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After growing up together, and mostly growing apart in the second half of the 20th century,
the fields of artificial intelligence (AI), cognitive science, and neuroscience are
reconverging on a shared view of the computational foundations of intelligence that
promotes valuable cross-disciplinary exchanges on questions, methods, and results.
We chart advances over the past several decades that address challenges of perception
and action under uncertainty through the lens of computation. Advances include the
development of representations and inferential procedures for large-scale probabilistic
inference and machinery for enabling reflection and decisions about tradeoffs in effort,
precision, and timeliness of computations. These tools are deployed toward the goal of
computational rationality: identifying decisions with highest expected utility, while
taking into consideration the costs of computation in complex real-world problems in
which most relevant calculations can only be approximated.We highlight key concepts with
examples that show the potential for interchange between computer science, cognitive
science, and neuroscience.

I
magine driving down the highway on your
way to give an important presentation, when
suddenly you see a traffic jam looming ahead.
In the next few seconds, you have to decide
whether to stay on your current route or take

the upcoming exit—the last one for severalmiles—
all while your head is swimming with thoughts
about your forthcoming event. In one sense, this
problem is simple: Choose the path with the
highest probability of getting you to your event
on time. However, at best you can implement
this solution only approximately: Evaluating the
full branching tree of possible futures with high
uncertainty about what lies ahead is likely to be
infeasible, and you may consider only a few of
the vast space of possibilities, given the urgency
of the decision and your divided attention. How
best tomake this calculation? Should youmake a
snap decision on the basis of what you see right
now, or explicitly try to imagine the next several
miles of each route? Perhaps you should stop
thinking about your presentation to focus more
on this choice, or maybe even pull over so you
can think without having to worry about your
driving? The decision about whether to exit has
spawned a set of internal decision problems: how
much to think, how far should you plan ahead,
and even what to think about.
This example highlights several central themes

in the study of intelligence. First, maximizing some
measure of expected utility provides a general-

purpose ideal for decision-making under uncer-
tainty. Second, maximizing expected utility is
nontrivial for most real-world problems, necessi-
tating the use of approximations. Third, the choice
of howbest to approximatemay itself be a decision
subject to the expected utility calculus—thinking
is costly in time and other resources, and some-
times intelligence comes most in knowing how
best to allocate these scarce resources.
The broad acceptance of guiding action with

expected utility, the complexity of formulating
and solving decision problems, and the rise of
approximate methods for multiple aspects of
decision-makingunder uncertainty hasmotivated
artificial intelligence (AI) researchers to take a
fresh look at probability through the lens of com-
putation. This examination has led to the devel-
opment of computational representations and
procedures for performing large-scale probabil-
istic inference; methods for identifying best ac-
tions, given inferred probabilities; andmachinery
for enabling reflection and decision-making about
tradeoffs in effort, precision, and timeliness of
computations under bounded resources. Analo-
gous ideas have come to be increasingly important
in how cognitive scientists and neuroscientists
think about intelligence in human minds and
brains, often being explicitly influenced by AI re-
searchers and sometimes influencing them back.
In this Review, we chart this convergence of ideas
around the view of intelligence as computational
rationality: computing with representations, algo-
rithms, and architectures designed to approximate
decisions with the highest expected utility, while
taking into account the costs of computation.We
share our reflections about this perspective on
intelligence, how it encompasses interdiscipli-
nary goals and insights, and why we think it will
be increasingly useful as a shared perspective.

Models of computational rationality are built
on a base of inferential processes for perceiving,
predicting, learning, and reasoning under uncer-
tainty (1–3). Such inferential processes operate on
representations that encode probabilistic depen-
dencies among variables capturing the likelihoods
of relevant states in the world. In light of incom-
ing streams of perceptual data, Bayesian updating
procedures or approximations are used to prop-
agate information and to compute and revise
probability distributions over states of variables.
Beyond base processes for evaluating probabil-
ities, models of computational rationality require
mechanisms for reasoning about the feasibility
and implications of actions. Deliberation about
the best action to take hinges on an ability tomake
predictions about how different actions will in-
fluence likelihoods of outcomes and a considera-
tion of the value or utilities of the outcomes (4).
Learning procedures make changes to parame-
ters of probabilisticmodels so as to better explain
perceptual data and provide more accurate in-
ferences about likelihoods to guide actions in
the world.
Last, systems with bounded computational

