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Self-interested Agents

What happens if multiple agents optimize their strategy at the
same time?
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Example: Algorithmic Pricing
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What went wrong?

Profnath: adjust price to other sellers: 0.9983 · sup(price)
Bordeebooks: use reputation to obtain higher price (buy from
other seller and resell), set to 1.270589 · inf (price)
Date profnath bordeebook

8.4.11 $1’730’045.91 $2’198’177.95
9.4.11 $2’194’443.04 $2’788’233.00
10.4.11 $2’783’493.00 $3’536’675.57
11.4.11 $3’530’663.65 $4’486’021.69
12.4.11 $4’478’395.76 $5’690’199.43
13.4.11 $5’680’526.66 $7’217’612.38

... ... ...
18.4.11 $18’651’708.72 $23’698’655.93
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Game Theory

Game = multiple agents receive payoffs depending on their
combined actions.

Game theory: understand behavior of the agents

Assumption: self-interest
Rational action = maximize own payoff

⇒ theory of self-interested multi-agent systems
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Elements of a game:

players, the agents playing the game.

actions that change the state of the game.

states of the game.

knowledge (beliefs) of the state and actions.

outcome of the players’ actions, in particular payoffs for each
agent.

Assumption: every agent acts rationally so as to maximize its own
payoff.
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Example: Placing Stores

Convenience store chains A and B decide whether to open a
new store in Lausanne.

Classical: each chain decides if expected revenue > cost.

Game theoretic: consider the action of the other chain.

If both open a store, revenue will be only half.
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Formalization as a game

2 players A and B.

Actions: player A and B choose between 0 and 1 in sequence.

States: 7 states: initial + 2 states for actions of player A and
4 states for each combination of actions.

Knowledge: A and B do not know the other’s choice.

Payoff: If neither A and B open, they gain nothing, if both
open, they loose 1, if just one of them opens, it gains 1 and
the other nothing.
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Representation of the game

State graph (extensive form):

0 1

0 1 0 1

Player A

Player B

(0,0) (0,1) (1,0) (−1,−1)

Matrix (normal form):
B

0 1

0 (0,0) (0,1)
A 1 (1,0) (-1,-1)

A is the row player
B is the column player
Payoff = (row, column)
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Games in normal form

Normal form: 2 or n players, each player Pi selects one of a
finite set of actions Ai .

Players do not know each others’ choices.

Combination of choices determines a payoff to each player.

Quite general: action can be a complex algorithm for choosing
actions depending on beliefs.

First focus on 2 players only.
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Questions answered by Game Theory

What actions should rational agents take?

How can we modify the game to ensure better outcomes?

How can we design games with certain properties?
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Applications of game theory

Effects of regulations and laws: what strategies will agents
adopt?

Finding best strategies in agent interaction.

Determining stable solutions for negotiation and group
decision.

Design of auctions and cost sharing mechanisms.

Design of decentralized algorithms, e.g. internet routing.
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Classification of games

2/n players: first focus on 2 players

zero-sum/general-sum

finite/infinite number of states: assume finite

deterministic/random (lottery)
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Zero-sum vs. general-sum

Zero-sum game: for every outcome, sum of rewards = 0.

Models pure competition.

Much stronger results than for general-sum games

First assume zero-sum games, then generalize.
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Solution Concepts

Game specifies players, actions and payoffs.
Solution to a game:

What actions will rational players select?

Solution concept: rules for selecting actions for all players in a
consistent way.
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Strategies

Strategy = recipe by which each player chooses its actions

Pure strategy: for each state, the action is chosen in a
deterministic way:

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

a1 a3 a7 a1 a1 a2 a5 a7 a3 a6 a4 a3
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Dominant, pure strategies

Dominant strategy = strategy which is best for every action of the
other player:

B
0 1

0 (-1,1) (1,-1)
A 1 (2,-2) (4,-4)

⇒ 1 is always better for A
⇒ 0 is always better for B

does not require model of the other player

but does not always exist
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Types of dominant strategies

(strictly) dominant strategy: for every action of the other
player, the strategy is strictly better than any other strategy.

weakly dominant strategy: for every action of the other
player, the strategy is at least as good as any other, and it is
strictly better for at least one action of the other player.

very weakly dominant strategy: for every action of the other
player, the strategy is at least as good as any other.
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Minimax, pure strategy

Game with no dominant strategy for B :

B
0 1

0 (-1,1) (1,-1)
A 1 (5,-5) (2,-2)

Minimax strategy = strategy which maximizes gains supposing
that the opponent will minimize its losses (as in game-playing
programs).

