Deep Learning Agents

Boi Faltings

Laboratoire d'Intelligence Artificielle boi.faltings@epfl.ch http://moodle.epfl.ch/

Deep Reinforcement Learning

Reinforcement learning does not scale well:

- For most real problems, state space is huge and requires too much memory.
- Exploring all state/action pairs is impossible because states are difficult to reach.
- ⇒ represent states as embeddings in a deep neural network.
- ⇒ learn policy directly as output of a neural net.

Example: Atari games

Arcade Learning Environment: simulation of Atari videogames

Deep Q-learning

- Games: state is fully observable from the screen image.
- Use convolutional neural net with the image pixels and possible actions as input
- Output = function Q(s, a)= expected reward after taking action a.
- Choose action as in Q-learning (maximize Q).

See: Mnih et al.: Playing Atari with Deep Reinforcement Learning, arXiv 1312.5602, 2013

From MDP to Reinforcement Learning

- Reactive agents based on a model: Markov Decision Processes.
- Reward and state transition functions usually not known a priori, must be learned from observations.
- Strategies for optimal exploration are difficult to apply when there are many states: not only are there many states, but they also may be difficult to reach.

Model-free Reinforcement Learning

- Policy = function from state to optimal action.
- ⇒ approximate directly using a deep neural net.
 - State is directly observable: feedforward neural net encodes environment into an embedding.
 - State is not directly observable: use recurrent neural net to approximate state transition function.
 - Neural net learns mapping from state embedding to optimal action.

Generalization

- Advantage of neural net: generalization over the space of states.
- ⇒ no need to systematically explore state/action pairs.
 - However, still need to explore different actions to learn the reward in different situations.

Exploration Strategies

- Systematic exploration (UCB, regret matching) not feasible.
- Place agent in real-life training situations and record observations.
- Experience replay: data augmentation by replaying earlier experiences in random order to avoid dependencies among that hurt convergence of stochastic gradient descent.
- Curriculum learning: choose training situations that train particular skills as parts of the policy.
- Play against adversaries to train agents for competitive scenarios.

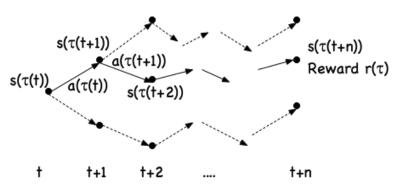
Delayed Rewards

- Reward for the best action may only come later.
- Example: traveling incurs cost but reward only comes at the destination.
- ⇒ choosing the best immediate action requires evaluating a sequence of actions.
 - Let $\tau(s)$ be a particular *trajectory* from the current state s at time t:
 - $a(\tau(t+i)) = action$ taken at the i-the state of the trajectory.
 - $s(\tau(t+i)) = i$ -th state of the trajectory.

Learn using rewards from the entire trajectory.

 Use Monte-Carlo search (as in deliberative agents) when simulation is possible.

Trajectories



- Reward is known at the end of the trajectory
- Probability of a trajectory determined by policy π .

Trajectories in real life

Example video of learning to park a self-driving car: https://www.youtube.com/watch?v=VMp6pq6_QjI

Difficulty of delayed reward: learning has to propagate reward to the many intermediate states.

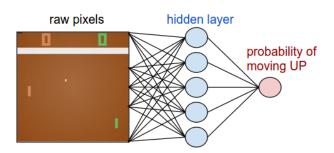
Mixed Policies

- Policy needs to be differentiable for neural net to learn using gradient descent.
- Use policy $\pi(a|s) = \text{probability of playing action a in state s}$
- Implemented as neural net with parameters θ .
- Uncertain rewards and state transitions $\Rightarrow \pi$ should maximize expected reward over a future trajectory τ :

$$J(\theta) = E_{\pi}[r(\tau)]$$

• Find optimal policy using stochastic gradient descent.

Atari pong with policy gradient



- Actions = move up/move down
- Input = pixel image

See:

https://github.com/omerbsezer/PolicyGradient_PongGame

Optimizing the policy

• Gradient descent:

$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta J(\theta_t)$$

• Expectation requires multiple experiences (or simulations):

$$J(\theta_t) = \int \pi(\tau) r(\tau) d\tau$$

For finite set of transitions, reward

$$r(\tau) = \sum r(a(\tau(t+i)), s(\tau(t+i)))$$

but probability of a trajectory τ is a product:

$$\pi(\tau) = \prod \pi(a(\tau(t+i))|s(\tau(t+i)))$$

and the gradient of $\int \pi(\tau) r(\tau)$ is very complex.