power must consider important tradeoffs in the
precision and timeliness of action in the world.
Thus, models of computational rationality may
include policies or deliberative machinery that
make inferences and decisions at the “metalevel”
in order to regulate base-level inferences. These
decisions rely on reflection about computational
effort, accuracy, and delay associated with the
invocation of different base-level algorithms in dif-
ferent settings. Such metalevel decision-making,
or “metareasoning,” can be performed via real-
time reflection or as policies computed during
offline optimizations. Either way, the goal is to
identify configurations and uses of base-level pro-
cesses with the goal of maximizing the expected
value of actions taken in the world. These com-
putational considerations become increasingly
important when we consider richer representa-
tions (graphs, grammars, and programs) that sup-
port signature features of human intelligence, such
as recursion and compositionality (5).
Key advances in AI on computational machin-

ery for performing inference, identifying ideal
actions, and deliberating about the end-to-end
operation of systems have synergies and reso-
nances with human cognition. After a brief his-
tory of developments in AI, we consider links
between computational rationality and findings
in cognitive psychology and neuroscience.

Foundations and early history

AI research has its roots in the theory of compu-
tability developed in the 1930s. Efforts then high-
lighted the power of a basic computing system
(the Turing Machine) to support the real-world
mechanization of any feasible computation (6).
The promise of such general computation and the
fast-paced rise of electronic computers fueled the
imagination of early computer scientists about
the prospect of developing computing systems
that might one day both explain and replicate
aspects of human intelligence (7, 8).
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Early pioneers in AI reflected about uses of
probability and Bayesian updating in learning,
reasoning, and action. Analyses by Cox, Jaynes,
and others had provided foundational argu-
ments for probability as a sufficient measure
for assessing and revising the plausibility of
events in light of perceptual data. In influential
work, von Neumann andMorgenstern published
results on utility theory that defined ideal, or
“rational,” actions for a decision-making agent
(4). They presented an axiomatic formalization
of preferences and derived the “principle of max-
imum expected of utility” (MEU). Specifically,
they showed that accepting a compact and com-
pelling set of desiderata about preference order-
ings implies that ideal decisions are those actions
thatmaximize an agent’s expected utility, which is
computed for each action as the average utility
of the action when considering the probability
of states of the world.
The use of probability and MEU decision-

making soon pervaded multiple disciplines, in-
cluding some areas of AI research, such as projects
in robotics. However, the methods did not gain

a large following in studies of AI until the late
1980s. Fordecades after theworkby vonNeumann
and Morgenstern, probabilistic and decision-
theoretic methods were deemed by many in the
AI research community to be too inflexible, sim-
plistic, and intractable for use in understand-
ing and constructing sophisticated intelligent
systems. Alternative models were explored, in-
cluding logical theorem-proving and various
heuristic procedures.
In the face of the combinatorial complexity

of formulating and solving real-world decision-
making, a school of research on heuristic mod-
els of bounded rationality blossomed in the
later 1950s. Studies within this paradigm include
the influential work of Simon and colleagues,
who explored the value of informal, heuristic
strategies that might be used by people—as
well as by computer-based reasoning systems—
to cut through the complexity of probabilistic
inference and decision-making (9). The per-
spective of such heuristic notions of bounded
rationality came to dominate a large swath of
AI research.

Computational lens on probability
In the late 1980s, a probabilistic renaissance
swept through mainstream AI research, fueled
in part by pressures for performing sound in-
ference about likelihoods of outcomes in appli-
cations of machine reasoning to such high-stakes
domains as medicine. Attempts to mechanize
probability for solving challenges with inference
and learning led to new insights about proba-
bility and stimulated thinking about the role of
related representations and inference strategies
in human cognition. Perhaps most influentially,
advances in AI led to the formulation of rich
network-based representations, such as Bayesian
networks, broadly referred to as probabilistic
graphical models (PGMs) (1, 2). Belief updating
procedures were developed that use parallel and
distributed computation to update constellations
of random variables in the networks.
The study of PGMs has developed in numer-

