Factored Representations

Boi Faltings

Laboratoire d'Intelligence Artificielle
boi.faltings@epfl.ch
http://moodle.epfl.ch/

Boi Faltings Factored Representations 1/54

Recall: delivery problem

Agent A delivers packages 1..6 to their destinations

Boi Faltings Factored Representations 2/54

Similar real life planning problems

Airport ground-traffic control
@ Guide aircrafts between runway and terminals
@ Keep safe distances, minimize taxi and wait times

Boi Faltings Factored Representations

More real life planning problems

Material control system for LCD manufacturing
@ Transfer LCD cassettes to different locations in the plant

@ Handle hardware failure and minimize delays

T H \'@v&m (RGV)

Destination
aadushonsfeppona

E:é EHIES
= E@ =
gl 818 4 1=
e W afhm |
St = -
C & -
CoECHONOTVEREIZ] (Note) -~~~ : Shortest route
[Traverser | [Vehicle (RGV) | [Transfer unit| | Viehicle (OHV) ==>-: Route search result

(a) High-level view

(b) Sample route 1"#$%&' (B *+,,-$

Boi Faltings Factored Representations 4/54

Factored representations

State space explosion

Multiple features = combinatorial explosion of state space:
pos(A)=a/b/c/d/e/f | pos(1l) = a/b/c/d/e/f | holding(1)=t/f
pos(2) = a/b/c/d/e/f | holding(3)=t/f
pos(6) = a/b/c/d/e/f | holding(6)=t/f
= 17'915'904 states

Boi Faltings Factored Representations 5/54

Factored representations

Only few states are reachable

Successor states of

{pos(A) = a, pos(1) = a, pos(2) = a,
e {pos(A) = a, ..., holding(1), .. }
e {pos(A) = a, ..., holding(2), ...}
e {pos(A)=b,...}

few actions = few successors.
= construct states dynamically as combination of features.

Boi Faltings Factored Representations 6/54

Factored representations

Many states are equivalent

Can agent move package 1 from a to b:
@ pos(A) = a/elsewhere?
@ pos(1l) = a/elsewhere?
e holding(1)?
Differences in other features = equivalent states.
Only 23 = 8 possibilities to distinguish!
= drop features that don't matter!

Boi Faltings Factored Representations 7/54

Factored representations

Factored representations

Idea:
@ model each feature by separate predicates (factors).
@ represent only those that are important for the current goal.

Construct states as needed for planning.
= equivalent states treated as one in the planning process.
= dramatic reduction in complexity.

Boi Faltings Factored Representations 8/54

Factored representations

Factored representations (2)

Factored state transitions:

Treat factors independently = reduce combinatorics.

Boi Faltings Factored Representations 9/54

Factored representations

Techniques for factored representations

State X = vector of k state variables (x1, x2, ..., Xk)-
State variables are also called fluents.

Every combination of state variable values is a state.

Formulate successor functions and rewards as functions on the
vector of state variables.

Boi Faltings Factored Representations 10/54

Factored representations

Logic-based factored representations
o
o
o
o

Boi Faltings Factored Representations 11/54

Basis: predicate logic.
Each state is modelled by a set of true/false predicates.
De-facto standard: situation calculus.

Most suitable for deliberative agents (planning).

Neural Networks

@ Neurons in each layer represent state variables.

@ Train autoencoder net to discover a compact factorization:
A/E = "raw" state variables, C = factorization (embedding).

12/54

Factored Decision Processes

Factored Decision Processes

State X = (x1, .., Xk)

Each x; is chosen from a finite domain d;.

All combinations are allowed =- exponential state space.
Delivery problem: positions of agents, packages, goals.

How do we express transitions, rewards and policies in a
factored way?

Boi Faltings Factored Representations 13/54

Factored Decision Processes

Bayesian Networks

Bayesian network =
@ nodes = events, for example x3 = c.
@ arcs = causation, for example (x3 = ¢) — (x7 = d).

@ causation is uncertain, expressed by probability distribution:
for arc (x; = x;), express P(x;j|x;) for all x; € dj, x; € d}.

Boi Faltings Factored Representations 14/54

Factoring Transitions

Factored Decision Processes

e function

Dynamic Bayesian Networks

Nodes = (x1, .., xk) U (x], .-, X¢)
X = states at time t
X' = states at time t+1

No arcs between x;s or xs

Arc from x; to xJ’ if x; influences xj’

Model transitions by a separate DBN for each action
(more efficient representations possible)

Boi Faltings Factored Representations 15/54

Factoring Transitions

Factored Decision Processes R
ue function

Probability distributions

Every variable x! with inbound nodes x;, .., xx has a probability
distribution:

pi(X{]xj, -5 Xk)

Transition probability between states given as product of
distributions:

pr(xi =V, "7Xr/7 = Vn‘Xl = Wi,.,Xp = Wn)

n
B | CC T ———
=1

Best if relations are as local as possible!

