including airport and airline sec-
urity and coast guard patrols.
As for any game-theoretic approach, the rec-

ommendations from these systems are sensitive
to assumptions made about the other agents
(here, attackers): their respective preferences,
beliefs, capabilities, and level of rationality. Rep-
resentational approaches from AI provide flexi-
bility, allowing the assumptionsmade in the strict
versions typically employed by game theorists to

be relaxed (28). The field of behavioral game
theory has developed detailed predictive models
based on how humans have been observed to
deviate from game-theoretic rationality (29). Such
predictive models can be readily incorporated in
existing game-theoretic reasoning algorithms, as
has beendemonstrated in the context ofmodeling
attackers in security games (30). An interesting
open question is whether the kinds of behavioral
models that best explain human decision-making
[see Wright and Leyton-Brown (31) for a meta-
study] will also prove effective in capturing the
bounded rationality of computational agents.

Designing multi-agent systems

At the multi-agent level, a designer cannot di-
rectly program behavior of the AIs but instead
defines the rules and incentives that govern
interactions among AIs. The idea is to change
the “rules of the game” (e.g., rewards associated
with actions and outcomes) to effect change in
agent behavior and achieve system-wide goals.
System goals might include, for instance, pro-
moting an allocation of resources to maximize
total value, coordinating behavior to complete a
project on time, or pooling decentralized infor-
mation to form an accurate prediction about a
future event. The power to change the interac-
tion environment is special and distinguishes
this level of design from the standard AI design
problem of performing well in the world as given.
An interesting middle ground is to take the

world as given but employ reliable entities—
mediators—that can interact with AIs and per-
form actions on their behalf (32). Introducing
mediating entities is relatively straightforward
in the new AI economy. To see how this can be
powerful, consider a mediated extension of the
classic prisoner’s dilemma game (Fig. 3). If both
AIs grant the mediator the authority to play on
their behalf (i.e., proxy right), it performs Co-
operate on behalf of both agents. However, if
only one AI grants the mediator proxy, it per-
forms Defect on behalf of that agent. In equi-
librium, both AIs grant proxy, and the effect is
to change the outcome from (Defect, Defect) to
(Cooperate, Cooperate), increasing utility to both
participants.
For the more general specification of rules of

interaction for rational agents, economics has a
well-developed mathematical theory of mecha-
nism design (33). The framework of mechanism
design has been fruitfully applied, for example, to
the design of matching markets (34) and auc-
tions (35). Mechanism design is a kind of inverse
game theory, with the rules inducing a game and
the quality of the system evaluated in an equi-
librium. In the standard model, design goals are
specified in terms of agent preferences on out-
comes, but these preferences are private and the
agents are self-interested.Amechanism is a trusted
entity, able to receive messages from agents that
make claims (perhaps untruthfully) about prefer-
ences and select an outcome (e.g., an allocation of
resources or a plan of behavior) on the basis of
thesemessages. The challenge is to align incentives
and promote truthful reports.
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Varian (36) has argued that the theory of
mechanism design may actually prove more rel-
evant for artificial agents than for human agents,
because AIs may better respect the idealized
assumptions of rationality made in this frame-
work. For example, one desirable property of a
mechanism is incentive compatibility, which stip-
ulates that truthful reports constitute an equi-
librium. Sometimes it is even possible to make
truthful reporting a dominant strategy (optimal
whatever others do), achieving the strong prop-
erty of strategy-proofness (37). It seems, however,
that people do not reliably understand this pro-
perty; evidence from medical matching markets,
and also from laboratory experiments, suggests
that some participants in strategy-proof matching
mechanisms try tomisrepresent their preferences
even though it provides no advantage (38, 39).
For artificial systems, in comparison, wemight

expect AIs to be truthful where this is optimal
and to avoid spending computation reasoning
about the behavior of others where this is not
useful (5). More generally, mechanism designs
for AI systems need not be simple because they
need not be understandable to people. On the
contrary, AI techniques such as preference rep-
resentation, preference elicitation, and search
algorithms can be used to turn themathematical
formalisms of mechanism design into concrete
computationalmethods (40–42). The design prob-
lem itself can also be usefully formulated as a
computational problem, with optimization and
machine learning used to find solutions to de-
sign problems for which analytical solutions are
unavailable (43–46).
The prospect of an economy of AIs has also

