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Recall: delivery problem

Agent A delivers packages 1..6 to their destinations
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Similar real life planning problems

Airport ground-traffic control
@ Guide aircrafts between runway and terminals
@ Keep safe distances, minimize taxi and wait times
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More real life planning problems

Material control system for LCD manufacturing
@ Transfer LCD cassettes to different locations in the plant

@ Handle hardware failure and minimize delays
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Factored representations

State space explosion

Multiple features = combinatorial explosion of state space:
pos(A)=a/b/c/d/e/f | pos(1l) = a/b/c/d/e/f | holding(1)=t/f
pos(2) = a/b/c/d/e/f | holding(3)=t/f
pos(6) = a/b/c/d/e/f | holding(6)=t/f
= 17'915'904 states
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Factored representations

Only few states are reachable

Successor states of

{pos(A) = a, pos(1) = a, pos(2) = a,
e {pos(A) = a, ..., holding(1), .. }
e {pos(A) = a, ..., holding(2), ...}
e {pos(A)=b,...}

few actions = few successors.
= construct states dynamically as combination of features.
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Factored representations

Many states are equivalent

Can agent move package 1 from a to b:
@ pos(A) = a/elsewhere?
@ pos(1l) = a/elsewhere?
e holding(1)?
Differences in other features = equivalent states.
Only 23 = 8 possibilities to distinguish!
= drop features that don't matter!
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Factored representations

Factored representations

Idea:
@ model each feature by separate predicates (factors).
@ represent only those that are important for the current goal.

Construct states as needed for planning.
= equivalent states treated as one in the planning process.
= dramatic reduction in complexity.

Boi Faltings Factored Representations 8/54



Factored representations

Factored representations (2)

Factored state transitions:

Treat factors independently = reduce combinatorics.
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Factored representations

Techniques for factored representations

State X = vector of k state variables (x1, x2, ..., Xk)-
State variables are also called fluents.

Every combination of state variable values is a state.

Formulate successor functions and rewards as functions on the
vector of state variables.
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Factored representations

Logic-based factored representations
o
o
o
o
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Basis: predicate logic.
Each state is modelled by a set of true/false predicates.
De-facto standard: situation calculus.

Most suitable for deliberative agents (planning).



Neural Networks

@ Neurons in each layer represent state variables.

@ Train autoencoder net to discover a compact factorization:
A/E = "raw" state variables, C = factorization (embedding).
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Factored Decision Processes

Factored Decision Processes

State X = (x1, .., Xk)

Each x; is chosen from a finite domain d;.

All combinations are allowed =- exponential state space.
Delivery problem: positions of agents, packages, goals.

How do we express transitions, rewards and policies in a
factored way?
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Factored Decision Processes

Bayesian Networks

Bayesian network =
@ nodes = events, for example x3 = c.
@ arcs = causation, for example (x3 = ¢) — (x7 = d).

@ causation is uncertain, expressed by probability distribution:
for arc (x; = x;), express P(x;j|x;) for all x; € dj, x; € d}.
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Factoring Transitions

Factored Decision Processes

e function

Dynamic Bayesian Networks

Nodes = (x1, .., xk) U (x], .-, X¢)
X = states at time t
X' = states at time t+1

No arcs between x;s or xs

Arc from x; to xJ’ if x; influences xj’

Model transitions by a separate DBN for each action
(more efficient representations possible)
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Factoring Transitions

Factored Decision Processes R
ue function

Probability distributions

Every variable x! with inbound nodes x;, .., xx has a probability
distribution:

pi(X{]xj, -5 Xk)

Transition probability between states given as product of
distributions:

pr(xi =V, "7Xr/7 = Vn‘Xl = Wi,.,Xp = Wn)

n
B | CC T ———
=1

Best if relations are as local as possible!
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Factoring Transitions

Factored Decision Processes R
ue function

Example: Delivery Problem

DBN for agent A moving package 1 from a to b
@ x; = pos(1), xo = pos(A), ...
@ xj influenced by x; and x» = arcs
@ Probability distributions:
p(x; = ylx1 = x,x = x) =1, x=ay=>b
pxi=ylxi=xx=x)=0, x#ay#b
same for p(x5 = y|x1 = x, x2 = x)

Frame axioms:

i =xl=x)=1 i£12
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Factoring Transitions
Factoring the policy

Fact e value function
Policy iteration

Factored Decision Processes

Factoring the policy

@ Policy should be formulated on factored state representation.

@ Generally, number of possible actions is small = many states
have the same optimal action.

= Policy = mapping (optimal action) = set of states.

@ Assumption: states with same optimal action have a compact
description.

@ Examples: combinations of features, decision tree on features.

