Reactive Agents

Boi Faltings

Laboratoire d'Intelligence Artificielle
boi.faltings@epfl.ch
http://moodle.epfl.ch/

Boi Faltings Reactive Agents 1/42

Reactive Agent Architectures
Stateless
Stateful b

|deal rational agent

sensors

percepts

actions

effectors

Definition (Russel & Norvig):
For each possible percept sequence, an ideal rational agent
should do whatever action is expected to maximize its per-
formance measure, on the basis of the evidence provided
by the percept sequence and whatever built-in knowledge
the agent has.

2/42

Boi Faltings Reactive Agents

Reactive Agent Architectures

Stateless Behavi
Stateful beha

Examples of rational agents

Agent Type

Percepts

Actions

Goals

Environment

Medical diagnosis

Symptoms,

Questions, tests,

Healthy patient,

Patient, hospital

system findings, patient’s treatments minimize costs
answers
Satellite image Pixels of varying Print a Correct Images from
analysis system intensity, color categorization of categorization orbiting satellite
scene
Part-picking robot Pixels of varying Pick up parts and Place parts in Conveyor belt
intensity sort into bins correct bins with parts
Refinery controller Temperature, Open, close Maximize purity, Refinery
pressure readings valves; adjust yield, safety
temperature

Interactive English
tutor

Typed words

Print exercises,
suggestions,
corrections

Maximize
student’s score on
test

Set of students

Reactive Agents

3/42

Reactive Agent Architectures
Statel
Stateful

Real-time agents

Agent Type Percepts Actions Goals Environment
Taxi driver Cameras, Steer, accelerate, Safe, fast, legal, Roads, other
speedometer, GPS, brake, talk to comfortable trip, traffic, pedestrians,
sonar, microphone passenger maximize profits customers
Important:

@ many solutions: optimize!

@ real-time: acting too late may be worse than acting wrong
@ many inputs: cannot program all cases
°

learning: world evolves dynamically

Boi Faltings Reactive Agents 4/42

Reactive Agent Architectures

Stateless Behaviors
Stateful behaviors

Reactive agent

/Agent R N

What the world

is like now

JusWuoAIAUg

. . What action |
Condition—action rules should do now

\ Effectors /

Boi Faltings Reactive Agents 5/42

Reactive Agent Architectures
Stateless B

Purely reactive architecture

Behavior = stimulus-response table
No memory
Features:

@ no planning over time

@ no model of the environment
Examples:

@ thermostat regulates temperature

@ robot following a wall

Boi Faltings Reactive Agents 6/42

Reactive Agent Architectures
Stateless Behaviors
Stateful behaviors

Complex behaviors from simple rules

Boi Faltings

@ Simple rules + complex environment = complex behavior
@ Example: robot following a wall

@ Sensor = obstacle within field of view? (L/C/R/N)
L overides C overides R

@ Action = turn Ieft/forward/turn right TL/F/TR

Reactive Agents

7/42

Reactive Agent Architectures
Stateless Behaviors
Stateful behaviors

Simple rules + complex environment = complex behavior

Define behavior so that robot will follow a wall of arbitrary shape:

Sensor‘L‘C‘R‘N
Action‘?‘?‘?‘?

Boi Faltings Reactive Agents 8/42

Reactive Agent Architectures
Stateless Behaviors
Stateful behaviors

Simple rules + complex environment = complex behavior

Sensor‘ L ‘ C ‘R‘ N
Action | TR | TL | F | TR

= Robot will follow a wall of arbitrary shape:

Boi Faltings Reactive Agents 9/42

Reactive Agent Architectures
Stateless Behaviors
Stateful behaviors

Programming stateless behavior

Rational agent: maximize performance measure:

@ Define a performance measure, called reward

@ E.g.: how far is the robot from being aligned with the wall?
@ Reward function depends on action and inputs R(a,/) — R
°

For each combination of inputs, choose the action that
maximizes the reward function

Boi Faltings Reactive Agents 10/42

Reactive Agent Architectures
Stateless Behaviors
Stateful behaviors

Properties

@ Table-lookup is instantaneous = no problem with real-time

@ Allows continuous world: behavior = f(inputs)
e Limitations:

e conflicting behaviors
e dependence on history

Boi Faltings Reactive Agents 11/42

Reactive Agent Architectures
Stateless Behaviors
Stateful behaviors

Subsumption architecture

Several behaviors may conflict:
o follow wall = go forward
@ charge battery = stop here
Subsumption architecture:
@ behaviors turned on/off