A maximizes his minimal gain and plays 1

B minimizes his maximal loss and plays 1

Minimax strategies are in equilibrium:
no agent gains from deviating
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Game with no pure strategy equilibrium

B
0 1

0 (-1,1) (1,-1)
A 1 (0,0) (-2,2)

Pure minimax strategies: A plays 0, B plays 0
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Game with no pure strategy equilibrium

B
0 1

0 (-1,1) (1,-1)
A 1 (0,0) (-2,2)

Pure minimax strategies: A plays 0, B plays 0

If B always plays 0, A can do better by playing 1!

If A always plays 1, B can do better by playing 1!

If B always plays 1, A can do better by playing 0!

...
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Mixed Strategy

Solution: play randomly, but choose probabilities rationally:

optimal strategy for A: (p0, p1) = (0.5, 0.5)

optimal strategy for B: (p0, p1) = (0.75, 0.25)

Mixed strategy: the action is chosen randomly within a set of k
alternatives, following a probability distribution (p1, ..., pk )
Notation: [p1 : a1; p2 : a2; ...; pk : ak ] or simply [p1, ..., pk ]
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Mixed Strategy (2)

B
0 1

0 (-1,1) (1,-1)
A 1 (0,0) (-2,2)

Probability
0 1

A 1/2 1/2
B 3/4 1/4

A: both actions lead to expected loss = 0.5
B: both actions lead to expected gain = 0.5
If B changes prob. distribution, then A can loose less
If A changes prob. distribution, then B can gain more
⇒ equilibrium of mixed minimax strategies.
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Minimax theorem (V. Neumann & Morgenstern)

In a zero-sum game with two players, the average gain
(loss) v of player A using the best (mixed) minimax
strategy is equal to the average loss (gain) v of player B
using its best (mixed) minimax strategy. The value v is
called the value of the game (for A).

⇒ a set of mixed equilibrium (minimax) strategies exists for any
zero-sum game!
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Properties...

In equilibrium, for every action of the row player A:

the expected payoff is ≤ v.

if expected payoff < v, the action has zero probability.

⇒ every action with probability �= 0 has expected payoff = v.

this set of actions is the support.

Boi Faltings Introduction to Game Theory 24/58



Modelling Games
Strategies

General-sum games
n-player games

Pure Strategies
Mixed Strategies
Equilibrium strategies
Utility Theory

Computing minimax strategies

Strategy for B = (pB1 , ..., p
B
n ) ⇒

solve a linear program with variables v , pB1 , ..., p
B
n :

minimize v (the maximal gain)

for every action of A, expected payoff is no larger than v :

(∀aAi ) :
∑

aBj

pBj RA(a
A
i , a

B
j ) ≤ v

where RA(a
A
i , a

B
j ) is the payoff to agent A.

Symmetric problem to find strategy for A
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Alternative: fictious play

For large games, LP may be complex.

Only a single optimal set of strategies
⇒ converge to it through hill-climbing.

Start with random strategies and iterate:

Player A increases probability of best response to B’s strategy
Player B increases probability of best response to A’s strategy

Converges to optimal probabilities!
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Lotteries

With a mixed strategy, payoff is uncertain.

This is called a lottery [p1 : o1; p2 : o2; ...; pk : ok ]

k outcomes.
outcome oi occurs with probability pi and has reward r(i)∑

pi = 1

Clearly R = E [r(i)] of a lottery is not the same as receiving R
for sure.
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Attitudes towards risk

People are risk averse: sure return of $100′000 is preferred
over $1 million with probability 0.1...

