Multiagent Planning with Factored MDPs

Carlos Guestrin Daphne Koller Ronald Parr
Computer Science Dept Computer Science Dept Computer Science Dept
Stanford University Stanford University Duke University
guestrin@cs.stanford.edu koller@cs .stanford.edu parr@cs.duke.edu
Abstract

We present a principled and efficient planning algorithm for cooperative multia-
gent dynamic systems. A striking feature of our method is that the coordination
and communication between the agents is not imposed, but derived directly from
the system dynamics and function approximation architecture. We view the en-
tire multiagent system as a single, large Markov decision process (MDP), which
we assume can be represented in a factored way using a dynamic Bayesian net-
work (DBN). The action space of the resulting MDP is the joint action space of
the entire set of agents. Our approach is based on the use of factored linear value
functions as an approximation to the joint value function. This factorization of
the value function allows the agents to coordinate their actions at runtime using
a natural message passing scheme. We provide a simple and efficient method
for computing such an approximate value function by solving a single linear pro-
gram, whose size is determined by the interaction between the value function
structure and the DBN. We thereby avoid the exponential blowup in the state and
action space. We show that our approach compares favorably with approaches
based on reward sharing. We also show that our algorithm is an efficient alterna-
tive to more complicated algorithms even in the single agent case.

1 Introduction

Consider a system where multiple agents, each with its own set of possible actions and its
own observations, must coordinate in order to achieve a common goal. We want to find a
mechanism for coordinating the agents’ actions so as to maximize their joint utility. One
obvious approach to this problem is to represent the system as a Markov decision process
(MDP), where the “action” is a joint action for all of the agents and the reward is the total
reward for all of the agents. Unfortunately, the action space is exponential in the number
of agents, rendering this approach impractical in most cases. Alternative approaches to
this problem have used local optimization for the different agents, either via reward/value
sharing [11, 13] or direct policy search [10].

We present a novel approach based on approximating the joint value function as a linear
combination of local value functions, each of which relates only to the parts of the system
controlled by a small number of agents. We show how such factored value functions al-
low the agents to find a globally optimal joint action using a very natural message passing
scheme. We provide a very efficient algorithm for computing such a factored approxima-
tion to the true value function using a linear programming approach. This approach is of
independent interest, as it is significantly faster and compares very favorably to previous
approximate algorithms for single agent MDPs. We also compare our multiagent algorithm
to the multiagent reward and value sharing algorithms of Schneider et al. [11], showing that
our algorithm achieves superior performance which in fact is close to the achievable opti-
mum for this class of problems.

(a) (b)
Figure 1: (a) Coordination graph for a 4-agent problem. (b) A DBN for a 4-agent MDP.

2 Cooperative Action Selection

We begin by considering a simpler problem of selecting a globally optimal joint action
in order to maximize the joint immediate value achieved by a set of agents. Suppose we
have a collection of agents, where each agent j chooses an action A ;. We use A to denote
{Ai,...,Ay}. Each agent j has a local Q function (), which represents its local contri-
bution to the total utility function. The agents are jointly trying to maximize Q = j Q.
An agent’s local); function might be influenced by its action and those of some other
agents; we define the scope Scope[Q ;] C A to be the set of agents whose action influences
Q;. Each (0; may be further decomposed as a linear combination of functions that involve
fewer agents; in this case, the complexity of the algorithm may be further reduced.

Our task is to select a joint action a that maximizes »_; @;(a). The fact that the Q;
depend on the actions of multiple agents forces the agents to coordinate their action choices.
We can represent the coordination requirements of the system using a coordination graph,
where there is a node for each agent and an edge between two agents if they must directly
coordinate their actions to optimize some particular ¢);. Fig. 1(a) shows the coordination
graph for an example where Q = Q1 (a1, as) + Q2(a2,a4) + Qs(ar,a3) + Q4(as,aq). A
graph structure suggests the use of a cost network [5], which can be solved using non-serial
dynamic programming [1] or a variable elimination algorithm which is virtually identical
to variable elimination in a Bayesian network.