ous directions since these initial advances: effi-
cient approximate inference methods; structure
search over combinatorial spaces of network struc-
tures; hierarchical models for capturing shared
structure across data sets; active learning to
guide the collection of data; and probabilistic
programming tools that can specify rich, context-
sensitive models via compact, high-level pro-
grams. Such developments have put the notions
of probabilistic inference and MEU decision-
making at the heart of many contemporary AI
approaches (3) and, together with ever-increasing
computational power and data set availability,
have been responsible for dramatic AI successes
in recent years (such as IBM’s Watson, Google’s
self-driving car, and Microsoft’s automated as-
sistant). These developments also raise new com-
putational and theoretical challenges: How can
wemove from the classical view of a rational agent
who maximizes expected utility over an exhaus-
tively enumerable state-action space to a theory
of the decisions faced by resource-bounded AI
systems deployed in the real world (Fig. 1), which
place severe demands on real-time computation
over complex probabilistic models?

Rational decisions under bounded
computational resources

Perception and decision-making incur computa-
tional costs. Such costs may be characterized in
different ways, including losses that come with
delayed action in time-critical settings, interfer-
ence among multiple inferential components,
and measures of effort invested. Work in AI has
explored the value of deliberating at the meta-
level about the nature and extent of perception
and inference. Metalevel analyses have been aimed
at endowing computational systems with the
ability to make expected utility decisions about
the ideal balance between effort or delay and
the quality of actions taken in the world. The use
of such rational metareasoning plays a central
role in decision-theoretic models of bounded ra-
tionality (10–14).
Rational metareasoning has been explored in

multiple problem areas, including guiding computa-
tion in probabilistic inference and decision-making
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Fig. 1. Examples of modern AI systems that use approximate inference and decision-making.
These systems cannot rely on exhaustive enumeration of all relevant utilities and probabilities. Instead,
they must allocate computational resources (including time and energy) to optimize approximations
for inferring probabilities and identifying best actions. (A) The internal state of IBM Watson as it
plays Jeopardy!, representing a few high-probability hypotheses. [Photo by permission of IBM News
Room] (B) The internal state of the Google self-driving car, which represents those aspects of the world
that are potentially most valuable or costly for the agent in the foreseeable future, such as the po-
sitions and velocities of the self-driving car, other cars and pedestrians, and the state of traffic signals.
[Reprinted with permission from Google] (C) The Assistant (left), an interactive automated secretary
fielded at Microsoft Research, recognizes multiple people in its proximity (right); deliberates about their
current and future goals, attention, and utterances; and engages in natural dialog under uncertainty.
[Permission from Microsoft]
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(11, 13, 14), controlling theorem proving (15),
handling proactive inference in light of incom-
ing streams of problems (16), guiding heuristic
search (13, 17), and optimizing sequences of ac-
tion (18–20). Beyond real-time metareasoning,
efforts have explored offline analysis to learn
and optimize policies for guiding real-timemeta-
reasoning and for enhancing real-time inference
via such methods as precomputing and caching
portions of inference problems into fast-response
reflexes (21).
The value of metalevel reflection in computa-

tional rationality is underscored by the complex-
ity of probabilistic inference in Bayesian networks,
which has been shown to be in the nondeter-
ministic polynomial-time (NP)–hard complexity
class (22). Such worst-case complexity highlights
the importance of developing approximations
that exploit the structure of real-world problems.
A tapestry of approximate inferential methods
have been developed, including procedures that
use Monte Carlo simulation, bounding methods,
and methods that decompose problems into
simpler sets of subproblems (1). Some methods
allow a system to trade off computation time
for accuracy. For example, sampling procedures
can tighten the bounds on probabilities of inter-
est with additional computation time. Charac-
terizations of the tradeoffs can be uncertain in
themselves. Other approaches to approximation
consider tradeoffs incurred with modulating the
complexity of models, such as changing the size
of models and the level of abstraction of evi-
dence, actions, and outcomes considered (11, 21).
A high-level view of the interplay between the

value and cost of inference at different levels of
precision is captured schematically in Fig. 2A.

