
Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Reactive Agents

Boi Faltings

Laboratoire d’Intelligence Artificielle
boi.faltings@epfl.ch

http://moodle.epfl.ch/

Boi Faltings Reactive Agents 1/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Ideal rational agent

?

agent

percepts

sensors

actions

effectors

environment

Definition (Russel & Norvig):

For each possible percept sequence, an ideal rational agent
should do whatever action is expected to maximize its per-
formance measure, on the basis of the evidence provided
by the percept sequence and whatever built-in knowledge
the agent has.

Boi Faltings Reactive Agents 2/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Examples of rational agents

Agent Type Percepts Actions Goals Environment

Medical diagnosis

system

Symptoms,

findings, patient’s

answers

Questions, tests,

treatments

Healthy patient,

minimize costs

Patient, hospital

Satellite image

analysis system

Pixels of varying

intensity, color

Print a

categorization of

scene

Correct

categorization

Images from

orbiting satellite

Part-picking robot Pixels of varying

intensity

Pick up parts and

sort into bins

Place parts in

correct bins

Conveyor belt

with parts

Refinery controller Temperature,

pressure readings

Open, close

valves; adjust

temperature

Maximize purity,

yield, safety

Refinery

Interactive English

tutor

Typed words Print exercises,

suggestions,

corrections

Maximize

student’s score on

test

Set of students

Boi Faltings Reactive Agents 3/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Real-time agents

Agent Type Percepts Actions Goals Environment

Taxi driver Cameras,

speedometer, GPS,

sonar, microphone

Steer, accelerate,

brake, talk to

passenger

Safe, fast, legal,

comfortable trip,

maximize profits

Roads, other

traffic, pedestrians,

customers

Important:

many solutions: optimize!

real-time: acting too late may be worse than acting wrong

many inputs: cannot program all cases

learning: world evolves dynamically

Boi Faltings Reactive Agents 4/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Reactive agent

Agent
E
n
v
iro
n
m
e
n
t

Sensors

Effectors

What the world

is like now

What action I

should do now
Condition−action rules

Boi Faltings Reactive Agents 5/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Purely reactive architecture

Behavior = stimulus-response table
No memory
Features:

no planning over time

no model of the environment

Examples:

thermostat regulates temperature

robot following a wall

...

Boi Faltings Reactive Agents 6/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Complex behaviors from simple rules

Simple rules + complex environment ⇒ complex behavior

Example: robot following a wall

Sensor = obstacle within field of view? (L/C/R/N)
L overides C overides R

Action = turn left/forward/turn right (TL/F/TR)

L

C

R

TL

F

TR

Boi Faltings Reactive Agents 7/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Simple rules + complex environment ⇒ complex behavior

Define behavior so that robot will follow a wall of arbitrary shape:

Sensor L C R N

Action ? ? ? ?

Boi Faltings Reactive Agents 8/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Simple rules + complex environment ⇒ complex behavior

Sensor L C R N

Action TR TL F TR

⇒ Robot will follow a wall of arbitrary shape:

Boi Faltings Reactive Agents 9/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Programming stateless behavior

Rational agent: maximize performance measure:

Define a performance measure, called reward

E.g.: how far is the robot from being aligned with the wall?

Reward function depends on action and inputs R(a, I)→ ℜ
For each combination of inputs, choose the action that
maximizes the reward function

Boi Faltings Reactive Agents 10/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Properties

Table-lookup is instantaneous ⇒ no problem with real-time

Allows continuous world: behavior = f(inputs)

Limitations:

conflicting behaviors
dependence on history

Boi Faltings Reactive Agents 11/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Subsumption architecture

Several behaviors may conflict:

follow wall ⇒ go forward

charge battery ⇒ stop here

Subsumption architecture:

behaviors turned on/off

priorities decide on who wins

Boi Faltings Reactive Agents 12/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Agent with internal state

Agent

E
n
v
iro
n
m
e
n
t

Sensors

Effectors

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Condition−action rules

Boi Faltings Reactive Agents 13/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Behaviors with state

Generalized behavior = state-action table:
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

a1 a3 a7 a1 a1 a2 a5 a7 a3 a6 a4 a3

Called policy (π(S)) or strategy

State models history and measurements

Agent infers state from past state, action and measurements

Boi Faltings Reactive Agents 14/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Stateless Behaviors
Stateful behaviors

Programming stateful behavior

Rational agent: maximize reward
Reward depends on state and action:

Reward function: R(s, a)− > ℜ

Action leads to another state:
Transition function: T (s, a)− > S

Potential for future rewards depends on next state!
Best actions depend on immediate and future rewards.