The key idea is that, rather than summing all functions and then doing the maximization,
we maximize over variables one at a time. Specifically, when maximizing over a;, only
summands involving a; participate in the maximization. Let us begin our optimization
with agent 4. To optimize A, functions); and ()5 are irrelevant. Hence, we obtain:

max (1(a1,as) + Qs(ar,as) + max[@Qa(az,as) + Q4(as,as)].

a1,a2,a3 a4
We see that to optimally choose A4, the agent must know the values of As and Az. In
effect, it is computing a conditional strategy, with a (possibly) different action choice for
each action choice of agents 2 and 3. Agent 4 can summarize the value that it brings to
the system in the different circumstances using a new function e4 (A, A3) whose value
at the point as, ag is the value of the internal max expression. Note that e4 introduces a
new induced communication dependency between agents Ao and Az, the dashed line in
Fig. 1(a).

Our problem now reduces to computing maxg, a,,05 @1(01,02) + Q3(a1,a3) +
es(as,as), having one fewer agent. Next, agent 3 makes its decision, giving:
MaXg, o, @1(a1,a2) + es(a1, az2), where ez(ar,as) = maxy,[@s(a1,as) + e1(az,as)].
Agent 2 now makes its decision, giving e2(a1) = max,,[Q1(a1,a2) + e3(a,az)], and
agent 1 can now simply choose the action a; that maximizes e; = max,, e2(a1).

We can recover the maximizing set of actions by performing the entire process in re-
verse: The maximizing choice for e; selects the action aj for agent 1. To fulfill its commit-
ment to agent 1, agent 2 must choose the value a3 which maximizes e»(a}). This, in turn,
forces agent 3 and then agent 4 to select their actions appropriately.

In general, the algorithm maintains a set F of functions, which initially contains
{@1,...,Q4}. The algorithm then repeats the following steps: (1) Select an unelimi-
nated agent A;. (2) Take all ey, ...,er, € F whose scope contains A;. (3) Define a new
function e = max,,) €; and introduce it into J; the scope of e is Ule Scopele;]—{A:}.
As above, the maximizing action choices are recovered by sending messages in the reverse
direction. The cost of this algorithm is linear in the number of new “function values” intro-
duced, or exponential in the induced width of the coordination graph [5]. Furthermore, each
agent does not need to communicate directly with every other agent, instead the necessary
communication bandwidth will also be the induced width of the graph, further simplifying
the coordination mechanism. We note that this algorithm is essentially a special case of the
algorithm used to solve influence diagrams with multiple parallel decisions [7] (as is the
one in the next section). However, to our knowledge, these ideas have not been applied to
the problem of coordinating the decision making process of multiple collaborating agents.

3 One-Step Lookahead

We now consider two elaborations to the action selection problem of the previous section.
First, we assume that the agents are acting in a space described by a set of discrete state vari-
ables, X = {X7 ... X, }, where each X; takes on values in some finite domain Dom(X;).
A state x defines a value z; € Dom(X;) for each variable X;. The scope of the local @ ;
functions that comprise the value can include both action choices and state variables. We
assume that the agents have full observability of the relevant state variables, so by itself,
this extension is fairly trivial: The (); functions define a conditional cost network. Given
a particular state z1, ... ,z,, the agents instantiate the state variables and then solve the
cost network as in the previous section. However, we note that the agents do not actually
need to have access to all of the state variables: agent j only needs to observe the variables
that are in the scope of its local (); function, thereby decreasing considerably the amount
of information each agent needs to observe.

The second extension is somewhat more complicated: We assume that the agents are
trying to maximize the sum of an immediate reward and a value that they expect to receive
one step in the future. We describe the dynamics of the system G using a dynamic decision
network (DDN) [4]. Let X; denote the variable X; at the current time and X the variable
at the next step. The fransition graph of a DDN is a two-layer directed acyclic graph G
whose nodes are {A1,...,4,,X1,...,X,, X],..., X}, and where only nodes in X'
have parents. We denote the parents of X/ in the graph by Parents(X]). For simplicity
of exposition, we assume that Parents(X]) C X U A. (This assumption can be relaxed,
but our algorithm becomes somewhat more complex.) Each node X/ is associated with a
conditional probability distribution (CPD) P (X | Parents(X)). The transition probabil-
ity P(x' | x,a) is then defined to be [[, P(x] | u;), where u; is the value in x, a of the
variables in Parents(X]). The immediate rewards are a set of functions r1, ... , 74, and the
next-step values are a set of functions hq, ... , hy. Here, we assume that both 7;’s and h;’s
are functions that depend only on a small set of variables.