@ priorities decide on who wins

Boi Faltings Reactive Agents 12/42

Reactive Agent Architectures
Stateless Behaviors
Stateful behaviors

Agent with internal state

Si S

How the world evolves ?/Svﬂfét:gwwmld
m
=)
What my actions do _5‘
]
=)
3
(]
- E

(Consion-acion s J—ar| 30T,

Agent Effectors /

Boi Faltings Reactive Agents 13/42

Reactive Agent Architectures
Stateless Behaviors
Stateful behaviors

Behaviors with state

Generalized behavior = state-action table:
‘ S1 ‘ 32‘ 53‘ 54‘85 ‘ 56‘87 ‘ SB‘ 59‘510‘511‘512‘

al | a3 a7| al | a1 | a2 | a5 a7| a3 | a6 | a4

aB‘

Called policy (m(S)) or strategy

State models history and measurements

Agent infers state from past state, action and measurements

Boi Faltings Reactive Agents 14/42

Reactive Agent Architectures
Stateless Behaviors
Stateful behaviors

Programming stateful behavior

Rational agent: maximize reward
Reward depends on state and action:
Reward function: R(s,a)— > R

Action leads to another state:
Transition function: T(s,a)— > S

Potential for future rewards depends on next state!
Best actions depend on immediate and future rewards.

Boi Faltings Reactive Agents 15/42

Decision Processes

Decision processes

Formalizes knowledge of state transitions and rewards:
S1 s2 s3 s4 S1 s2 s3 s4

at| -1 | 1|1 |2 al| s2 | S4| s1| st

a2| -2| 2 2 | -2 a2| S1|S3 | s4| S2

a3| 0 | -3| -2 3 a3| s2 | S1| S4| S2
aal 2 | -1| 4| 5 ad| S2| S4| S1| S4
Rewards Transitions

Reward function: R(s,a)— > R
Transition function: T(s,a)— > S

Boi Faltings Reactive Agents 16/42

Decision Processes

Types of Decision Processes

Assumptions:

@ State transitions are deterministic
(drop = Markov Decision Processes)

@ Current state is known with certainty
(drop = Partially observable MDP)

@ Transition and Payoff matrices are known
(drop = Q-learning)

@ Sets of states and actions are fixed and finite
(drop = deliberative agents)

Boi Faltings Reactive Agents 17/42

Decision Processes

Processes = strategies

Optimal strategy = act to maximize immediate reward:

State s1| 8 | s3] s

Action | az | a> | a2 | a4
Reward | 2 | 2 | 4 | 5
Next S| s3] 581 | sa

Boi Faltings Reactive Agents 18/42

Decision Processes

Taking the future into account

Dynamic programming (“Bellmann backup”):

Maximize current reward + reward of next state:
State S1| 5 | s3] s

Action as | a | ag | a4
Reward 2|12\ 4|5
Next state | sp | s3 | s1 | sa
Value 21 42| 5
Total 41 6| 6 |10

Boi Faltings Reactive Agents 19/42

Decision Processes

Optimization over time

@ Maximize average reward:

h—oo

h
fim E[- S R(se, a(s:))]
h
t=0

o difficult to evaluate and optimize over large sum!

@ Better to use a recursive formulation.

Boi Faltings Reactive Agents 20/42

Decision Processes

Infinite horizon

@ Value of a state V(s) = potential for rewards from this state
onwards

@ lteration on all future states = equilibrium:

V(si) = R(si,a(si))+ V(T (si,a(si)))
a(s;) = argmax(R(s;,a(si)) + V(T (si,a(si))))

@ Infinite horizon: all state values are infinite
= equation for V(s;) has no solution!

Boi Faltings Reactive Agents 21/42

Decision Processes

Discounting the future

@ Agent might die: future less valuable than present.