inspired expansions to new mechanism design
settings. Researchers have developed incentive-
compatible multiperiod mechanisms, consider-
ing such factors as uncertainty about the future
and changes to agent preferences because of
changes in local context (47–49). Another direc-
tion considers new kinds of private inputs be-
yond preference information (50, 51). For example,
in a team formation setting, each AI might mis-
report information about the capabilities of other
AIs in order to get itself selected for the team (52).
Similarly, AIs seeking to maximize task assign-
ments might provide false reports of experience
in task performance in order to mislead a learn-
ing mechanism constructing an automatic task
classifier (53). Systems of AIs can also create new
challenges formechanism design. One such chal-
lenge is false-name bidding, where an AI exploits
its ability to manage multiple identities. For ex-
ample, it may gain resources more cheaply by
dividing a request into a set of smaller requests,
each placed from a different identity under its
control. In response, researchers have developed
mechanisms that are robust to this new kind of
attack (54).
The important role of mechanism design in an

economy of AIs can be observed in practice. Search
engines run auctions to allocate ads to positions
alongside search queries. Advertisers bid for their
ads to appear in response to specific queries (e.g.,
“personal injury lawyer”). Ads are ranked according

to bid amount (as well as other factors, such as
ad quality), with higher-ranked ads receiving a
higher position on the search results page. Early
auction mechanisms employed first-price rules,
charging an advertiser its bid amount when its
ad receives a click. Recognizing this, advertisers
employed AIs to monitor queries of interest,
ordered to bid as little as possible to hold onto
the current position. This practice led to cascades
of responses in the formof biddingwars, amounting
to a waste of computation and market ineffi-
ciency (55). To combat this, search engines in-
troduced second-price auction mechanisms (37),
which charge advertisers based on thenext-highest
bid price rather than their own price. This ap-
proach (a standard idea of mechanism design)
removed the need to continually monitor the bid-
ding to get the best price for position, thereby end-
ing bidding wars (56).
In recent years, search engine auctions have

supported richer, goal-based bidding languages.

For example, an advertiser can ask to maximize
clicks over a weighted set of queries subject to a
budget constraint (57, 58). Search engines pro-
vide proxy agents that then bid on behalf of
advertisers to achieve the stated goal (59). This
introduction of proxy agents and the earlier
switch from first price to second price can be
interpreted as a computational application of a
fundamental concept in mechanism design—the
revelation principle (60–62). Briefly, this states
that if the rules of a mechanism and the equil-
ibrium strategies in thatmechanism are replaced
by a new mechanism that is functionally equiv-
alent to the composition of these rules and strat-
egies, then the new mechanism will be incentive
compatible. Although neither redesign provides
incentive compatibility in a formal sense, both
second-pricing and proxy bidding can be inter-
preted as accomplishing on behalf of advertisers
what they were doing (through AIs) in an earlier
design (see Fig. 4). Still other ad platform de-
signs are using a strategy-proof mechanism [the
Vickrey-Clarke-Groves mechanism (37, 63, 64)]
to make decisions about the space to allocate to
ads, which ads to allocate, and which (nonspon-
sored) content to display to a user (65).

The tangle between automated agents and the
design of rules of interaction also features prom-
inently in today’s financial markets, where the
dominance of computerized traders has, by most
accounts, qualitatively shaped the behavior of
these markets. Although details of implementa-
tion are closely held secrets, it is well understood
that techniques from AI and machine learning
are widely employed in the design and analysis
of algorithmic traders (66). Algorithmic trading
has enabled the deployment of strategies that
exploit speed advantages and has led in turn to a
costly arms race of measures to respond to market
information with minimum latency. A proposed
design response would replace continuous-time
auctions with periodic auctions that clear on the
order of once per second, thus negating the
advantage of tiny speed improvements (67, 68).
We describe two additional examples of the

design of multi-agent systems for an economy
of AIs. The first example system aggregates