Fig. 1(b) shows a DDN for a simple four-agent problem, where the ovals represent the
variables X; and the rectangles the agent actions. The diamond nodes in the first time step
represent the immediate reward, while the h nodes in the second time step represent the
future value associated with a subset of the state variables.

For any setting of the state variables, x, the agents aim to maximize V(x) =
MaXg,, o, 25— (75 (%,a)+ 2 P(x' [x,a)h;(x')],ie., the immediate reward plus the
expected value of the next state. The expectation is a summation over an exponential num-
ber of future states. As shown in [8], this can be simplified substantially. For example, if we
consider the function h; (X7) in Fig. 1(b), we can see that its expected value is a function
only of X1, A1, A>. More generally, we define g;(x,a) = >, P(x' | x,a)h;(x'). Recall
our assumption that the scope of each h; is only a small subset of variables C;. Then,

the scope of g; is I'(C;) = Ux;ecy Parents(X]). Specifically, g;(x,a) = > .. P(cj |
zj)h;(c}), where z; is a value of I'(C;). Note that the cost of the computation depends
linearly on |Dom(I'(C;))|, which depends on C; (the scope of h;) and on the complexity
of the process dynamics.

By replacing the expectation with the backprojection, we can once again generate a set
of local () functions () ; = r; + g;, and apply our coordination graph algorithm unchanged.

4 Markov Decision Processes

We now turn our attention to the substantially more complex case where the agents are
acting in a dynamic environment, and are jointly trying to maximize their expected long-
term return. The Markov Decision Process (MDP) framework formalizes this problem. An
MDP is defined as a 4-tuple (X, A, R, P) where: X is a finite set of N = |X| states; A
is a set of actions; R is a reward function R : X x A — IR, such that R(x, a) represents
the reward obtained in state x after taking action a; and P is a Markovian transition model
where P(x' | x,a) represents the probability of going from state x to state x’ with action
a. We assume that the MDP has an infinite horizon and that future rewards are discounted
exponentially with a discount factor y € [0,1).

The optimal value function V* is defined so that the value of a state must be the maxi-
mal value achievable by any action at that state. More precisely, we define Qv (x,a) =
R(x,a) + v . P(x' | x,a)V(x'), and the Bellman operator T* to be T*V(x) =
max, Qy(x,a). The optimal value function V* is the fixed point of 7*: V* = T*V*,
A stationary policy 7 for an MDP is a mapping 7 : X — A, where 7(x) is the action the
agent takes at state x. For any value function V, we can define the policy obtained by acting
greedily relative to V: Greedy(V)(x) = arg maxa Qy(x,a). The greedy policy relative to
the optimal value function V* is the optimal policy 7* = Greedy(V*).

There are several algorithms for computing the optimal policy. One is via linear pro-
gramming. Numbering the states in X as x1, ... ,Xn,our variables are Vy, ... , Vx, where
V; represents V(x;). The LP is:

Minimize: Y, a(x;)V;;

2

Subjectto: Vi > R(x;,a) +v> , P(x; | x;,a)V, Vx; € X,a € A

The state relevance weights a are any convex weights, with a(x) > 0and >~ a(x) = 1.
In our setting, the state space is exponentially large, with one state for each as-
signment x to {X1q,...,X,}. We use the common approach of restricting attention to
value functions that are compactly represented as a linear combination of basis functions
H = {hy,...,h}. A linear value function over H is a function V that can be written as
V(x) = Ele w;h;(x) for some coefficients w = (w1,... ,wyg)".
The LP approach can be adapted to use this value function representation [12]:

Variables: wj,...,wg ;
Minimize:). ajw; ;
Subjectto: »°;_) wih;(x;) > R(x;,a)+
¥ ¥ P(x) | xi,0) Sh L wihi(x}); ¥x;€X,a€ A

Where o = 3 «a(x;)h;(x;). This transformation has the effect of reducing the number
of free variables in the LP to k but the number of constraints remains |X| x |4|. There
is, in general, no guarantee as to the quality of the approximation Ele w;h;j, but recent
work of de Farias and Van Roy [3] provides some analysis of the error relative to that of
the best possible approximation in the subspace, and some guidance as to selecting the a’s
so as to improve the quality of the approximation.