..but also risk-seeking:
return of $2.00 with probability 0.1 is preferred to $0.20,
return of $20 million with probability 10−7 is preferred to
$2.00.

Model risk attitude by mapping:

payoff, the reward provided by the game, to
utility, the subjective usefulness of that payoff to the agent.
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Payoff vs. Utility

Payoff

Utility

1

1 risk−averse

neutral risk−seeking

Attitude u(10%) u(20%) ... u(90%) u(0.1) u(L)

risk-averse 40% 60% ... 99% 0.4 0.1
risk-seeking 1% 3% ... 60% 0.01 0.1

Find u(r) so that E [u(r)] = U is equivalent to sure return U.
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Modeling risk aversion

Consider 2 lotteries:

1 payoff of $100′000 for sure

2 payoff of $1′000′000 with probability 0.1

Attitude E [U](1) E [U](2) prefers?

risk-neutral 100′000 100′000 -
risk-averse 400′000 100′000 1
risk-seeking 10′000 100′000 2
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Utility Theory

Preference order � should satisfy the following conditions:

completeness: defined over any pair of outcomes.

transitivity: if oi � oj and oj � ok , then oi � ok .

substitutability: if oi ≡ oj , then any lottery where oi is
substituted for oj is equally preferred.

decomposability: if two lotteries assign the same probabilities
to outcomes, they are equally preferred.

monotonicity: if o1 � o2 and p > q, then
[p : o1; (1 − p) : o2] � [q : o1; (1 − q) : o2]

continuity: if o1 � o2 � o3, there exists p such that
o2 � [p : o1; (1− p) : o3].
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Utility Theory (2)

Van Neumann & Morgenstern:

For any preference order satisfying the 6 axioms, every
outcome can be associated with a numerical utility u(o)
such that:

u(o1) > u(o2) iff o1 � o2
u([p1 : o1; ...; pk : ok ]) =

∑k
i=1 piu(oi )

⇒ utility function on outcomes can represent most rational
preference orders, including risk aversion.
Game payoff is a general representation of preferences.
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Eliciting Utility Functions

Order k outcomes: o1, .., ok such that o1 � o2 � ... � ok .
We assume u(o1) = 1, u(ok ) = 0 (normalized to [0..1]).
For j = 1.. k-2:

elicit pj = probability such that lottery

oj with prob. pi , oj+2 with prob. (1− pi )

is equally preferred to oj+1 with certainty.
”For what p is oj+1 equivalent to oj with probability p and
oj+2 with probability (1-p)?”

⇒ equation pju(oj) + (1− pj)u(oj+2) = u(oj+1)
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Example

Recall game:
B

0 1

0 (-1,1) (1,-1)
A 1 (0,0) (-2,2)

From A’s perspective: 4 outcomes
o1 o2 o3 o4
1 0 -1 -2

⇒
B

0 1

0 (o3,1) (o1,-1)
A 1 (o2,0) (o4,2)
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Eliciting Utility Functions (Example)

Outcomes:
o1 o2 o3 o4
1 0 -1 -2

risk averse: let p1 = 0.6, p2 = 0.625
⇒ system of equations:

u(o1) = 1

0.6(u(o1)− u(o3)) = u(o2)− u(o3)

0.625(u(o2)− u(o4)) = u(o3)− u(o4)

u(o4) = 0

simplified:

0.6(1 − u(o3)) = u(o2)− u(o3)

0.625u(o2) = u(o3)

u(o1) = 1, u(o2) = 0.8, u(o3) = 0.5, u(o4) = 0
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Game with utilities

Substitute utilities for agent A’s rewards:

B
0 1

0 (0.5,1) (1,-1)
A 1 (0.8,0) (0,2)

(We assume that B is risk-neutral: utility = reward)
Equilibrium:

A plays (1/2, 1/2): B has same expected utility for 0 and 1

B plays (10/13, 3/13): A has same expected utility for 0 and 1

Boi Faltings Introduction to Game Theory 36/58



Modelling Games
Strategies

General-sum games
n-player games

Nash equilibrium
Computing Nash equilibria
Stackelberg games

General (non-zero) sum games

zero sum: gain (A) = loss (B)
⇒ pure competition, no cooperation (e.g. chess)

general sum:

a) no cooperation: strategies may be locally optimal, but not
globally.

b) cooperation: results may be better than a) for both players,
but may require complex negotiation.
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Nash Equilibrium

Nash equilibrium: no player has an interest to change given
that the other does not change.