Boi Faltings Reactive Agents 15/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Decision processes

Formalizes knowledge of state transitions and rewards:
S1 S2 S3 S4

a1

a2

a3

a4

S2 S4 S1 S1

S1

S4

S4 S2

S1 S4

S2S1S2

S2 S4

S3

TransitionsRewards

S1 S2 S3 S4

a1

a2

a3

a4

1 1 2

2

3

5

2

1

2

0 3

2 4

2

1

2

Reward function: R(s, a)− > ℜ
Transition function: T (s, a)− > S

Boi Faltings Reactive Agents 16/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Types of Decision Processes

Assumptions:

State transitions are deterministic
(drop ⇒ Markov Decision Processes)

Current state is known with certainty
(drop ⇒ Partially observable MDP)

Transition and Payoff matrices are known
(drop ⇒ Q-learning)

Sets of states and actions are fixed and finite
(drop ⇒ deliberative agents)

Boi Faltings Reactive Agents 17/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Processes ⇒ strategies

Optimal strategy = act to maximize immediate reward:

State s1 s2 s3 s4
Action a4 a2 a4 a4
Reward 2 2 4 5

Next s2 s3 s1 s4

Boi Faltings Reactive Agents 18/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Taking the future into account

Dynamic programming (“Bellmann backup”):

Maximize current reward + reward of next state:
State s1 s2 s3 s4
Action a4 a2 a4 a4
Reward 2 2 4 5

Next state s2 s3 s1 s4
Value 2 4 2 5

Total 4 6 6 10

Boi Faltings Reactive Agents 19/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Optimization over time

Maximize average reward:

lim
h→∞

E [
1

h

h∑
t=0

R(st , a(st))]

difficult to evaluate and optimize over large sum!

Better to use a recursive formulation.

Boi Faltings Reactive Agents 20/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Infinite horizon

Value of a state V (s) = potential for rewards from this state
onwards

Iteration on all future states ⇒ equilibrium:

V (si) = R(si , a(si)) + V (T (si , a(si)))

a(si) = argmax(R(si , a(si)) + V (T (si , a(si))))

Infinite horizon: all state values are infinite
⇒ equation for V (si) has no solution!

Boi Faltings Reactive Agents 21/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Discounting the future

Agent might die: future less valuable than present.

⇒ introduce discount factor γ ∈ [0..1):

V (si) = R(si , a(si)) + γ × V (T (si , a(si)))

As long as R(si , a(si)) ≤ Rm, total reward in bounded:

∞∑
i=0

γ iR(si , a(si)) ≤
∞∑
i=0

γ iRm =
1

1− γ
Rm

Recurrence has a solution!

Boi Faltings Reactive Agents 22/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Computing V (S) by value iteration

initialize V(S) arbitrarily

loop until good enough

loop for si ∈ S
loop for a ∈ A

Q(si , a)← R(si , a) + γV (T (si , a))
V (si)← maxaQ(si , a)

Boi Faltings Reactive Agents 23/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Example (γ = 0.5)

State s1 s2 s3 s4
V (S)0 2 2 4 5

A(S)0 a4 a2 a4 a4
V (S)1 3 4 5 7.5

A(S)1 a4 a2 a2 a4
V (S)2 4 4.5 5.75 8.75

A(S)2 a4 a2 a2 a4
V (S)3 4.25 4.875 6.375 9.375

...

A(S)∞ a4 a1 a2 a4
V (S)∞ 5 6 7 10

Rewards

S1 S2 S3 S4

a1

a2

a3

a4

1 1 2

2

3

5

2

1

2

0 3

2 4

2

1

2

S1 S2 S3 S4

a1

a2

a3

a4

S2 S4 S1 S1

S1

S4

S4 S2

S1 S4

S2S1S2

S2 S4

S3

Transitions

Boi Faltings Reactive Agents 24/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Value iteration
Policy iteration

Stochastic Decision Processes

In reality, state transitions cannot be predicted with certainty.

Markov decision process (MDP):
transition table ⇒ state transition function
T (s, a, s ′) = p(s ′|s, a) (3-dimensional matrix)

Markov: Transition probability may not depend on earlier
history

Assumption: Observations determine state with certainty.

Boi Faltings Reactive Agents 25/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Value iteration
Policy iteration

Solving a MDP

Model =

reward function R(s, a)
state transition function T (s, a, s ′) = p(s ′|s, a) (MDP)

Goal:
Find a strategy π mapping S → A(S) such that average
reward is maximized.

Boi Faltings Reactive Agents 26/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Value iteration
Policy iteration

State values

V (s) gives the rewards that can be reached from state s using
the optimal policy.

Assuming infinite-horizon criterion:

V (s) =
max
π E

(∞∑
t=0

γtR(s, aπ(t))

)

=
max
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s ′)V (s ′)

)

Boi Faltings Reactive Agents 27/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Value iteration
Policy iteration

Value iteration

V (S) can be computed by an iteration:

initialize V(S) arbitrarily

loop until good enough

loop for s ∈ S
loop for a ∈ A

Q(s, a)← R(s, a) + γ
∑

s′∈S T (s, a, s ′)V (s ′)
V (s)← maxaQ(s, a)

Boi Faltings Reactive Agents 28/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Value iteration
Policy iteration

Convergence of value iteration

Value iteration is guaranteed to converge!