Here, the value of computing with additional
precision on final actions and cost of delay for
computation are measured in the same units of
utility. A net value of action is derived as the
difference between the expected value of action
based on a current analysis and the cost of com-
putation required to attain the level of analysis.
In the situation portrayed, costs increase in a
linear manner with a delay for additional com-
putation, while the value of action increases with
decreasing marginal returns. We see the attain-
ment of an optimal stopping time, in which at-
tempts to compute additional precision come at
a net loss in the value of action. As portrayed in
the figure, increasing the cost of computation
would lead to an earlier ideal stopping time. In
reality, we rarely have such a simple economics
of the cost and benefits of computation. We are
often uncertain about the costs and the expected
value of continuing to compute and so must
solve a more sophisticated analysis of the ex-
pected value of computation. A metalevel rea-
soner considers the current uncertainties, the
time-critical losseswith continuing computation,
and the expected gains in precision of reasoning
with additional computation.
As an example, consider a reasoning system

that was implemented to study computational
rationality for making inferences and providing
recommendations for action in time-criticalmed-
ical situations. The system needs to consider the
losses incurred with increasing amounts of delay
with action that stems from the time required for
inference about the best decision to take in a
setting. The expected value of the best decision
may diminish as a system deliberates about a
patient’s symptoms and makes inferences about

physiology. A trace of a reasoning session guided
by rational metareasoning of a time-critical
respiratory situation in emergency medicine is
shown in Fig. 2B (14). An inference algorithm
(named Bounded Conditioning) continues to
tighten the upper and lower bounds on a critical
variable representing the patient’s physiology,
using a Bayesian network to analyze evidence.
The system is uncertain about the patient’s state,
and each state is associated with a different time
criticality and ideal action. The system continues
to deliberate at the metalevel about the value of
continuing to further tighten the bounds. It mon-
itors this value via computation of the expected
value of computation. When the inferred ex-
pected value of computation goes to zero, the
metalevel analysis directs the base-level system
to stop and take the current best inferred base-
level action possible.

Computational rationality in mind
and brain

In parallel with developments in AI, the study
of human intelligence has charted a similar
progression toward computational rationality.
Beginning in the 1950s, psychologists proposed
that humans are “intuitive statisticians,” using
Bayesian decision theory to model intuitive
choices under uncertainty (23). In the 1970s and
1980s, this hypothesis met with resistance from
researchers who uncovered systematic fallacies
in probabilistic reasoning and decision-making
(24), leading some to adopt models based on in-
formal heuristics and biases rather than norma-
tive principles of probability and utility theory
(25). The broad success of probabilistic and
decision-theoretic approaches in AI over the past

two decades, however, has helped
to return these ideas to the center
of cognitive modeling (5, 26–28).
The development of methods for
approximate Bayesian updating via
distributed message passing over
large networks of variables suggests
that similar procedures might be
used for large-scale probabilistic in-
ference in the brain (29). At the same
time, researchers studying human
judgment and decision-making con-
tinue to uncoverways in which peo-
ple’s cognitive instincts appear far
from the MEU ideals that econo-
mists and policymakers might have
hoped for.
Computational rationality offers

a framework for reconciling these
contradictory pictures of human in-
telligence. If the brain is adapted to
compute rationally with bounded
resources, then “fallacies”may arise
as a natural consequence of this
optimization (30). For example, a
generic strategy for approximating
Bayesian inference is by sampling
hypotheses, with the sample-based
approximation converging to the true
posterior as more hypotheses are
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sampled (1). Evidence suggests that humans
use this strategy across several domains, includ-
ing causal reasoning (31), perception (32, 33),
and category learning (34). Sampling algorithms
can also be implemented in biologically plausible
neural circuits (35), providing a rational expla-
nation for the intrinsic stochasticity of neurons.
We see a correspondence between the sam-

pling algorithms humans appear to use and those
used in state-of-the-art AI systems. For example,
particle filters—sequential sampling algorithms

