Deep Learning Agents

Boi Faltings

Laboratoire d'Intelligence Artificielle
boi.faltings@epfl.ch
http://moodle.epfl.ch/

Boi Faltings Deep Learning Agents 1/42

Deep Reinforcement Learning

Deep Reinforcement Learning

Reinforcement learning does not scale well:

@ For most real problems, state space is huge and requires too
much memory.

e Exploring all state/action pairs is impossible because states
are difficult to reach.

¥

represent states as embeddings in a deep neural network.

4

learn policy directly as output of a neural net.

Boi Faltings Deep Learning Agents 2/42

Deep Reinforcement Learning

Example: Atari games

@ Arcade Learning Environment: simulation of Atari videogames

Boi Faltings Deep Learning Agents 3/42

Deep Reinforcement Learning

Deep Q-learning

Games: state is fully observable from the screen image.

Use convolutional neural net with the image pixels and
possible actions as input

Output = function Q(s, a)

= expected reward after taking action a.

@ Choose action as in Q-learning (maximize Q).

See: Mnih et al.: Playing Atari with Deep
Reinforcement Learning, arXiv 1312.5602, 2013

Boi Faltings Deep Learning Agents 4/42

Deep Reinforcement Learning

From MDP to Reinforcement Learning

@ Reactive agents based on a model: Markov Decision
Processes.

@ Reward and state transition functions usually not known a
priori, must be learned from observations.

@ Strategies for optimal exploration are difficult to apply when
there are many states: not only are there many states, but
they also may be difficult to reach.

Boi Faltings Deep Learning Agents 5/42

. . Gradients
Model-free Reinforcement Learning

Proximal Policy Optimization

Model-free Reinforcement Learning

@ Policy = function from state to optimal action.
=- approximate directly using a deep neural net.

o State is directly observable: feedforward neural net encodes
environment into an embedding.

@ State is not directly observable: use recurrent neural net to
approximate state transition function.

@ Neural net learns mapping from state embedding to optimal
action.

Boi Faltings Deep Learning Agents 6/42

Model-free Reinforcement Learning

Proximal Policy Optimization

Generalization

@ Advantage of neural net: generalization over the space of
states.

= no need to systematically explore state/action pairs.

@ However, still need to explore different actions to learn the
reward in different situations.

Boi Faltings Deep Learning Agents 7/42

Model-free Reinforcement Learning

Proximal Policy Optimization

Exploration Strategies

e Systematic exploration (UCB, regret matching) not feasible.

@ Place agent in real-life training situations and record
observations.

@ Experience replay: data augmentation by replaying earlier
experiences in random order to avoid dependencies among
that hurt convergence of stochastic gradient descent.

@ Curriculum learning: choose training situations that train
particular skills as parts of the policy.

@ Play against adversaries to train agents for competitive
scenarios.

Boi Faltings Deep Learning Agents 8/42

Model-free Reinforcement Learning

Proximal Policy Optimization

Delayed Rewards

@ Reward for the best action may only come later.

@ Example: traveling incurs cost but reward only comes at the
destination.
= choosing the best immediate action requires evaluating a
sequence of actions.

@ Let 7(s) be a particular trajectory from the current state s at
time t:
o a(7(t+ 7)) = action taken at the i-the state of the trajectory.
o s(7(t+ i)) = i-th state of the trajectory.

Learn using rewards from the entire trajectory.

@ Use Monte-Carlo search (as in deliberative agents) when
simulation is possible.

Boi Faltings Deep Learning Agents 9/42

Model-free Reinforcement Learning

y Optimization

Trajectories

A o~
s(t(t+1)) 7 T 0T s(t(ten))

“a(t(t+1) —* Reward r(t)
S(T(ﬂ)“ a(t(t) s(t(t+2)) T

. 24
“‘“"-\ ,f" - -

t t+1 t+2 t+n

@ Reward is known at the end of the trajectory

@ Probability of a trajectory determined by policy 7.

Boi Faltings Deep Learning Agents 10/42

Model-free Reinforcement Learning

Proximal Policy Optimization

Trajectories in real life

Example video of learning to park a self-driving car:
https://www.youtube.com/watch?v=VMp6pq6_-QjI

Difficulty of delayed reward: learning has to propagate reward to
the many intermediate states.

Boi Faltings Deep Learning Agents 11/42

https://www.youtube.com/watch?v=VMp6pq6_QjI

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Model-free Reinforcement Learning

Mixed Policies

Policy needs to be differentiable for neural net to learn using
gradient descent.