information held by multiple AIs. The rules of a
system that achieves this goal can be engineered
purposefully through the design of a prediction
market (69). Popular versions of prediction mar-
kets feature questions such aswhowill be elected
U.S. president (e.g., Betfair offers many such mar-
kets). The basic idea of a prediction market is
to facilitate trade in securities contracts (e.g., a
possible contract will pay $1 if Hilary Clinton is
elected). The price that balances supply and de-
mand is then interpreted as a market prediction
(e.g., price $0.60 reflects probability 0.6 for the
payoff event).
Consider a domain with a large number of in-

terrelated random variables—for example, “flight
BA214 delayed bymore than 1 hour,” “snowstorm
in Boston,” “de-icing machine fail,” “incoming
flight BA215 delayed by more than 1 hour,” and
“security alert in London.” In a combinatorial
prediction market (70), a large bet on the con-
tract “de-icing machine fail” would affect the
price of “flight BA214 delayed bymore than 1 hour”
and all other connected events. A challenge is that
the number of conceivable events is exponential in
the number of random variables. Among other
properties, a goodmarket design should allow bets
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Fig. 4. Two generations of sponsored search mechanisms. Early designs were first price (FP), and
advertisers (ADV) used AIs (AI-POS) to maintain a position on the list of search results at the lowest
possible price. Second-price (SP) auction mechanisms were introduced, designed to replace the
combination of FP and AI-POS. Advertisers adopted new AIs (AI-GOAL) to achieve higher-level goals
such as tomaximize profit or tomaximize the number of clicks.The second price auction was extended to
include proxy agents (SP+Proxy), designed to replace the combination of SP and AI-GOAL.
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on all events about which AIs have information
(e.g., “de-icing machine fail AND all subsequent
flights from Boston delayed bymore than 1 hour”).
A good design should also align incentives—for
example, making it utility-maximizing to trade im-
mediately on current information until themarket
price reflects an agent’s belief. Progress in scaling
up combinatorial markets has been made by rela-
ting the problemof pricing bets towell-understood
problems in statistical inference and convex opti-
mization (71, 72). Related research advances are
being made by allowing AIs to transact in hypo-
theses that are acquired throughmachine learning
as well as trade directly in information signals
rather than beliefs (73–75).
The second example is the management of

information concerning the trustworthiness of
agents within an economy of AIs. Trust that a
counterparty will complete a transaction or in-
vest effort or resources is crucial for any well-
functioning economic system. A standard approach
is to associate participants with a reputation,
which can serve to align incentives in the present
under the threat of a damaged reputation and
lost opportunities in the future. In addition to
this problem of moral hazard (i.e., will agents
behave cooperatively when completing economic
transactions), reputation systems can address the
problem of adverse selection (i.e., will high-quality
agents choose to enter a market in the first place)
(76, 77).
A special challenge in an economy of AIs arises

because of the fluidity of identity and the ease
with which agents can be replaced. This raises,
for example, the specter of whitewashing attacks,
where an AI repeatedly runs down its reputation
before reentering with a different identity. With-
out the possibility of enforcing strong identities
that cannot be changed, this suggests a social
cost of fluid identities, where it becomes neces-

sary to impose a penalty on all new participants
and make them build up reputations from an
assumption of being untrustworthy (78).
We should also consider that machina eco-

nomicus will be strategic in sharing feedback on
other AIs. For example, in eBay’s original repu-
tation system, buyers were often reluctant to
leave negative feedback about deadbeat sellers,
because the sellers could retaliate with negative
feedback about the buyer. In response, eBay
introduced an additional feedback mechanism
that was one-directional from the buyer to the
seller and could not be easily traced to a parti-
cular buyer. The change resulted in a greater
amount of negative feedback (79).
The economy of AIs also offers positive oppor-

tunities for promoting trust through bookkeeping,
collecting feedback, and tracking the provenance
of feedback in novel reputationmechanisms (see
Fig. 5). AI researchers are designing reputation
systems that align incentives with making truth-
ful reports, while provably satisfying axiomatic
properties such as symmetry: Two agents that
are in an equivalent position from the perspec-
tive of reports made and received should have
the same trust score (80, 81). Another example
is the design of accounting systems that elicit
truthful reports about the resources contributed
or work performed by other AIs and enable the
design of systems to mitigate free-riding and
promote fair contributions to an economic sys-
tem (82). Still, the extent to which effective, multi-
agent AIs can be developed entirely through
computational infrastructure such as reputation
mechanisms and without recourse to legal sys-
tems remains an interesting open question.