Policy gradient theorem

• Using the fact that:

$$abla_{ heta} \log \pi(au) = rac{
abla_{ heta} \pi(au)}{\pi(au)}$$

rewrite gradient of expectation:

$$\nabla_{\theta} E_{\pi}[r(\tau)] = \nabla_{\theta} \int \pi(\tau) r(\tau) d\tau$$

$$= \int \nabla_{\theta} \pi(\tau) r(\tau) d\tau$$

$$= \int \pi(\tau) \nabla_{\theta} \log \pi(\tau) r(\tau) d\tau$$

$$= E_{\pi}[r(\tau) \nabla_{\theta} \log \pi(\tau)]$$

Policy gradient theorem (2)

• Now $\log \pi(\tau)$ is a sum over the trajectory and we can compute the policy gradient as:

$$\nabla_{\theta} E_{\pi}[r(\tau)] = E_{\pi}[r(\tau)\nabla_{\theta} \log \pi(\tau)]$$

$$= \sum_{i} r(\tau(t+i))\nabla_{\theta} \log \pi(a(\tau(t+i))|s(\tau(t+i)))$$

which is a sum of local gradients for each state of the trajectory τ .

How to sample trajectories

- Recall from Q-learning: converges to optimal policy only if observations are an i.i.d. sample of the distribution in the application.
- But if agent only plays according to its policy, the best actions may never be discovered!
- Generating the right sample trajectories requires careful simulation of different scenarios.

Accuracy of reward estimates

- Complexity of simulating a trajectory increases exponentially with its length ⇒ must be very limited.
- \Rightarrow compute an estimate V of the rewards obtained from the following state under current policy.
 - Use this estimate as the expectation of the rewards from the next state onwards:

$$r(\tau) = r(s(\tau(t))) + \gamma V(s(\tau(t+1)))$$

similar to value iteration for MDP.

- \Rightarrow only observations of the immediate reward are needed.
 - Lowers the variance of reward estimates: faster learning convergence.

Actor-Critic

- Estimate of the rewards V(s) from the next state $\tau(s)$ onwards allows comparing different actions from the current state s.
- Expected reward of action a_j in state $s = s(\tau(t))$ as:

$$Q(a_j, s) = r(a_j, s) + \gamma V(s(\tau(t+1)))$$

Define Advantage of action a_j as:

$$A(a_j,s) = Q(a_j,s) - \sum_a \pi(a,s)Q(a,s) = Q(a_j,s) - V(s)$$

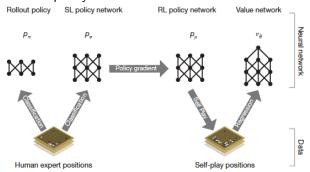
- Replace reward by Advantage = relative quality of action a_j .
- Actor = agent that executes current policy
- Critic = module for value estimate that computes advantage of each action to allow policy modification.

Estimating the value function

- State is observable: train a feedforward neural net, using the observations and chosen action as input to characterize the next state.
- Dynamics may also be important: use a sequence of the *k* last observations and actions as input.
- State is partially observable: use recurrent neural net (but not many good results so far).
- Generate data using the current policy.

Example: Alpha Go

Alpha Go (first program to beat human champion at Go) used
 2 networks: policy and value network:



Multitask Learning

- Predicting value and next move both use the same inputs: observations and actions.
- Performance can be improved using multitask learning: both objectives are learned simultaneously.
- Leads to dramatic performance improvements.
- Example Alpha Go ⇒ Alpha Zero: general algorithm to learn any board game.

Convergence of SGD for policy gradients

Stochastic gradient descent for policy often does not converge:

- gradient can get very large.
- gradient strength varies a lot
- \Rightarrow difficult to set a good learning rate α .

Solution: Optimize a surrogate objective

• Replace gradient:

$$E_{\pi}[\nabla_{\theta}\log\pi(a,s)\mathcal{A}(a)]$$

by objective to find $\pi(a, s)$ that maximizes:

$$L^{PG} = E_{\pi} \left[rac{\pi(\mathsf{a}, \mathsf{s})}{\pi_{old}(\mathsf{a}, \mathsf{s})} \mathcal{A}(\mathsf{a})
ight]$$

• Trust region policy optimization (TRPO): add constraints for all actions a_i :

$$E_{\pi}[KL(\pi_{old}(a_i,s),\pi(a_i,s)]<\delta$$

• Limits change in π .

Proximal Policy Optimization (PPO)

Let

$$d = \frac{\pi(a, s)}{\pi_{old}(a, s)}$$

and clip(d) the function that clips d to $[1 - \epsilon ... 1 + \epsilon]$.

Define surrogate objective:

$$L^{CLIP} = E_{\pi} min(dA(a), clip(d(a)A(a))$$

• Limits steps to improve objective, but guards against steps that cause large degradation.

Exploration-Exploitation tradeoff

Training data is gathered with a policy that avoids bad states. Reasons:

- safety (self-driving car driving off the road)
- credibility (recommender showing irrelevant items)
- efficiency (many more bad than good states)

Resulting policy needs to generalize to off-policy situations with little or no training data.