5 Factored MDPs

Factored MDPs [2] allow the representation of large structured MDPs by using a dynamic
Bayesian network to represent the transition model. Our representation of the one-step
transition dynamics in Section 3 is precisely a factored MDP, where we factor not only the
states but also the actions. In [8], we proposed the use of factored linear value functions
to approximate the value function in a factored MDP. These value functions are a weighted
linear combination of basis functions, as above, but each basis function is restricted to de-
pend only on a small subset of state variables. The h functions in Fig. 1(b) are an example.
If we had a value function V represented in this way, then we could use our algorithm of
Section 3 to implement Greedy()) by having the agents use our message passing coordina-
tion algorithm at each step. (Here we have only one function h per agent, but our approach
extends trivially to the case of multiple i functions.)

In previous work [9, 6], we presented algorithms for computing approximate value func-
tions of this form for factored MDPs. These algorithms can circumvent the exponential
blowup in the number of state variables, but explicitly enumerate the action space of the
MDP, making them unsuitable for the exponentially large action space in multiagent MDPs.
We now provide a novel algorithm based on the LP of the previous section. In particular,
we show how we can solve this LP exactly in closed form, without explicitly enumerating
the exponentially many constraints.

Our first task is to compute the coefficients a; in the objective function. Note that, o; =
Yo a(x)hj(x) = Ecj a(cj)hj(c;), as basis h; has scope restricted to C;. Here, a(c;)
represents the marginal of the state relevance weights o over C;. Thus, the coefficients a;
can be pre-computed efficiently if « is represented compactly by its marginals a(C). Our
experiments used uniform weights a(x) = ﬁ , thus, a(c;) = ﬁ

We must now deal with the exponentially large constraint set. Using the backprojection
from Section 3, we can rewrite our constraints as:

k k
ijhj(x) > R(x,a) +’wajgj(x,a); VxeX,ac A
j=1

=1

where g;j(x,a) = > ., P(x' | x,a)h;(x'). Note that this exponentially large set of linear
constraints can be replaced by a single, equivalent, non-linear constraint:

k
0> max R(x,a) + > wilyg;(x,a) — hj(x)].

=1

In a factored MDP, the reward function R is represented as the sum of local rewards i Tie
Furthermore, the basis h; and its backprojection g; are also functions that depend only
on a small set of variables. Thus, the right side of the constraint can be viewed as the
sum of restricted scope functions parameterized by w. For a fixed w, we can compute
the maximum over {x,a} using a cost network, as in Section 2. If w is not specified, the
maximization induces a family of cost networks parameterized by w. As we showed in [6],
we can turn this cost network into a compact set of LP constraints on the free variable w.
More generally, suppose we wish to enforce the constraint 0 > maxy FV(y), where
F¥(y) = 2, f}"(y) such that each f; has a restricted scope. Here, the superscript w
indicates that each f; might be multiplied by a weight w, but this dependency is linear.
Consider the cost network used to maximize F'; let e by any function used in the network,
including the original f;’s, and let Z be its scope. For any assignment z to Z, we introduce
a variable u¢, whose value represents e(z), into the linear program. For the initial functions
fJ‘-"’ , we include the constraint that uy’ = fJ‘-"’ (z). As f]Y" is linear in w, this constraint is

linear in the LP variables. Now, consider a new function e introduced into F by eliminating
a variable Y;. Let ey, ... ,er, be the functions extracted from F, with scope Z1,... ,Z,

o Offline:

1. Select a set of restricted scope basis functions {hi,. .., hr}.
2. Apply efficient LP-based approximation algorithm offline (Section 5) to compute co-
efficients {wi, ..., wx } of the approximate value function V =3 w;h;.

3. Use the one-step lookahead planning algorithm (Section 3) with V as a value function
estimate to compute local); functions for each agent.

e Online: At state x:

1. Each agent j instantiates (); with values of state variables in scope of ();.
2. Agents apply coordination graph algorithm (Section 2) with local @); functions to
coordinate approximately optimal global action.

Figure 2: Algorithm for multiagent planning with factored MDPs

respectively. As in the cost network, we want that uf = max,, [Ele u,’] where z; is the
value of Z; in the instantiation (z, y;). We enforce this by introducing a set of constraints
into our LP: ug > Ele uZ? Vy;. The last function generated in the elimination, e, , has
an empty domain. We introduce the additional constraint 0 > %™, which is equivalent to
the global constraint 0 > maxy FV(y).

