
Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Deep Learning Agents

Boi Faltings

Laboratoire d’Intelligence Artificielle
boi.faltings@epfl.ch

http://moodle.epfl.ch/

Boi Faltings Deep Learning Agents 1/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Deep Reinforcement Learning

Reinforcement learning does not scale well:

For most real problems, state space is huge and requires too
much memory.

Exploring all state/action pairs is impossible because states
are difficult to reach.

⇒ represent states as embeddings in a deep neural network.

⇒ learn policy directly as output of a neural net.

Boi Faltings Deep Learning Agents 2/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Example: Atari games

Arcade Learning Environment: simulation of Atari videogames

Boi Faltings Deep Learning Agents 3/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Deep Q-learning

Games: state is fully observable from the screen image.

Use convolutional neural net with the image pixels and
possible actions as input

Output = function Q(s, a)
= expected reward after taking action a.

Choose action as in Q-learning (maximize Q).

See: Mnih et al.: Playing Atari with Deep

Reinforcement Learning, arXiv 1312.5602, 2013

Boi Faltings Deep Learning Agents 4/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

From MDP to Reinforcement Learning

Reactive agents based on a model: Markov Decision
Processes.

Reward and state transition functions usually not known a
priori, must be learned from observations.

Strategies for optimal exploration are difficult to apply when
there are many states: not only are there many states, but
they also may be difficult to reach.

Boi Faltings Deep Learning Agents 5/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Model-free Reinforcement Learning

Policy = function from state to optimal action.

⇒ approximate directly using a deep neural net.

State is directly observable: feedforward neural net encodes
environment into an embedding.

State is not directly observable: use recurrent neural net to
approximate state transition function.

Neural net learns mapping from state embedding to optimal
action.

Boi Faltings Deep Learning Agents 6/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Generalization

Advantage of neural net: generalization over the space of
states.

⇒ no need to systematically explore state/action pairs.

However, still need to explore different actions to learn the
reward in different situations.

Boi Faltings Deep Learning Agents 7/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Exploration Strategies

Systematic exploration (UCB, regret matching) not feasible.

Place agent in real-life training situations and record
observations.

Experience replay: data augmentation by replaying earlier
experiences in random order to avoid dependencies among
that hurt convergence of stochastic gradient descent.

Curriculum learning: choose training situations that train
particular skills as parts of the policy.

Play against adversaries to train agents for competitive
scenarios.

Boi Faltings Deep Learning Agents 8/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Delayed Rewards

Reward for the best action may only come later.

Example: traveling incurs cost but reward only comes at the
destination.

⇒ choosing the best immediate action requires evaluating a
sequence of actions.

Let τ(s) be a particular trajectory from the current state s at
time t:

a(τ(t + i)) = action taken at the i-the state of the trajectory.
s(τ(t + i)) = i-th state of the trajectory.

Learn using rewards from the entire trajectory.

Use Monte-Carlo search (as in deliberative agents) when
simulation is possible.

Boi Faltings Deep Learning Agents 9/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Trajectories

Reward is known at the end of the trajectory

Probability of a trajectory determined by policy π.

Boi Faltings Deep Learning Agents 10/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Trajectories in real life

Example video of learning to park a self-driving car:
https://www.youtube.com/watch?v=VMp6pq6 QjI

Difficulty of delayed reward: learning has to propagate reward to
the many intermediate states.

Boi Faltings Deep Learning Agents 11/42

https://www.youtube.com/watch?v=VMp6pq6_QjI


Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Mixed Policies

Policy needs to be differentiable for neural net to learn using
gradient descent.

Use policy π(a|s) = probability of playing action a in state s

Implemented as neural net with parameters θ.

Uncertain rewards and state transitions ⇒ π should maximize
expected reward over a future trajectory τ :

J(θ) = Eπ[r(τ)]

Find optimal policy using stochastic gradient descent.

Boi Faltings Deep Learning Agents 12/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Atari pong with policy gradient

Actions = move up/move down

Input = pixel image

See:
https://github.com/omerbsezer/PolicyGradient PongGame

Boi Faltings Deep Learning Agents 13/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Optimizing the policy

Gradient descent:

θt+1 = θt + α∇θJ(θt)

Expectation requires multiple experiences (or simulations):

J(θt) =

∫
π(τ)r(τ)dτ

For finite set of transitions, reward

r(τ) =
∑

r(a(τ(t + i)), s(τ(t + i)))

but probability of a trajectory τ is a product:

π(τ) =
∏

π(a(τ(t + i))|s(τ(t + i)))

and the gradient of
∫
π(τ)r(τ) is very complex.