@ Use policy m(a|s) = probability of playing action a in state s
@ Implemented as neural net with parameters 6.
@ Uncertain rewards and state transitions = 7 should maximize

expected reward over a future trajectory 7:

J(0) = Ex[r(7)]

Find optimal policy using stochastic gradient descent.

Boi Faltings Deep Learning Agents 12/42

olicy Optimization

probability of
moving UP

@ Actions = move up/move down

@ Input = pixel image
See:
https://github.com/omerbsezer/PolicyGradient_PongGame

Boi Faltings Deep Learning Agents 13/42

Model-free Reinforcement Learning

cy Optimization

Optimizing the policy

@ Gradient descent:
6t+1 == 91_- + OéVgJ(et)

e Expectation requires multiple experiences (or simulations):
J(6:) = /W(T)r(T)dT
For finite set of transitions, reward

r(r) = r(a(r(t+1),s(r(t+ 1))

but probability of a trajectory 7 is a product:

= [=(a(r(t +)Is(r(t + i)

and the gradient of [7(7)r(7) is very complex.

Boi Faltings Deep Learning Agents 14/42

Model-free Reinforcement Learning

Policy gradient theorem

@ Using the fact that:

rewrite gradient of expectation:
VoEr[r(T)] = Vg/ﬂ'(T)r(T)dT
= /er(T)r(T)dT

= /W(T)V@bgﬂ'(T)l’(T)dT
= E;[r(7)Vglogm(T)]

Boi Faltings Deep Learning Agents 15/42

Model-free Reinforcement Learning

Policy gradient theorem (2)

@ Now log 7(7) is a sum over the trajectory and we can
compute the policy gradient as:

VoEr[r(T)] = Ex[r(7)Vglogn(T)]
= > r(r(t+)Valogm(a(r(t + i)ls(r(t + 1))

which is a sum of local gradients for each state of the
trajectory .

Boi Faltings Deep Learning Agents 16/42

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Model-free Reinforcement Learning

How to sample trajectories

@ Recall from Q-learning: converges to optimal policy only if
observations are an i.i.d. sample of the distribution in the
application.

o But if agent only plays according to its policy, the best actions
may never be discovered!

@ Generating the right sample trajectories requires careful
simulation of different scenarios.

Boi Faltings Deep Learning Agents 17/42

Policy Gradients
Actor-Cri
Proximal Policy Optimization

Model-free Reinforcement Learning

Accuracy of reward estimates

o Complexity of simulating a trajectory increases exponentially
with its length = must be very limited.

= compute an estimate V of the rewards obtained from the
following state under current policy.

@ Use this estimate as the expectation of the rewards from the
next state onwards:

r(r) = r(s(7(t))) + 7V (s(r(t + 1))

similar to value iteration for MDP.
= only observations of the immediate reward are needed.

@ Lowers the variance of reward estimates: faster learning
convergence.

Boi Faltings Deep Learning Agents 18/42

Policy Gradients
Actor-
Proximal Policy Optimization

Model-free Reinforcement Learning

Actor-Critic

@ Estimate of the rewards V/(s) from the next state 7(s)
onwards allows comparing different actions from the current
state s.

o Expected reward of action a; in state s = s(7(t)) as:
Q(aj, s) = r(aj,s) + vV (s(r(t + 1)))

@ Define Advantage of action a; as:

A(ajs) = Q(ajs) = Y m(a,5)Q(a,s) = Q(a;,5) — V(s)
a
@ Replace reward by Advantage = relative quality of action a;.
@ Actor = agent that executes current policy
@ Critic = module for value estimate that computes advantage
of each action to allow policy modification.

Boi Faltings Deep Learning Agents 19/42

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Model-free Reinforcement Learning

Estimating the value function

@ State is observable: train a feedforward neural net, using the
observations and chosen action as input to characterize the
next state.

@ Dynamics may also be important: use a sequence of the k last
observations and actions as input.

e State is partially observable: use recurrent neural net (but not
many good results so far).

@ Generate data using the current policy.