@ Application of policy: test which action satisfies the current
state.
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.. e p cy
Factored Decision Processes A ; ’ A
Factoring the value function

Policy iteration

Factoring the reward function

Instantaneous rewards depend on action and state variables.

Factored reward function: reward depends on action and
subset of state variables.

@ e.g. delivery problem: agent A moves package 1 from a to b:
reward = 1 if successful (as in transition) and b is the goal.

= dependency on: pos(1), pos(A), destination(1)

Separate reward function for each possible action.

Select depending on action actually executed.
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policy
Factoring the value function
Policy iteration

Factored Decision Processes

@ Reward functions depend on nodes in
dynamic Bayes net.

@ Total reward = sum of rewards.

@ Can we also factor the value of a
state?

20/54
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Factored Decision Processes A ; ’ A
Factoring the value function

Policy iteration

Factoring the value function

@ Factored reward function % factored value function!

@ Value of pos(A)=b also depends on positions of agents and
other packages; if also pos(B)=b then value increment is
lower because agent B can also carry the package from b.

e Factor value function into basis functions b;(U), U C X, such
that V(X) = z w; b;

@ Optimal policy is computed using the same factoring as the
value function.
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.. e p cy
Factored Decision Processes A ; ’ A
Factoring the value function

Policy iteration

Value function factored into basis functions

V(X)=> wb;
Basis functions b; are programmed by analysis of the system
(ex deliveries: analyze dependencies).

Weights w; are determined so that the overall mean square
error is minimized.

@ Disadvantage: approximation depends on the quality of the
basis functions.

@ Advantage: often just few basis functions = manageable
complexity.
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Factored Decision Processes A A
Factoring the value function

Policy iteration

Value iteration?

@ As value function V(S) = > w;b;(S), value iteration
recurrence becomes:

V(S) = R(S,m(S))+v ) T(S.x(S).S)\V(S)
S'eS

> wibi(S) = R(S,w(S)+7 Y T(S,7(5),S)D  wibi(S)

S'eS

with one equation for each state.

@ Many more states than basis functions = more equations
than unknowns w;.

= solve approximately for least-squares approximation of b;.
@ However, far too many states: intractable to solve.
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Factored Decision Processes

Policy iteration

Policy iteration

Factored policy = factored state space; use for approximating
value function in policy iteration:
choose an arbitrary policy =’
loop
T
compute the value function V; of policy :
solve the linear equations:
Va(5) = R(S.7(5)) 47 Lsrcs T(S.7(5). S)Va(S')

improve the policy at each state:
argmax

m'(s)« "a (R(s,a) +72 gcs T(s,a,5")Va(s'))
until m =7’
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Factored Decision Processes

Policy iteration

Alternative: Deep Reinforcement Learning

Neural networks can be seen as a kind of factored representation:

@ input units = factors of state representation
(state = combination of activation levels)

@ output units = factors of action representation.

Deep learning finds a complex policy mapping state = action.

Factors of reward function a good starting point for neural units.
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nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Factored representations for deliberative agents

@ Factoring helps to reduce complexity of decision processes.

o But still generates policies for all imaginable states =
unnecessary complexity.

o Often, need to use deliberative agents.
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Factored representations for planning

A simple delivery world

Consider a robot moving packages among a network of locations.
We use the following predicates to model the world in state S:

@ AT(p,1,S): object p is at location 1

@ LOC(1,S): the robot is at location 1

@ CONN(11,12,5): there is a connection from location 11 to 12
Argument S allows different truth values in different states.
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tment planning
Factored representations for planning

Modeling world states

States modelled by a set of propositions, e.g. state Sp:

AT(P1,A,Sy)

AT(P2,C, So) R
LOC(B, So)
CONN(A,B, Sp)
CONN(B,A, Sp)
CONN(B,C, Sp)
CONN(C,B, Sp)
CONN(C,D, Sp)
CONN(D,C, Sp)

P1 P2
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world
Situation calculus
Least committment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Situations and states

States contain unnecessary details:
AT (P2,C,Sy) not important for plan = drop

= partial models = Situations
@ Situations allow specifying goals, more general plans.
@ Operators model agent actions.

@ In situation calculus, operators transform situations.
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nittment planning
Factored representations for planning
Satisfiability

Operators (situation calculus = STRIPS)

An operator S; = S;.1 is characterized by:

@ preconditions: propositions which must be true in S; for the
operator to be applicable.

@ postconditions: propositions which will be true in S5;41 as a
result of the action. Also called ADD-LIST.

@ DELETE-LIST: propositions which will no longer be true in
Si+1. Often identical with preconditions.