Closing comments

Whatever one’s thoughts about when or whether
AI will transcend human-level performance, the

rapidly advancing capabilities of AI are fueling
considerable optimism and investment in AI
research. AI has surpassed or will likely soon
surpass humans in narrow domains such as
playing chess, controlling a jumbo jet during
cruise, making product recommendations, pric-
ing millions of products on an eCommerce plat-
form, reasoning about whether a patient is likely
to be re-admitted to a hospital, and detecting sig-
nals from a massive volume of financial news
stories.
Certainly, many fundamental challenges re-

main, including how to design reasoning and
inference methods that effectively balance the
benefit of additional computation with the costs
that may arise from additional delay to acting
in the world and how to design AI systems that
can learn and generalize from reward signals
in unconstrained domains. Given that decision
problems related to economic transactions are
often relativelywell structured, however, it seems
likely to us that AI will continue to make espe-
cially rapid inroads in economically important
applications. This in turn will ensure continued
effort on methods for rational, economic reason-
ing toward the broader goal of developing ma-
china economicus.
We should not leave the impression that AI

researchers unanimously embrace economic per-
spectives on single- or multi-agent AI. For some,
multi-agent economic models are still seen as a
distraction. After all, a centralized perspective
allows focusing on overall goals without worry-
ing about the incentives of individual parts of
the system. Others conduct research into multi-
agent systems composed of agents under the
control of the designer, so that they can be pro-
grammed in any way desired. Just as with cen-
tralized solutions, these so-called “cooperative”
multi-agent systems allow design without con-
cern for the self-interest of individual agents,
albeit often with decomposition or communi-
cation constraints. But cooperative versus self-
interested is really a difference in assumptions
on the power of a system designer, rather than
a technical dispute. The viewpoint that we as-
cribe to is that a large number of AI systems will,
given the existing structure of human economic
systems, be populated by AIs that are designed,
deployed, owned, and operated by a myriad of
different parties, each with possibly misaligned
goals. Finally, somemay object to the economic
approach on the basis that AIs are and will re-
main far from perfectly rational, simply by vir-
tue of physical and computational limits. More
direct models of the AIs’ computational behav-
ior, in terms of the automata they are, could in
principle be more accurate. The analytical util-
ity of a rationality abstraction for AIs is ulti-
mately an empirical question to be resolved as
AI progresses.
Among those adopting an economic approach,

there persist some disagreements on specific
techniques—for example, on the role of equilib-
rium reasoning. Even if agents can be viewed
as rational, some question whether it is plausi-
ble that they reach equilibrium configurations,
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particularly in situations where multiple equilib-
ria exist. As Shoham (83) argues, game theory
lacks a well-accepted pragmatic account of how
it should be deployed in concrete reasoning con-
texts. A positive view is that AI researchers, in
their efforts to operationalize economic reason-
ing, are developing exactly this needed body of
pragmatics.
Somemay object thatmechanismdesign is too

idealized even for systems of AIs—for example, in
its insistence on design under equilibrium behav-
ior, its assumption that rules of interaction can be
designed from scratch, and its lack of attention to
the details of the human and legal contexts in
which designed systems will operate. A positive
view is that AI systems are precisely the kinds of
environments where we can build tabula rasa
new rules of interaction, because these rules will
be realized through the Internet and as programs
running on computer servers. That such rules of
interaction can come into existence is as much a
matter of science and engineering as it is of
public policy.
As AI advances, we are confident that econo-

mic reasoning will continue to have an impor-
tant role in the design of single-agent and
multi-agent AIs, and we have argued that, as
economies of AIs continue to emerge, there will
need to be a new science to understand how to
design these systems. These AIs will no doubt
exert strong forces on the economy and broader
society; understanding the effect and extent of
this will shape the research agendas of both AI
and economics in years to come.
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