= introduce discount factor y € [0..1):
V(si) = R(si; a(si)) + v x V(T (si, a(si)))

@ As long as R(s;,a(s;)) < Rm, total reward in bounded:

z;’y’R(s,-,a(s,-)) < Z;”IR"’ = ﬁR,,,
1= 1=

@ Recurrence has a solution!

Boi Faltings Reactive Agents 22/42

Decision Processes

Computing V/(S) by value iteration

initialize V(8) arbitrarily
loop until good enough
loop for s; €S
loop for ae A
Q(si,a) < R(si,a) + V(T (si,a))
V(si) < max,Q(s;, a)

Boi Faltings Reactive Agents 23/42

Decision Processes

Example (v = 0.5)

S1 S2 S3 $4

State s1 S s3 sa a1 1112
V(S)o 2 2 4 5 a2| 2| 2| 2 |-2
A(S)O as a» aa as a3 0 | -3|-2|3
V(51 3 4 5 7.5 as| 2 | 1] 4|5
A(S)l a4 an an a4
V(S), | 4 | 45 | 575 | 875 o o
A(S)2 a4 a2 a2 a4 a1| S2 | S4 | s1 | 81
V(S)s | 4.25 | 4.875 | 6.375 | 9.375

a2| S1|S3|s4|s2
A (5)00 2 o p 2 a3| s2 | S1| S4 | s2
V(S)oo 5 6 7 10 a4| S2 | S4| S1| sS4

Transitions

Boi Faltings Reactive Agents 24/42

Value iteration
Markov Decision Processes Policy iteration

Stochastic Decision Processes

@ In reality, state transitions cannot be predicted with certainty.

@ Markov decision process (MDP):
transition table = state transition function
T(s,a,s’) = p(s'|s, a) (3-dimensional matrix)

@ Markov: Transition probability may not depend on earlier
history

@ Assumption: Observations determine state with certainty.

Boi Faltings Reactive Agents 25/42

Value iteration
Markov Decision Processes Policy iteration

Solving a MDP

e Model =
e reward function R(s, a)
o state transition function T(s,a,s’) = p(s’|s,a) (MDP)

o Goal:
Find a strategy m mapping S — A(S) such that average

reward is maximized.

Boi Faltings Reactive Agents 26/42

Markov Decision Processes

State values

e V/(s) gives the rewards that can be reached from state s using
the optimal policy.

@ Assuming infinite-horizon criterion:

Vis) = T (Zw (s, ax(t)))
_ o (R(s,)+7 Y T(s.a, s')V(s’)>

s'eS

Boi Faltings Reactive Agents 27/42

Value iteration
Markov Decision Processes Policy iteration

Value iteration

V(S) can be computed by an iteration:
initialize V(S) arbitrarily
loop until good enough
loop for s€ S
loop for ac A
Q(s,a) < R(s,a) + 7> ges T(s,a,s)V(s)
V(s) + max,Q(s, a)

Boi Faltings Reactive Agents 28/42

Value iteration
Markov Decision Processes Policy iteration

Convergence of value iteration

@ Value iteration is guaranteed to converge!

@ Stopping criterion: when difference between two successive
iterations
maxses|V'(s) — V(s)| < e

then maximum error (compared to true function V*):

2e7y

maxes| V(s) ~ V'(s)| < 1

Boi Faltings Reactive Agents 29/42

Value iteration
Markov Decision Processes Policy iteration

Choosing the policy

Given value function, choose the policy that maximizes the reward:

7(s) = R(s,a ~|—’yZ s,a,s')V(s)
s'eS

Boi Faltings Reactive Agents 30/42

Value iteration
Markov Decision Processes Policy iteration

Policy iteration (Temporal Difference Learning)

Alternative to value iteration: optimize policy directly
choose an arbitrary policy 7’
loop
T
compute the value function V; of policy =:
solve the linear equations:
Vi(S) = R(S:7(S5)) +7 Lsies T(S,m(5), ')V (S)

improve the policy at each state:
argmax

'(s) « "a (R(s,a) +7> gcs T(s,a,5)Vr(s'))

until © =7’

Clear stopping criterion: policy no longer changes

Boi Faltings Reactive Agents 31/42

Value iteration
Markov Decision Processes Policy iteration

Learning with unknown models

Often, model is not known a-priori
= agent can only observe model from experience!
Approaches:

@ learn the model, then the strategy
@ learn both at the same time
Will be discussed later...