In the case of cooperative multiagent MDPs, the actions of the individual agents be-
come variables in the cost network, so that the set Y is simply X U A. The functions
[} are simply the local functions corresponding to the rewards 7, the bases h; and their

backprojections g;. We can thus write down constraints that enforce Z;?:l wihj(x) >

R(x,a) +v> . P(x' | x,a) Zle w;h;(x') over the entire exponential state space and
joint action space using a number of constraints which is only exponential in the induced
tree width of the cost network, rather than exponential in the number of actions and state
variables in the problem.

A traditional single agent is, of course, a special case of the multiagent case. The LP ap-
proach described in this section provides an attractive alternative to the methods described
in [9] and [6]. In particular, our approach requires that we solve a single LP, whose size is
essentially the size of the cost network. The approach of [6] (which is substantially more
efficient than that of [9]) requires that we solve an LP for each step in policy iteration,
and each LP contains constraints corresponding to multiple cost networks (whose number
depends on the complexity of the policy representation). Furthermore, the LP approach
eliminates the restrictions on the action model made in [9, 6].

Our overall algorithm for multiagent planning with factored MDPs in shown in Fig. 2.

6 Experimental results

We first validate our approximate LP approach by comparing the quality of the solution
to the approximate policy iteration (PI) approach of [6]. As the approximate PI algorithm
is not able to deal with the exponentially large action spaces of multiagent problems, we
compare these two approaches on the single agent SysAdmin problem presented in [6], on
a unidirectional ring network of up to 32 machines (over 4 billion states). As shown in
Fig. 3(b), our new approximate LP algorithm for factored MDPs is significantly faster than
the approximate PI algorithm. In fact, approximate PI with single-variable basis functions
variables is more costly than the LP approach using basis functions over consecutive triples
of variables. As shown in Fig. 3(c), for singleton basis functions, the approximate PI policy
obtains slightly better performance for some problem sizes. However, as we increase the
number of basis functions for the approximate LP formulation, the value of the resulting
policy is much better. Thus, in this problem, our new approximate linear programming
formulation allows us to use more basis functions and to obtain a resulting policy of higher
value, while still maintaining a faster running time.

We constructed a multiagent version of the SysAdmin problem, applied to various net-

200
180
160
140
120

—e—Plsingle basis

—m—LP single basis
LP pair basis
LP triple basis

Ring of Rings

Total running time (minutes)

100
80
60
40
20

10

15 20 25 30 35

number of machines

400

N @
3 S
S S

=)
S

Discounted reward of final policy
(averaged over 50 trials of 100 steps)

=3

—e—Plsingle basis
—m—LP single basis
LP pair basis

LP triple basis -
- g

40

20
number of machines

Figure 3: (a) Network topologies used in our experiments. Graphs: Approximate LP versus
approximate PI on single agent SysAdmin on unidirectional ring: (b) running time; (c)
estimated value of policy.

180

—e—Star: LP Single basis
—m—Star: LP Pair basis

—a—Ring of Rings: LP Single basis

Estimated value per agent (100 runs)

Utopic maximum value

T gd

SRR S

— & LP Singe basis
o LP Pair basis

—— Distributed reward

- X ---Distributed value function

Utopic maximum value

—=—LP Single basis
——Distributed reward
- Distributed value function

T T
12 14 16 2 4 14 16 5 10 15 20 25 30

8 10 8 10
Number of agents Number of agents Number of agents

Figure 4: (a) Running time for approximate LP for increasing number of agents. Policy
performance of approximate LP and DR/DRF: (b) on “star”; (c) on “ring of rings”.

work architectures shown in Fig. 3(a). Each machine is associated with an agent A; and
two variables: Status .S; € {good, faulty, dead}, and Load L; € {idle, loaded, process suc-
cessful}. A dead machine increases the probability that its neighbors will become faulty
and die. The system receives a reward of 1 if a process terminates successfully. If the
Status is faulty, processes take longer to terminate. If the machine dies, the process is lost.
Each agent A; must decide whether machine 4 should be rebooted, in which case the Status
becomes good and any running process is lost. For a network of n machines, the number
of states in the MDP is 9" and the joint action space contains 2™ possible actions, e.g., a
problem with 30 agents has over 10%® states and a billion possible actions.

We implemented the factored approximate linear programming and the message pass-
ing coordination algorithms in Matlab, using CPLEX as the LP solver. We experimented
with two types of basis functions: “single”, which contains an indicator basis function for
each value of each S; and L;; and “pair” which, in addition, contains indicators over joint
assignments of the Status variables of neighboring agents. We use vy = 0.95.