Boi Faltings Deep Learning Agents 14/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Policy gradient theorem

Using the fact that:

∇θ log π(τ) =
∇θπ(τ)

π(τ)

rewrite gradient of expectation:

∇θEπ[r(τ)] = ∇θ

∫
π(τ)r(τ)dτ

=

∫
∇θπ(τ)r(τ)dτ

=

∫
π(τ)∇θ log π(τ)r(τ)dτ

= Eπ[r(τ)∇θ log π(τ)]

Boi Faltings Deep Learning Agents 15/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Policy gradient theorem (2)

Now log π(τ) is a sum over the trajectory and we can
compute the policy gradient as:

∇θEπ[r(τ)] = Eπ[r(τ)∇θ log π(τ)]

=
∑

r(τ(t + i))∇θ log π(a(τ(t + i))|s(τ(t + i)))

which is a sum of local gradients for each state of the
trajectory τ .

Boi Faltings Deep Learning Agents 16/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

How to sample trajectories

Recall from Q-learning: converges to optimal policy only if
observations are an i.i.d. sample of the distribution in the
application.

But if agent only plays according to its policy, the best actions
may never be discovered!

Generating the right sample trajectories requires careful
simulation of different scenarios.

Boi Faltings Deep Learning Agents 17/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Accuracy of reward estimates

Complexity of simulating a trajectory increases exponentially
with its length ⇒ must be very limited.

⇒ compute an estimate V of the rewards obtained from the
following state under current policy.

Use this estimate as the expectation of the rewards from the
next state onwards:

r(τ) = r(s(τ(t))) + γV (s(τ(t + 1)))

similar to value iteration for MDP.

⇒ only observations of the immediate reward are needed.

Lowers the variance of reward estimates: faster learning
convergence.

Boi Faltings Deep Learning Agents 18/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Actor-Critic

Estimate of the rewards V (s) from the next state τ(s)
onwards allows comparing different actions from the current
state s.

Expected reward of action aj in state s = s(τ(t)) as:

Q(aj , s) = r(aj , s) + γV (s(τ(t + 1)))

Define Advantage of action aj as:

A(aj , s) = Q(aj , s)−
∑
a

π(a, s)Q(a, s) = Q(aj , s)− V (s)

Replace reward by Advantage = relative quality of action aj .

Actor = agent that executes current policy

Critic = module for value estimate that computes advantage
of each action to allow policy modification.

Boi Faltings Deep Learning Agents 19/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Estimating the value function

State is observable: train a feedforward neural net, using the
observations and chosen action as input to characterize the
next state.

Dynamics may also be important: use a sequence of the k last
observations and actions as input.

State is partially observable: use recurrent neural net (but not
many good results so far).

Generate data using the current policy.

Boi Faltings Deep Learning Agents 20/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Example: Alpha Go

Alpha Go (first program to beat human champion at Go) used
2 networks: policy and value network:

Boi Faltings Deep Learning Agents 21/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Multitask Learning

Predicting value and next move both use the same inputs:
observations and actions.

Performance can be improved using multitask learning: both
objectives are learned simultaneously.

Leads to dramatic performance improvements.

Example Alpha Go ⇒ Alpha Zero: general algorithm to learn
any board game.

Boi Faltings Deep Learning Agents 22/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Convergence of SGD for policy gradients

Stochastic gradient descent for policy often does not converge:

gradient can get very large.

gradient strength varies a lot

⇒ difficult to set a good learning rate α.

Boi Faltings Deep Learning Agents 23/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Solution: Optimize a surrogate objective

Replace gradient:

Eπ[∇θ log π(a, s)A(a)]

by objective to find π(a, s) that maximizes:

LPG = Eπ

[
π(a, s)

πold(a, s)
A(a)

]
Trust region policy optimization (TRPO): add constraints for
all actions ai :

Eπ[KL(πold(ai , s), π(ai , s)] < δ

Limits change in π.

Boi Faltings Deep Learning Agents 24/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Policy Gradients
Actor-Critic
Proximal Policy Optimization

Proximal Policy Optimization (PPO)

Let

d =
π(a, s)

πold(a, s)

and clip(d) the function that clips d to [1− ϵ..1 + ϵ].

Define surrogate objective:

LCLIP = Eπmin(dA(a), clip(d(a)A(a))

Limits steps to improve objective, but guards against steps
that cause large degradation.

Boi Faltings Deep Learning Agents 25/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Importance sampling
Interpolation

Exploration-Exploitation tradeoff

Training data is gathered with a policy that avoids bad states.
Reasons:

safety (self-driving car driving off the road)

credibility (recommender showing irrelevant items)

efficiency (many more bad than good states)

Resulting policy needs to generalize to off-policy situations with
little or no training data.

Boi Faltings Deep Learning Agents 26/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Importance sampling
Interpolation

Off-policy learning

Different degrees of generalization:

different state distribution: importance sampling.
(e.g.: driving in warmer/colder climate)

unseen states: extrapolation of value function and policy.
(e.g. car taking a turn too fast)

Boi Faltings Deep Learning Agents 27/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Importance sampling
Interpolation

Importance sampling

Policy is based on expected rewards:

R(π) =
∑

p(τ)r(τ)

Distribution of states changes ⇒ optimal policy changes as
well.