Theorem: every game has at least one set of mixed Nash
equilibrium strategies.

generalization of minimax strategy equilibria to general-sum
games, but...

Games can have several Nash equilibra, e.g.:

B
0 1

0 (2,1) (0,0)
A 1 (0,0) (1,2)
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Nash Equilibria

B
0 1

0 (2,1) (0,0)
A 1 (0,0) (1,2)

pure strategy equilibria, (0,0) and (1,1), but also...

mixed strategy equilibrium: ([2/3,1/3],[1/3,2/3])
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Characteristics of Nash equilibria

Properties of the i-th Nash equilibrium for player A (similar for B):

player A gets expected payoff vi (A)

only actions aj in support si(A) have probability pi(aj) �= 0.

all actions in the support si(A) have expected payoff vi (A):

(∀aj ∈ si(A))
∑

ak∈si (B)

pi(ak)RA(aj , ak) = vi (A)

no other action has greater payoff:

(∀aj �∈ si(A))
∑

ak∈si (B)

pi(ak)RA(aj , ak) ≤ vi (A)

This is a linear complementarity problem and can be solved using
Lemke’s method (standard solvers).
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Characteristics of Nash equilibria (2)

Different from zero-sum games: vi(A) �= −vi(B)

⇒ B does not necessarily play as to minimize vi (A)

⇒ cannot just minimize vi(A) using a linear program, but must
determine values using LCP.

Only actions in the support have equal value
⇒ support needs to be known exactly.
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Computing Nash equilibria

Complex problem; much interest in theoretical Computer
Science.

Search method:
1 search through all possible supports.
2 for each potential support, solve for NE.
3 output all feasible solutions.

before searching: eliminate dominated actions.
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Dominated actions

Action ai strictly dominates aj if for all strategies of the other
player(s), the expected payoff for ai is greater than that for aj .

ai weakly dominates aj if expected payoff is ≥ for all actions
and greater for at least one.

Action aj is dominated if there exists some other action that
dominates.

Rational players would never choose a dominated action
⇒ eliminate from the game.
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Example: dominated actions

Consider the game:

B
L C R

U (3,2) (0,1) (2,0)
A M (1,1) (1,2) (5,0)

D (2,1) (4,1) (0,0)

player B: R is dominated by L and C ⇒ eliminate

player A: M is dominated by D ⇒ eliminate

player B: C is (weakly) dominated by L ⇒ eliminate

player A: D is dominated by U ⇒ eliminate
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Eliminating dominated actions

Straightforward: check if some other action is always better
for each action of the other player.

Strictly dominated strategies can be eliminated in any order
and do not reduce the set of NE.

Eliminating weakly dominated strategies can reduce the set of
NE: (D,C) is also a NE.

But never eliminates all NE.
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Conditionally dominated actions

Action ai for player A can conditionally dominate aj given
a support s(B) of player B

B
L C R

U (3,2) (0,1) (5,0)
A M (1,1) (1,2) (3,0)

D (2,1) (4,1) (0,2)

Support for player B = {L,R}
⇒ U conditionally dominates M for A.
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Algorithm for Nash Equilibria