Formalized in the Planning Domain Definition Language (PDDL).
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Factored representations for planning

Example: CARRY

CARRY(p,11,12,5;) models the action of the robot carrying
object p from location 11 to 12.
It is defined as follows:

e preconditions (P): CONN(11,12,5;), LOC(11,S)),
AT (p,11,S5)

e add-list (A): LOC(12,S5;,1), AT(p,12,5;41)

@ delete-list (D): LOC(11,S5;41), AT(p,11,S5i+1)
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Factored representations for planning

Example: MOVE

MOVE(11,12,5;) models the action of the robot moving from
location 11 to 12 without carrying anything.
It is defined as follows:

e preconditions (P): CONN(11,12,S5;), LOC(11,S;)
@ add-list (A): LOC(12, S;4+1)
o delete-list (D): LOC(11, Sj4+1)
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ttment planning
Factored representations for planning
Satisfiability

Situation calculus as a factored representation

@ Most factors of the world state have no influence on current
action.
@ For example, moving a package in a delivery problem is not

influenced by the positions of other packages.

Situation calculus does not represent these
= automatically groups equivalent states.

@ Situation calculus operators model progression of situations as
a result of actions, similar to dynamic Bayes nets.
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Least committment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Least committment

@ Plans are sequences of multiple actions: can we factor as well?
@ Assume actions A,...,Z can be carried out in any order.
= 26! different (ordered) plans:

(A,B,...2),(B,A,...2),...

Search treats all of them as separate alternatives!

@ Delay committment on order =
1 plan with 26 parallel actions:

(.. {A,B, ... Z},..)

Less to enumerate = more efficient search.
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Situatio

Least committment planning
Factored representations for planning Graphplan

Planning as Satisfiability

Non-linear (partial-order) planning

Plan indicates partial orders:

Boxes = operations
Arrows = precedence relations
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Least committment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Making nonlinear planning efficient

@ Problem: complexity of establishing causal links in a
non-conflicting fashion.

o Idea: explicitly generate sets of actions that can be executed
in parallel.

= plan = sequence of (potentially parallel) action groups.
@ Generate the groups to avoid conflicts in causal links.

= no need for backtracking on this link structure.
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Least committment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Constructing a finite decision space

@ Assumptions:

e finite universe =
situation calculus uses a finite set of propositions
o plan has at most n steps (use iterative deepening)

@ Each proposition becomes a state variable = universe of state
variables for each of the n states.

@ Only reachable propositions are represented!
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tment planning
Factored representations for planning Graphpl

Planning as Satisfiability

Example

5 state variables:

e ls,rs: wearing left/right sock
@ lh,rh: wearing left/right shoe
@ p: wearing pants
Initial state: = 1s,— rs,— 1lh,— rh,— p
5 operators:
@ left/right sock:
P={-1s/rs, —1lh/rh}, D={-1s/rs}, A={1ls/rs}
o left/right shoe:
P = {-1h/rh, 1s/rs}, D = {—-1h/rh}, A = {1h/rh}
@ pants:
P = {-p, —1h, —rh}, D = {-p}, A = {p}
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committment planning
Factored representations for planning phplan
Planning as Satisfiability

Planning graphs

o Idea: consider what actions can be carried out simultaneously.
@ Graph has layers. Each layer contains nodes
e for each possible proposition that could hold
e for each possible action
o First layer: initial state 4 actions possible in initial state.
o Following layers: propositions and actions that might be

possible.

@ Construction: polynomial time.
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mmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Planning graph example

left sock ii pants I:
left sock left shoe i pants I:

left shoe pants

pant:-
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Deli

Situation ¢

Least committment planning
Factored representations for planning Graphplan

Planning as Satisfiability

Exclusion relations

-ls Is =lh lh 7P p -rh rh s rs
r— | °
—
left sock w
[ ]
- T =
left sock q ocul a o

- L

left sock

et sock E it shoc MR~ ight sock

-ls Is =lh -p p -rh th -rs rs

@ Interference, Competing needs = constraints!

@ Result: identify what actions can take place in parallel.
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lus
e nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Backward search

o Goals at time t: 1s,rs,lh,rh,p
@ Select set of non-exclusive actions at time t:

© {pants, left sock, right sock}
@ {left shoe, right shoe}

= Goals at time t-1:
Q@ ~p, 1s, - rs, = 1h, = rh, 1h, rh
@ — lh, = rh, 1s, rs, p

@ Goals (1) contradictory = backup.
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lus
e nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Search (continued)

@ Goals (2) = non-exclusive actions:
{left sock, right sock, pants}
= Goals at time t-2:
- p, 0 1s, - rs, = 1h, - rh
Satisfied by initial conditions!
o Plan:

@ {left sock, right sock, pants}
@ {left shoe, right shoe}
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committment planning
Factored representations for planning phplan
Planning as Satisfiability

Testing for unsolvability

o After n levels, all levels of the graph will become identical.

o If the goal state is not contained in this state, or ruled out by
mutual-exclusion constraints, the problem is unsolvable.