Boi Faltings Deep Learning Agents 20/42

Model-free Reinforcement Learning Actor-Cri

Proximal Policy Optimization

Example: Alpha Go

e Alpha Go (first program to beat human champion at Go) used
2 networks: policy and value network:

Rollout policy SL policy network RL policy network Value network

z

P P P, Ve &

8

3

@

XY [Polcy gracent 4 g
Pol adie g

=
@ 3 o

e 8

~ 1]

Human expert positions Self-play positions

Boi Faltings Deep Learning Agents 21/42

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Model-free Reinforcement Learning

Multitask Learning

@ Predicting value and next move both use the same inputs:
observations and actions.

@ Performance can be improved using multitask learning: both
objectives are learned simultaneously.

o Leads to dramatic performance improvements.

@ Example Alpha Go = Alpha Zero: general algorithm to learn
any board game.

Boi Faltings Deep Learning Agents 22/42

Model-free Reinforcement Learning Ac LU _
Ac I

Proximal Policy Optimization

Convergence of SGD for policy gradients

Stochastic gradient descent for policy often does not converge:
@ gradient can get very large.
@ gradient strength varies a lot

= difficult to set a good learning rate «.

Boi Faltings Deep Learning Agents 23/42

. . P e
Model-free Reinforcement Learning A ritic
/ ©

Proximal Policy Optimization

Solution: Optimize a surrogate objective

@ Replace gradient:
Ex[Vs log 7(a, 5).A(3)]

by objective to find 7(a, s) that maximizes:

e — £, | T8)

Told(a, s

@ Trust region policy optimization (TRPO): add constraints for
all actions a;:

EW[KL(ﬂ'O/d(a,', S), 7['(3,‘, S)] <0

@ Limits change in 7.

Boi Faltings Deep Learning Agents 24/42

. . P e
Model-free Reinforcement Learning A ritic
/ ©

Proximal Policy Optimization

Proximal Policy Optimization (PPO)

o Let
_ 7(as)

Toid(a;)
and clip(d) the function that clips d to [1 —e..1 +€].
@ Define surrogate objective:

LEHP — E min(d.A(a), clip(d(a).A(a))

@ Limits steps to improve objective, but guards against steps
that cause large degradation.

Boi Faltings Deep Learning Agents 25/42

Importance sampling
Off-Policy Learning Interpolation

Exploration-Exploitation tradeoff

Training data is gathered with a policy that avoids bad states.
Reasons:

e safety (self-driving car driving off the road)
e credibility (recommender showing irrelevant items)
e efficiency (many more bad than good states)

Resulting policy needs to generalize to off-policy situations with
little or no training data.

Boi Faltings Deep Learning Agents 26/42

Importance sampling
Off-Policy Learning Interpolation

Off-policy learning

Different degrees of generalization:

o different state distribution: importance sampling.
(e.g.: driving in warmer/colder climate)

@ unseen states: extrapolation of value function and policy.
(e.g. car taking a turn too fast)

Boi Faltings Deep Learning Agents 27/42

Importance sampling
Off-Policy Learning Interpolation

Importance sampling

@ Policy is based on expected rewards:

o Distribution of states changes = optimal policy changes as
well.

= reweight rewards for differences in distribution between
observation @ and application P:

Rp(m)) Z

@ Works well as long as there is enough data about all states
and actions (r(a, s) is known).

Boi Faltings Deep Learning Agents 28/42

Importance sampling
Off-Policy Learning Interpolation

Issues in importance sampling

@ For rare 7, only few samples so variance of q(7) is very high.

= qug can become much too large: clip to avoid excessive
influence.

@ Optimize sampling so that variance of reweighted samples is
minimized.

Boi Faltings Deep Learning Agents 29/42

Importance sampling
Off-Policy Learning Interpolation

State interpolation

@ Reward r(a,s) not explored for all states and actions.
= interpolate between known values.

@ Simplest form: linear/polynomial models; least-squares
approximation.

@ More powerful: deep neural networks.

Boi Faltings Deep Learning Agents 30/42

Importance sampling
Off-Policy Learning Interpolation

Runaway errors

o If interpolation overestimates rewards for some s, a, optimal
policy will give higher weight to this state.

= increase in value function estimate for s and neighbouring
states.

=- even higher weight in policy.

Boi Faltings Deep Learning Agents 31/42

Importance sampling
Off-Policy Learning Interpolation

Example

V(s)=p0 sl s2

e Attimet, V(sl)=6=10= V(s2) =260 = 20;
learning rate « = 0.1
= at time t+1, V(s1) = 6 = 10 + (20 — 10) = 11 and
V(s2) =260 =22
= at time t42, V(s1) = 11 + (22 — 11) = 12.1, ...
@ Even if true rewards for both states and actions are 0!