Stopping criterion: when difference between two successive
iterations

maxs∈S |V ′(s)− V (s)| ≤ ϵ

then maximum error (compared to true function V ∗):

maxs∈S |V (s)− V ∗(s)| ≤ 2ϵγ

1− γ

Boi Faltings Reactive Agents 29/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Value iteration
Policy iteration

Choosing the policy

Given value function, choose the policy that maximizes the reward:

π(s) =
argmax
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s ′)V (s)

)

Boi Faltings Reactive Agents 30/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Value iteration
Policy iteration

Policy iteration (Temporal Difference Learning)

Alternative to value iteration: optimize policy directly

choose an arbitrary policy π′

loop

π ← π′

compute the value function Vπ of policy π:
solve the linear equations:

Vπ(S) = R(S , π(S))+γ
∑

S ′∈S T (S , π(S),S ′)Vπ(S
′)

improve the policy at each state:

π′(s)←
argmax
a (R(s, a) + γ

∑
s′∈S T (s, a, s ′)Vπ(s

′))
until π = π′

Clear stopping criterion: policy no longer changes

Boi Faltings Reactive Agents 31/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Value iteration
Policy iteration

Learning with unknown models

Often, model is not known a-priori
⇒ agent can only observe model from experience!
Approaches:

learn the model, then the strategy

learn both at the same time

Will be discussed later...

Boi Faltings Reactive Agents 32/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Partial Observation

State may not be known with certainty:
Partially observable Markov decision process (POMDP)

SE PI

o

b a

State Estimator (SE): transforms observations o into belief state b
(a vector of probabilities for each state s).

SEs′(b, a, o) = Pr(s ′|a, o, b)

Boi Faltings Reactive Agents 33/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

POMDP ⇒ belief MDP

Use new transition function:

τ(b, a, b′) =
∑

o|SE(b,a,o)=b′

Pr(o|a, b)

and reward function:

ρ(b, a) =
∑
s∈S

b(s)R(s, a)

⇒ standard MDP equivalent to original POMDP
(same optimal policy)

Boi Faltings Reactive Agents 34/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Solving belief MDP

Difficulty: for n states, space of belief states is continuous and
n-dimensional.

Discretization of probabilities in k intervals
(e.g. p ∈ [0..0.25), [0.25..0.5), [0.5..0.75), [0.75..1.0]):
number of vectors = kn

Discretization can be generated around most interesting
points only

Can only be applied to very small problems.

Boi Faltings Reactive Agents 35/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Solving belief MDP by Value Iteration

Let belief state b = {Pr(s1),Pr(s2), ...,Pr(sn)}
⇒ ρ(b, a) =

∑n
i=1 Pr(si)R(si , a) is a linear function.

Let a∗ be best action in belief state b, then value function is
linear around this state.

⇒ value function is piecewise linear.

Boi Faltings Reactive Agents 36/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Solving belief MDP by Value Iteration (2)

Generalize value iteration backup to value function segments:

Strategy: start with specific sample points to construct best
policy, then test this policy at extreme points to see if it holds
generally:

if another policy is better, then add it as a new segment.
drop segments that are never the best.

Similar to column generation in linear programming.

Problem: value function can have unbounded number of
segments.

Neural networks can offer an alternative for approximating the
space (see later in the course).

Boi Faltings Reactive Agents 37/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Solving belief MDP by Policy Iteration

Policy = finite state controller = directed graph where:

Nodes correspond to some subspace of beliefs (probability
distribution of POMDP states)

Nodes are associated with an action α(n).

Arcs are associated with an observation z ; different
observations lead to different successor nodes.

Stochastic policy = FSC where arcs define a distribution of
successor states.

Boi Faltings Reactive Agents 38/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Solving belief MDP by Policy Iteration (2)

Policy iteration:

evaluate current policy by constructing new value function =
piecewise linear function of belief state.

improve policy by

adding nodes for new segments of value function.
removing nodes for segments that become dominated (action
is never optimal).

Stochastic policy allows to limit node explosion.

Boi Faltings Reactive Agents 39/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Limitations of MDPs and POMDPs

Biggest limitation of decision processes:
space of states, actions must be finite, small

Real world has many features: leads to combinatorial explosion of
state space
⇒ partial generation of state space (≃ deliberative agents)
⇒ factoring the representation (logic)

Boi Faltings Reactive Agents 40/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Applications of MDPs and POMDPs

Small, well-defined problems:

network routing (Dijkstra’s shortest path algorithm!)

trading agents in financial markets

autonomous vehicles on highways

video game playing agents

simple continuous optimization problems

Boi Faltings Reactive Agents 41/42

Reactive Agent Architectures
Decision Processes

Markov Decision Processes
Partially Observable MDP

Summary

Reactive agents = predetermined action depending on
measurement or estimate of state
Optimize behavior through dynamic programming, also called
reinforcement learning:

value iteration: slow but simple to program

policy iteration: requires equation solving

Partially observable MDPs (POMDPs) can be transformed into
MDPs and then solved.

Boi Faltings Reactive Agents 42/42

	Reactive Agent Architectures
	Stateless Behaviors
	Stateful behaviors

	Decision Processes
	Markov Decision Processes
	Value iteration
	Policy iteration

	Partially Observable MDP