1: for all s(A) ⊆ actions(A) do
2: actions − B ← {ak |ak ∈ actions(B), not conditionally

dominated given s(A)}
3: if � ∃aj ∈ s(A) conditionally dominated given actions-B then
4: for all s(B) ⊆ actions − B do
5: if � ∃aj ∈ s(A) conditionally dominated given s(B) then
6: if feasibility program satisfiable for s(A) and s(B)

then
7: return the solution as a Nash equilibrium

Eliminate conditionally dominated actions to reduce effort
Optimization: consider s(A), s(B) in smallest-first and most
similar size first order.
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Example: computing Nash equilibria

B
L C R

U (3,2) (0,1) (5,0)
A M (1,1) (1,2) (3,0)

D (2,1) (4,1) (0,2)

s(A) = {U} ⇒ actions − B ← {L} ⇒ s(B) = {L}: NE!
s(A) = {M} ⇒ actions − B ← {C} ⇒ s(B) = {C}: (A→ D)
...
s(A) = {M,D} ⇒ actions − B ← {C ,R} ⇒ s(B) = {C ,R}: NE?
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Testing for NE...

B
L C R

U (3,2) (0,1) (5,0)
A M (1,1) (1,2) (3,0)

D (2,1) (4,1) (0,2)

expected revenue of A:

E (M) = p(C ) · 1 + p(R) · 3(= 2)

E (D) = p(C ) · 4 + p(R) · 0(= 2)

E (M) = E (D) ⇒ p(C ) = p(R) = 0.5

check other actions:

E (U) = 0.5 · 0 + 0.5 · 5 = 2.5

Not NE: A would play U!
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Alternative: Fictious Play

Ficitious play: each player observes the other’s actions and
chooses a strategy that is a best response.

If player’s strategies are in a NE, they will not change:
absorbing state.

However, convergence from other strategies is not guaranteed;
strategies may cycle.

Convergence is guaranteed only for zero-sum games.

In general-sum games, converges to a weaker type of
equilibrium.
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Stackelberg games

Stackelberg games have a leader and follower: decisions are
made in sequence.

Examples;

security measures are decided, then attackers try to circumvent
them.
a seller sets a price, the (potential) buyer buys or not.

If leader informs follower, the Stackelberg equilibrium can be
very different from the Nash equilibrium.

Leader can usually force a higher payoff, follower has no
choice.
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Example (Stackelberg)

Consider this game:

B
0 1

0 (2,1) (4,0)
A 1 (1,0) (3,1.2)

Nash equilibrium: (0, 0) (0 is dominant for A), payoff = (2, 1).

However, if A can commit to play 0 and 1 with equal
probability, then the best response for B is to play 1!

⇒ payoff = (3.5, 0.6)!

A can get significantly higher payoff.
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n-player games

Consider game with n players P1, ..,Pn.

In general: game has at least one Nash equilibrium.

Zero-sum: game has a Nash equilibrium, but not necessarily
unique or minimax.
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Computing n-player Nash equilibria

2-player game: search through combinations of 2 support sets
of actions.

n players: search combinations of n support sets.

Similar to CSP: eliminate actions that are dominated given
previous support sets.

Feasibility program at each leaf node to determine action
probabilities.

Feasbility test is nonlinear: e.g. expected payoff for P1

depends on probability of action combinations:

(∀aj ∈ si(P1))
∑

ak2∈si (P2)

...
∑

akn∈si (Pn)

n∏

l=2

pi (akl )R(aj , ak2 , ..., akn )
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Graphical games

Many n-player games are structured:

Payoff depends only on small set of other players.

⇒ Characterize as graph of binary relations

Can be solved as a constraint satisfaction problem.

Example: in land use, only care about neighbouring agents.
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Implementing agents

Agent systems are engineered.

2 components:

agent strategies
mechanism design: rules of the game

Challenge of multi-agent systems: design mechanisms so that
good agent strategies lead to good overall behavior.

Agents can be people or computers.
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Further issues

Cooperation and negotiation: how can agents cooperate and
reach agreement as a group?

Truthfulness and mechanism design: how to prevent
manipulation and lying?

Auctions and their implementation on the internet.
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Summary

Games

Pure and mixed strategies

Utility theory

Equilibrium, Nash equilibrium

Computing Nash equilibria

n-player games
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