for trackingmultiple objectsmoving in a dynamic
uncertain environment (36)—are at the heart of
the Google self-driving car’s picture of its sur-
roundings (Fig. 1B) and also may describe how
humans track multiple objects (Fig. 3B) (32).
When only a small number of hypotheses are
sampled, various biases emerge that are con-
sistent with human behavior. For instance, “gar-
den path” effects in sentence processing, in
which humans perseverate on initially promising
hypotheses that are disconfirmed by subse-

quent data, can be explained by particle filters
for approximate online parsing in probabilistic
grammars (Fig. 3A) (37). These biases may in
fact be rational under the assumption that sam-
pling is costly and most gains or losses are small,
as in many everyday tasks; then, utility can be
maximized by sampling as few as one or a few
high-posterior probability hypotheses for each
decision (Fig. 3C) (38).
This argument rests crucially on the assertion

that the brain is equipped with metareasoning
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mechanisms sensitive to the costs of cognition.
Some such mechanisms may take the form of
heuristic policies hardwired by evolutionary
mechanisms; we call these “heuristic” because
they would be metarational only for the range
of situations that evolution has anticipated. There
is also evidence that humans have more adaptive
metareasoning mechanisms sensitive to the costs
of cognition in online computation. In recent
work with the “demand selection” task (39–41),
participants are allowed to choose between two
cognitive tasks that differ in cognitive demand
and potential gains. Behavioral findings show
that humans trade off reward and cognitive ef-
fort rationally according to a joint utility function
(40). Brain imaging of the demand selection task
has shown that activity in the lateral prefrontal
cortex, a region implicated in the regulation of
cognitive control, correlates with subjective re-
ports of cognitive effort and individual differences
in effort avoidance (41).
Several recent studies have provided support

for rational metareasoning in human cognition
when computational cost and reward tradeoffs
are less obvious (42, 43). As an example, humans
have been found to consistently choose list-
sorting strategies that rationally trade time and
accuracy for a particular list type (42). This study
joins earlier work that has demonstrated adap-
tive strategy selection in humans (44, 45) but
goes beyond them by explicitly modeling strategy
selection using a measure of the value of com-
putation. In another study (46), humans were
found to differentially overestimate the frequency
of highly stressful life events (such as lethal acci-
dents and suicide). This “fallacy” can be viewed
as rational under the assumption that only a small
number of hypotheses can be sampled: Expected
utility is maximized by a policy of utility-weighted
sampling.

Computational tradeoffs in
sequential decision-making

Computational rationality has played an impor-
tant role in linking models of biological intelli-
gence at the cognitive and neural levels in ways
that can be seen most clearly in studies of se-
quential decision-making. Humans and other
animals appear to make use of different kinds
of systems for sequential decision-making: “model-
based” systems that use a rich model of the
environment to form plans, and a less complex
“model-free” system that uses cached values to
make decisions (47). Although both converge
to the same behavior with enough experience,
the two kinds of systems exhibit different trade-
offs in computational complexity and flexibility.
Whereas model-based systems tend to be more
flexible than the lighter-weight model-free sys-
tems (because they can quickly adapt to changes
in environment structure), they rely on more ex-
pensive analyses (for example, tree-search or dy-
namic programming algorithms for computing
values). In contrast, the model-free systems use
inexpensive, but less flexible, look-up tables or
function approximators. These efforts have con-
ceptual links to efforts in AI that have sought to

reduce effort and to speed up responses in real
time by optimizing caches of inferences via off-
line precomputation (21).
Studies provide evidence thatmodel-based and

model-free systems are used in animal cognition
and that they are supported by distinct regions
of the prefrontal cortex (48) and striatum (49).
Evidence further suggests that the brain achieves
a balance between computational tradeoffs by
using an adaptive arbitration between the two
kinds of systems (50, 51). One way to implement
such an arbitration mechanism is to view the
invocation of the model-based system as a meta-
action whose value is estimated by the model-
free system (51).
Early during learning to solve a task, when the

model-free value estimates are relatively inaccu-
rate, the benefits of using the model-based sys-