@ Extension of this criterion for general unsolvability test.
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Factored representations for planning
Planning as Satisfiability

Does Graphplan give all solutions?

No - plan not included:
left sock, pants, left shoe, right sock,
right shoe

However, complete:
no solution in Graphplan
= no plan exists
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Factored representations for planning
Planning as Satisfiability

Using Graphplan as a heuristic

@ Simplification: ignore all delete lists.

= after forming feasible sets, can find a plan without
backtracking.

@ Use Graphplan on simplified problem as a heuristic for
planning with A* algorithm:
Fast Forward algorithm.

@ FF often much faster than Graphplan itself.
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ilus
mittment planning
Factored representations for planning Graphpla

Gra
Planning as Satisfiability

Graphplan = Satisfiability

@ Consider collection of clauses:

ILvi2vI3v..
for example:
(AT(P1,A,S0) A CARRY (P1,A,B,S)) = AT(P1, B, 51)
= clause:
-AT(P1,A,Sy) V ~CARRY(P1,A, B, S) v AT(P1,B, 5)

e Satisfiability (SAT): what truth assignment will make a
collection of clauses simultaneously true.

@ Research community has obtained efficient search tools for
this problem.
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nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Graphplan as SAT

Variables:
@ each operator at each time instant.
@ each proposition at each time instant.
Constraints (clauses):
@ each operator with its preconditions in preceeding state.
@ each operator with its postconditions in following state.
@ exclusions among propositions in each state.
°

exclusions among operators using the same resource.
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Factored representations for planning Graphplan
Planning as Satisfiability

Assumptions

Same as for Graphplan:
e finite set of propositions (fluents).
@ plan has at most n steps.

Time broken up into 2n points:
@ even: states.

@ uneven: actions.
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Factored representations for planning n
Planning as Satisfiability

Encoding as literals

Literals of the SAT problem =
o all propositions describing states at every even time, e.g.:
AT(P1,A,0),AT(P1,A,2),AT(P1,A,4),..AT(P1,A,2n)
AT(P1,B,0),AT(P2,A,0),AT(P2,B,0),...
@ all possible actions at every odd time, e.g.:
MOVE(A, B,1), MOVE(A, B, 3), ..., MOVE(A, B,2n — 1)
CARRY(P1,A,B,1), CARRY(P1,A,B,3), ...
Axioms:
@ INIT, GOAL: for initial and final conditions.
@ for every action op and every odd time t, an implication

op(t) = P(t —1),A(t+1),-D(t +1)

(Notation: E = AU-D)
@ frame axioms.
ot Faltngs || e e T



ment planning
Factored representations for planning

Frame Axioms

@ Frame axioms: ensure that propositions not affected by
actions remain true.

o Classical frame axioms: associated with every operator
AT(P1,C,t —1) A CARRY(P2,A,B,t) = AT(P1,C,t+1)

Complex: requires a separate axiom for every action and every
proposition.
@ Explanatory frame axioms:
AT(P2,C,t — 1) AN-AT(P2,C,t+1) =
CARRY (P2,C,D,t)V CARRY(P2,C,B,t) V ...

@ Exclusion constraints: actions with conflict between
precondition /effect cannot be executed in parallel.
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nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Comparison with MDP

MDP:
@ any state can be sucessor to another state with some
probability.
@ = need to immediately plan for all states...
= focus instead on limited uncertainty:
@ uncertain effects (but with limited set of choices)
e conditional effects (predictable)
@ measurement actions

can be integrated particularly well with SAT and constraint
satisfaction techniques.
Active research area.
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Factored representations for planning
Planning as Satisfiability

Phase transition behavior

@ SAT expected computation time depends on tightness:

computation time

many solutions no solution

time~ 1 solution

|
I
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
ime I
Timit |
+

+
acceptable

tightness problem

tightness

= agent has to operate with sufficient liberty.
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nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Summary

@ Factored, logical representations can greatly reduce
complexity of planning.

e Can improve efficiency of reactive agents (but complex).

@ Neural nets can learn factored representations that fit well
with reactive agents (deep reinforcement learning).

@ Factoring is widely used in deliberative agents.

o Efficiency gains through least-committment principle:

e operator order: non-linear, partial-order planning
e operator choice: graphplan, SATplan
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