Off-policy learning

Different degrees of generalization:

- different state distribution: importance sampling. (e.g.: driving in warmer/colder climate)
- unseen states: extrapolation of value function and policy.
 (e.g. car taking a turn too fast)

Importance sampling

• Policy is based on *expected rewards*:

$$\mathcal{R}(\pi) = \sum p(\tau) r(\tau)$$

- Distribution of states changes ⇒ optimal policy changes as well.
- \Rightarrow reweight rewards for differences in distribution between observation Q and application P:

$$\mathcal{R}_P(\pi) = rac{p(au)}{q(au)} \sum q(au) r(au)$$

• Works well as long as there is enough data about all states and actions (r(a, s)) is known).

Issues in importance sampling

- For rare τ , only few samples so variance of $q(\tau)$ is very high.
- $\Rightarrow \frac{p(\tau)}{q(\tau)}$ can become much too large: clip to avoid excessive influence.
 - Optimize sampling so that variance of reweighted samples is minimized.

State interpolation

- Reward r(a, s) not explored for all states and actions.
- ⇒ interpolate between known values.
 - Simplest form: linear/polynomial models; least-squares approximation.
 - More powerful: deep neural networks.

Runaway errors

- If interpolation overestimates rewards for some s, a, optimal policy will give higher weight to this state.
- \Rightarrow increase in value function estimate for s and neighbouring states.
- ⇒ even higher weight in policy.

Example

- At time t, $V(s1) = \theta = 10 \Rightarrow V(s2) = 2\theta = 20$; learning rate $\alpha = 0.1$
- \Rightarrow at time t+1, $V(s1) = \theta = 10 + \alpha(20 10) = 11$ and $V(s2) = 2\theta = 22$
- \Rightarrow at time t+2, $V(s1) = 11 + \alpha(22 11) = 12.1, ...$
 - Even if true rewards for both states and actions are 0!

No convergence guarantees with value function/policy approximations!

Multiagent Reinforcement Learning

- Many real scenarios involve multiple agents.
- Multiagent learning: learn a combination of policies for all agents to obtain optimal results.
- Many agents ⇒ number of action combinations explodes.

Settings

- Competitive: each agent receives an individual reward and acts to maximize this reward.
- Cooperative: reward is attributed to all agents, goal is to maximize combined welfare.
- Adversarial: agent(s) reward is the loss of the opponent(s).

Competitive Setting

- Agent rewards depend on each others' actions.
- ⇒ optimal policy depends on other agents and forms equilibria.
 - Often solved using centralized intermediaries = game-theoretic mechanisms.
 - Analyzed using game theory, treated later in the course.

Cooperative Setting

- Find a joint policy that optimizes the a function of all agents' rewards.
- Often uses sum, but this can be unfair: some agents may suffer very poor rewards in order to improve those of others.
- ⇒ combination often optimizes a fairness criterion, e.g. minimum reward of any agent.
 - Usually computed by a central agent that computes a policy for all agents and communicates it to them.

Learning in cooperative settings

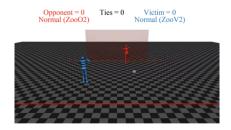
- Simplest: reward signal to each agent = sum (or fair function) of all agent rewards.
- Learning signal is imprecise: agents get the same reward even if their action had a negative effect.
- ⇒ convergence is very slow.
 - Assigning credit to individual agents difficult because of combinatorics: contribution depends on other agents' actions.

Uniform policies

- Simplify by forcing every agent to use the same policy: combinatorics disappears.
- Can have additional inputs to identify individual roles, e.g. different positions of soccer players.
- agents can take each others' roles.
- agents can learn from each other.

Self-play

- Agents can learn to cooperate by simulated play against each other's policies.
- Advantage: unlimited amount of data.

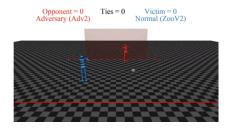


Adversarial Setting

- simpler form of competitive setting (zero-sum).
- requires mixed policies (see lecture on learning agents).
- learned strategy often tailored to particular opponent; policy learned against good soccer player fails completely when played against poor soccer player.

Exploitable policies

- Learned policies have an implicit dependence on that learned by adversaries.
- Can be exploitable when adversary uses a suboptimal policy.



Summary

- Q-table, values and policies can be approximated with neural networks.
- Allows reinforcement learning without a model.
- Policy gradient theorem.
- Actor-critic architecture, multi-task learning.
- Proximal policy optimization.
- Generalization allows learning even for unseen states and actions (off-policy learning).
- Can be extended to multiagent settings; training through simulations can leave exploitable weaknesses when agents do not follow policies used in training.