No convergence guarantees with value function/policy
approximations!

Boi Faltings Deep Learning Agents 32/42

Multiagent Reinforcement Learning

Multiagent Reinforcement Learning

@ Many real scenarios involve multiple agents.

@ Multiagent learning: learn a combination of policies for all
agents to obtain optimal results.

@ Many agents = number of action combinations explodes.

Boi Faltings Deep Learning Agents 33/42

Multiagent Reinforcement Learning

Settings

@ Competitive: each agent receives an individual reward and
acts to maximize this reward.

@ Cooperative: reward is attributed to all agents, goal is to
maximize combined welfare.

o Adversarial: agent(s) reward is the loss of the opponent(s).

Boi Faltings Deep Learning Agents 34/42

Multiagent Reinforcement Learning

Competitive Setting

@ Agent rewards depend on each others’ actions.
=- optimal policy depends on other agents and forms equilibria.

@ Often solved using centralized intermediaries =
game-theoretic mechanisms.

@ Analyzed using game theory, treated later in the course.

Boi Faltings Deep Learning Agents 35/42

Cooperative setting
Adversarial setting
Multiagent Reinforcement Learning

Cooperative Setting

e Find a joint policy that optimizes the a function of all agents’
rewards.

@ Often uses sum, but this can be unfair: some agents may
suffer very poor rewards in order to improve those of others.

=- combination often optimizes a fairness criterion, e.g.
minimum reward of any agent.

@ Usually computed by a central agent that computes a policy
for all agents and communicates it to them.

Boi Faltings Deep Learning Agents 36/42

Cooperative setting
Adversarial setting

Multiagent Reinforcement Learning

Learning in cooperative settings

@ Simplest: reward signal to each agent = sum (or fair
function) of all agent rewards.

@ Learning signal is imprecise: agents get the same reward even
if their action had a negative effect.

= convergence is very slow.

@ Assigning credit to individual agents difficult because of
combinatorics: contribution depends on other agents’ actions.

Boi Faltings Deep Learning Agents 37/42

Cooperative setting
Ac arial setting
Multiagent Reinforcement Learning

Uniform policies

e Simplify by forcing every agent to use the same policy:
combinatorics disappears.

@ Can have additional inputs to identify individual roles, e.g.
different positions of soccer players.

@ agents can take each others’ roles.

@ agents can learn from each other.

Boi Faltings Deep Learning Agents 38/42

Cooperative setting
Adversarial setting

Multiagent Reinforcement Learning

Self-play

@ Agents can learn to cooperate by simulated play against each
other’s policies.

@ Advantage: unlimited amount of data.

Opponent = 0 Ties=0 Victim =0
Normal (ZooO2) Normal (ZooV2)

Boi Faltings Deep Learning Agents 39/42

Cooperative setting
Adversarial setting
Multiagent Reinforcement Learning

Adversarial Setting

@ simpler form of competitive setting (zero-sum).
@ requires mixed policies (see lecture on learning agents).

@ learned strategy often tailored to particular opponent; policy
learned against good soccer player fails completely when
played against poor soccer player.

Boi Faltings Deep Learning Agents 40/42

Multiagent Reinforcement Learning

Exploitable policies

@ Learned policies have an implicit dependence on that learned
by adversaries.

@ Can be exploitable when adversary uses a suboptimal policy.

Opponent = 0 Ties=0 Victim = 0
Adversary (Adv2) Normal (ZooV2)

Boi Faltings Deep Learning Agents 41/42

Cooperative setting
Adversarial setting
Multiagent Reinforcement Learning

Summary

@ Q-table, values and policies can be approximated with neural
networks.

Allows reinforcement learning without a model.
Policy gradient theorem.
Actor-critic architecture, multi-task learning.

Proximal policy optimization.

Generalization allows learning even for unseen states and
actions (off-policy learning).

@ Can be extended to multiagent settings; training through
simulations can leave exploitable weaknesses when agents do
not follow policies used in training.

Boi Faltings Deep Learning Agents 42/42

	Deep Reinforcement Learning
	Model-free Reinforcement Learning
	Policy Gradients
	Actor-Critic
	Proximal Policy Optimization

	Off-Policy Learning
	Importance sampling
	Interpolation

	Multiagent Reinforcement Learning
	Cooperative setting
	Adversarial setting