tem outweigh its cognitive costs. Thus,moderately
trained animals will be sensitive to changes in
the causal structure of the environment (for
example, the devaluation of a food reinforcer by
pairing it with illness). After extensive training,
the model-free values are sufficiently accurate
to attain a superior cost-benefit tradeoff (46).
This increasing reliance on themodel-free system
manifests behaviorally in the form of “habits”—
computationally cheap but inflexible policies.
For example, extensively trained animals will
continue pursuing a policy that leads to previously
devalued reinforcers (52).
The arbitration mechanism described above

appears to adhere to the principles of compu-
tational rationality: The model-based system is
invoked when deemed computationally advan-
tageous through metareasoning (Fig. 4A). For
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location from ensemble recordings in hippocampal area CA3. [Reprinted with permission from (56)]
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right) [reprinted with permission from (60)], for model-free control, and sophisticated forward search
strategies, such as Monte Carlo Tree Search (bottom right) [reprinted with permission from (61)], for
model-based control.



example, reliance on the model-based system
decreases when the availability of cognitive
resources are transiently disrupted (53). Recent
data show that the arbitration mechanism may
be supported by the lateral prefrontal cortex (54),
the same region involved in the registration of
cognitive demand.
Finer-grained metareasoning may play a role

within the richer model-based systems them-
selves. One way to approximate values is to adapt
the sampling hypothesis to the sequential deci-
sion setting, stochastically exploring trajectories
through the state space and using these sample
paths to construct a Monte Carlo estimator. Re-
cently, a class of sampling algorithms known as
Monte Carlo Tree Search (MCTS) has gained con-
siderable traction on complex problems by bal-
ancing exploration and exploitation to determine
which trajectories to sample. MCTS has achieved
state-of-the-art performance in computer Go as
well as a number of other difficult sequential
decision problems (55). A recent study analyzed
MCTS within a computational rationality frame-
work and showed how simulation decisions
can be chosen to optimize the value of com-
putation (20).
There is evidence that the brain might use

an algorithm resembling MCTS to solve spatial
navigation problems. In the hippocampus, “place
cells” respond selectively when an animal is in
a particular spatial location and are activated
sequentially when an animal considers two dif-
ferent trajectories (Fig. 4B) (56). Pfeiffer and Foster
(57) have shown that these sequences predict an
animal’s immediate behavior, even for new start
and goal locations. It is unknown whether for-
ward sampling observed in place cells balances
exploration and exploitation as in MCTS, explor-
ing spatial environments the wayMCTS explores
game trees, or whether they are sensitive to the
value of computation. These are important stand-
ing questions in the computational neuroscience
of decision-making.
At the same time, AI researchers are beginning

to explore powerful interactions between model-
based and model-free decision-making systems
parallel to the hybrid approaches that computa-
tional cognitive neuroscientists have investigated
(Fig. 4C). Model-free methods for game-playing
based on deep neural networks can, with exten-
sive training,match or exceedmodel-basedMCTS
approaches in the regimes that they have been
trained on (58). Yet, combinations of MCTS and
deep-network approaches beat either approach
on its own (59) and may be a promising route to
explain how human decision-making in complex
sequential tasks can be so accurate and so fast
yet still flexible to replan when circumstances
change—the essence of acting intelligently in an
uncertain world.

Looking forward

Computational rationality offers a potential uni-
fying framework for the study of intelligence in
minds, brains, and machines, based on three
core ideas: that intelligent agents fundamen-
tally seek to form beliefs and plan actions in

support of maximizing expected utility; that
ideal MEU calculations may be intractable for
real-world problems, but can be effectively ap-
proximated by rational algorithms that maximize
amore general expected utility incorporating the
costs of computation; and that these algorithms
can be rationally adapted to the organism’s spe-
cific needs, either offline through engineering
or evolutionary design, or online through meta-
reasoning mechanisms for selecting the best
approximation strategy in a given situation.
We discussed case studies in which these ideas
are being fruitfully applied across the disci-
plines of intelligence, but we admit that a ge-
nuine unifying theory remains mostly a promise
for the future. We see great value in pursuing
new studies that seek additional confirmation
(or disconfirmation) of the roles ofmachinery for
cost-sensitive computation in human cogni-
tion, and for enabling advances in AI. Although
we cannot foresee precisely where this road
leads, our best guess is that the pursuit itself is
a good bet—and as far as we can see, the best
bet that we have.
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