⇒ reweight rewards for differences in distribution between
observation Q and application P:

RP(π) =
p(τ)

q(τ)

∑
q(τ)r(τ)

Works well as long as there is enough data about all states
and actions (r(a, s) is known).

Boi Faltings Deep Learning Agents 28/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Importance sampling
Interpolation

Issues in importance sampling

For rare τ , only few samples so variance of q(τ) is very high.

⇒ p(τ)
q(τ) can become much too large: clip to avoid excessive
influence.

Optimize sampling so that variance of reweighted samples is
minimized.

Boi Faltings Deep Learning Agents 29/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Importance sampling
Interpolation

State interpolation

Reward r(a, s) not explored for all states and actions.

⇒ interpolate between known values.

Simplest form: linear/polynomial models; least-squares
approximation.

More powerful: deep neural networks.

Boi Faltings Deep Learning Agents 30/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Importance sampling
Interpolation

Runaway errors

If interpolation overestimates rewards for some s, a, optimal
policy will give higher weight to this state.

⇒ increase in value function estimate for s and neighbouring
states.

⇒ even higher weight in policy.

Boi Faltings Deep Learning Agents 31/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Importance sampling
Interpolation

Example

At time t, V (s1) = θ = 10 ⇒ V (s2) = 2θ = 20;
learning rate α = 0.1

⇒ at time t+1, V (s1) = θ = 10 + α(20− 10) = 11 and
V (s2) = 2θ = 22

⇒ at time t+2, V (s1) = 11 + α(22− 11) = 12.1, ...

Even if true rewards for both states and actions are 0!

No convergence guarantees with value function/policy
approximations!

Boi Faltings Deep Learning Agents 32/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Multiagent Reinforcement Learning

Many real scenarios involve multiple agents.

Multiagent learning: learn a combination of policies for all
agents to obtain optimal results.

Many agents ⇒ number of action combinations explodes.

Boi Faltings Deep Learning Agents 33/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Settings

Competitive: each agent receives an individual reward and
acts to maximize this reward.

Cooperative: reward is attributed to all agents, goal is to
maximize combined welfare.

Adversarial: agent(s) reward is the loss of the opponent(s).

Boi Faltings Deep Learning Agents 34/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Competitive Setting

Agent rewards depend on each others’ actions.

⇒ optimal policy depends on other agents and forms equilibria.

Often solved using centralized intermediaries =
game-theoretic mechanisms.

Analyzed using game theory, treated later in the course.

Boi Faltings Deep Learning Agents 35/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Cooperative Setting

Find a joint policy that optimizes the a function of all agents’
rewards.

Often uses sum, but this can be unfair: some agents may
suffer very poor rewards in order to improve those of others.

⇒ combination often optimizes a fairness criterion, e.g.
minimum reward of any agent.

Usually computed by a central agent that computes a policy
for all agents and communicates it to them.

Boi Faltings Deep Learning Agents 36/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Learning in cooperative settings

Simplest: reward signal to each agent = sum (or fair
function) of all agent rewards.

Learning signal is imprecise: agents get the same reward even
if their action had a negative effect.

⇒ convergence is very slow.

Assigning credit to individual agents difficult because of
combinatorics: contribution depends on other agents’ actions.

Boi Faltings Deep Learning Agents 37/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Uniform policies

Simplify by forcing every agent to use the same policy:
combinatorics disappears.

Can have additional inputs to identify individual roles, e.g.
different positions of soccer players.

agents can take each others’ roles.

agents can learn from each other.

Boi Faltings Deep Learning Agents 38/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Self-play

Agents can learn to cooperate by simulated play against each
other’s policies.

Advantage: unlimited amount of data.

Boi Faltings Deep Learning Agents 39/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Adversarial Setting

simpler form of competitive setting (zero-sum).

requires mixed policies (see lecture on learning agents).

learned strategy often tailored to particular opponent; policy
learned against good soccer player fails completely when
played against poor soccer player.

Boi Faltings Deep Learning Agents 40/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Exploitable policies

Learned policies have an implicit dependence on that learned
by adversaries.

Can be exploitable when adversary uses a suboptimal policy.

Boi Faltings Deep Learning Agents 41/42



Deep Reinforcement Learning
Model-free Reinforcement Learning

Off-Policy Learning
Multiagent Reinforcement Learning

Cooperative setting
Adversarial setting

Summary

Q-table, values and policies can be approximated with neural
networks.

Allows reinforcement learning without a model.

Policy gradient theorem.

Actor-critic architecture, multi-task learning.

Proximal policy optimization.

Generalization allows learning even for unseen states and
actions (off-policy learning).

Can be extended to multiagent settings; training through
simulations can leave exploitable weaknesses when agents do
not follow policies used in training.

Boi Faltings Deep Learning Agents 42/42


	Deep Reinforcement Learning
	Model-free Reinforcement Learning
	Policy Gradients
	Actor-Critic
	Proximal Policy Optimization

	Off-Policy Learning
	Importance sampling
	Interpolation

	Multiagent Reinforcement Learning
	Cooperative setting
	Adversarial setting