Boi Faltings Reactive Agents 32/42

Partially Observable MDP

Partial Observation

State may not be known with certainty:

Partially observable Markov decision process (POMDP)
o

b a
| SE |=————p=] P s

State Estimator (SE): transforms observations o into belief state b
(a vector of probabilities for each state s).

SE. (b, a,0) = Pr(s|a, o0, b)

Boi Faltings Reactive Agents 33/42

Partially Observable MDP

POMDP = belief MDP

Use new transition function:

7(b,a,b') = Z Pr(o|a, b)

o|SE(b,a,0)=b

and reward function:

p(b,2) = 3 B()R(5,3)

seS

= standard MDP equivalent to original POMDP
(same optimal policy)

Boi Faltings Reactive Agents 34/42

Partially Observable MDP

Solving belief MDP

o Difficulty: for n states, space of belief states is continuous and
n-dimensional.

@ Discretization of probabilities in k intervals
(e.g. p€1]0..0.25),[0.25..0.5), [0.5..0.75), [0.75..1.0]):
number of vectors = k"

@ Discretization can be generated around most interesting
points only

@ Can only be applied to very small problems.

Boi Faltings Reactive Agents 35/42

Partially Observable MDP

Solving belief MDP by Value lteration

o Let belief state b = {Pr(s1), Pr(s2), ..., Pr(sn)}
o = p(b,a) =>.7 Pr(si)R(si,a) is a linear function.
@ Let a* be best action in belief state b, then value function is

linear around this state.

@ = value function is piecewise linear.

a2

al

0 1

Boi Faltings Reactive Agents 36/42

Partially Observable MDP

Solving belief MDP by Value Iteration (2)

Generalize value iteration backup to value function segments:
@ Strategy: start with specific sample points to construct best
policy, then test this policy at extreme points to see if it holds

generally:
e if another policy is better, then add it as a new segment.
e drop segments that are never the best.

@ Similar to column generation in linear programming.

@ Problem: value function can have unbounded number of
segments.

@ Neural networks can offer an alternative for approximating the
space (see later in the course).

Boi Faltings Reactive Agents 37/42

Partially Observable MDP

Solving belief MDP by Policy lteration

Policy = finite state controller = directed graph where:

@ Nodes correspond to some subspace of beliefs (probability
distribution of POMDP states)

@ Nodes are associated with an action «(n).

@ Arcs are associated with an observation z; different
observations lead to different successor nodes.

Stochastic policy = FSC where arcs define a distribution of
successor states.

Boi Faltings Reactive Agents 38/42

Partially Observable MDP

Solving belief MDP by Policy Iteration (2)

Policy iteration:
@ evaluate current policy by constructing new value function =
piecewise linear function of belief state.
@ improve policy by
e adding nodes for new segments of value function.

o removing nodes for segments that become dominated (action
is never optimal).

@ Stochastic policy allows to limit node explosion.

Boi Faltings Reactive Agents 39/42

Partially Observable MDP

Limitations of MDPs and POMDPs

Biggest limitation of decision processes:
space of states, actions must be finite, small

Real world has many features: leads to combinatorial explosion of
state space

= partial generation of state space (~ deliberative agents)

= factoring the representation (logic)

Boi Faltings Reactive Agents 40/42

Partially Observable MDP

Applications of MDPs and POMDPs

Small, well-defined problems:
network routing (Dijkstra’s shortest path algorithm!)

trading agents in financial markets

°
°
@ autonomous vehicles on highways
@ video game playing agents

°

simple continuous optimization problems

Boi Faltings Reactive Agents 41/42

Partially Observable MDP

Summary

Reactive agents = predetermined action depending on
measurement or estimate of state
Optimize behavior through dynamic programming, also called
reinforcement learning:

@ value iteration: slow but simple to program

@ policy iteration: requires equation solving
Partially observable MDPs (POMDPs) can be transformed into
MDPs and then solved.

Boi Faltings Reactive Agents 42/42

	Reactive Agent Architectures
	Stateless Behaviors
	Stateful behaviors

	Decision Processes
	Markov Decision Processes
	Value iteration
	Policy iteration

	Partially Observable MDP