As shown in Fig. 4(a), the total running time of the algorithm grows linearly in the
number of agents, for each fixed network and basis type. This is the expected asymptotic
behavior, as each problem has a fixed induced tree width of the cost network. (The induced
tree width for pair basis on the “ring of rings” problem was too large.)

For comparison, we also implemented the distributed reward (DR) and distributed value
function (DRF) algorithms of Schneider et al. [11]. Here we used 10000 learning iterations,
with learning and exploration rates starting at 0.1 and 1.0 respectively and a decaying
schedule after 5000 iterations; the observations for each agent were the status and load of its
machine. The results of the comparison are shown in Fig. 4(b) and (c). We also computed
a utopic upper bound on the value of the optimal policy by removing the (negative) effect
of the neighbors on the status of the machines. This is a loose upper bound, as a dead
neighbor increases the probability of a machine dying by about 50%. For both network
topologies tested, the estimated value of the approximate LP solution using single basis
was significantly higher than that of the DR and DRF algorithms. Note that the single

basis solution requires no coordination when acting, so this is a “fair” comparison to DR
and DRF which also do not communicate while acting. If we allow for pair bases, which
implies agent communication, we achieve a further improvement in terms of estimated
value. The policies obtained tended to be intuitive: e.g., for the “star” topology with pair
basis, if the server becomes faulty, it is rebooted even if loaded. but for the clients, the
agent waits until the process terminates or the machine dies before rebooting.

7 Conclusion

We have provided principled and efficient approach to planning in multiagent domains.
Rather than placing a priori restrictions on the communication structure between agents,
we first choose the form of an approximate value function and derive the optimal commu-
nication structure given the value function architecture. This approach provides a unified
view of value function approximation and agent communication. We use a novel linear
programming technique to find an approximately optimal value function. The inter-agent
communication and the LP avoid the exponential blowup in the state and action spaces,
having computational complexity dependent, instead, upon the induced tree width of the
coordination graph used by the agents to negotiate their action selection. By exploiting
structure in both the state and action spaces, we can deal with considerably larger MDPs
than those described in previous work. In a family of multiagent network administration
problems with over 1028 states and over a billion actions, we have demonstrated near opti-
mal performance which is superior to a priori reward or value sharing schemes. We believe
the methods described herein significantly further extend the efficiency, applicability and
general usability of factored value functions and models for the control of dynamic systems.
Acknowledgments: This work was supported by ONR under MURI “Decision Making Under
Uncertainty”, the Sloan Foundation, and the first author was also supported by a Siebel scholarship.

References

[1] U.Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural assumptions and
computational leverage. Journal of Artificial Intelligence Research, 11:1 —94,1999.

[3] D.P. de Farias and B. Van Roy. The linear programming approach to approximate dynamic
programming. submitted to the IEEE Transactions on Automatic Control, January 2001.

[4] T.Dean and K. Kanazawa. A model for reasoning about persistence and causation. Computa-
tional Intelligence, 5(3):142—150, 1989.

[5] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(1-2):41-85, 1999.

[6] C. Guestrin, D. Koller, and R. Parr. Max-norm projections for factored MDPs. In Proc. 17th
IJCAL,2001.

[7] F. Jensen, F. Jensen, and S. Dittmer. From influence diagrams to junction trees. In Uncer-
tainty in Artificial Intelligence: Proceedings of the Tenth Conference, pages 367-373, Seattle,
Washington, July 1994. Morgan Kaufmann.

[8] D. Koller and R. Parr. Computing factored value functions for policies in structured MDPs. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-
99). Morgan Kaufmann, 1999.

[9] D.Koller and R. Parr. Policy iteration for factored MDPs. In Proc. 16th UAI, 2000.

[10] L. Peshkin, N. Meuleau, K. Kim, and L. Kaelbling. Learning to cooperate via policy search. In
Proc. 16th UAI, 2000.

[11] J. Schneider, W. Wong, A. Moore, and M. Riedmiller. Distributed value functions. In Proc.
16th ICML, 1999.

[12] P.Schweitzer and A. Seidmann. Generalized polynomial approximations in Markovian decision
processes. Journal of Mathematical Analysis and Applications, 110:568 — 582, 1985.

[13] D. Wolpert, K. Wheller, and K. Tumer. General principles of learning-based multi-agent sys-
tems. In Proc. 3rd Agents Conference, 1999.