Boi Faltings Factored Representations 16/54

Factoring Transitions

Factored Decision Processes R
ue function

Example: Delivery Problem

DBN for agent A moving package 1 from a to b
@ x; = pos(1), xo = pos(A), ...
@ xj influenced by x; and x» = arcs
@ Probability distributions:
p(x; = ylx1 = x,x = x) =1, x=ay=>b
pxi=ylxi=xx=x)=0, x#ay#b
same for p(x5 = y|x1 = x, x2 = x)

Frame axioms:

i =xl=x)=1 i£12

Boi Faltings Factored Representations 17/54

Factoring Transitions
Factoring the policy

Fact e value function
Policy iteration

Factored Decision Processes

Factoring the policy

@ Policy should be formulated on factored state representation.

@ Generally, number of possible actions is small = many states
have the same optimal action.

= Policy = mapping (optimal action) = set of states.

@ Assumption: states with same optimal action have a compact
description.

@ Examples: combinations of features, decision tree on features.

@ Application of policy: test which action satisfies the current
state.

Boi Faltings Factored Representations 18/54

.. e p cy
Factored Decision Processes A ; ’ A
Factoring the value function

Policy iteration

Factoring the reward function

Instantaneous rewards depend on action and state variables.

Factored reward function: reward depends on action and
subset of state variables.

@ e.g. delivery problem: agent A moves package 1 from a to b:
reward = 1 if successful (as in transition) and b is the goal.

= dependency on: pos(1), pos(A), destination(1)

Separate reward function for each possible action.

Select depending on action actually executed.

Boi Faltings Factored Representations 19/54

policy
Factoring the value function
Policy iteration

Factored Decision Processes

@ Reward functions depend on nodes in
dynamic Bayes net.

@ Total reward = sum of rewards.

@ Can we also factor the value of a
state?

20/54

Boi Faltings Factored Representations

.. e p cy
Factored Decision Processes A ; ’ A
Factoring the value function

Policy iteration

Factoring the value function

@ Factored reward function % factored value function!

@ Value of pos(A)=b also depends on positions of agents and
other packages; if also pos(B)=b then value increment is
lower because agent B can also carry the package from b.

e Factor value function into basis functions b;(U), U C X, such
that V(X) = z w; b;

@ Optimal policy is computed using the same factoring as the
value function.

Boi Faltings Factored Representations 21/54

.. e p cy
Factored Decision Processes A ; ’ A
Factoring the value function

Policy iteration

Value function factored into basis functions

V(X)=> wb;
Basis functions b; are programmed by analysis of the system
(ex deliveries: analyze dependencies).

Weights w; are determined so that the overall mean square
error is minimized.

@ Disadvantage: approximation depends on the quality of the
basis functions.

@ Advantage: often just few basis functions = manageable
complexity.

Boi Faltings Factored Representations 22/54

. . € [cy
Factored Decision Processes A A
Factoring the value function

Policy iteration

Value iteration?

@ As value function V(S) = > w;b;(S), value iteration
recurrence becomes:

V(S) = R(S,m(S))+v) T(S.x(S).S)\V(S)
S'eS

> wibi(S) = R(S,w(S)+7 Y T(S,7(5),S)D wibi(S)

S'eS

with one equation for each state.

@ Many more states than basis functions = more equations
than unknowns w;.

= solve approximately for least-squares approximation of b;.
@ However, far too many states: intractable to solve.

Boi Faltings Factored Representations 23/54

Factored Decision Processes

Policy iteration

Policy iteration

Factored policy = factored state space; use for approximating
value function in policy iteration:
choose an arbitrary policy =’
loop
T
compute the value function V; of policy :
solve the linear equations:
Va(5) = R(S.7(5)) 47 Lsrcs T(S.7(5). S)Va(S')

improve the policy at each state:
argmax

m'(s)« "a (R(s,a) +72 gcs T(s,a,5")Va(s'))
until m =7’

Boi Faltings Factored Representations 24/54

Factored Decision Processes

Policy iteration

Alternative: Deep Reinforcement Learning

Neural networks can be seen as a kind of factored representation:

@ input units = factors of state representation
(state = combination of activation levels)

@ output units = factors of action representation.

Deep learning finds a complex policy mapping state = action.

Factors of reward function a good starting point for neural units.

Boi Faltings Factored Representations 25/54

nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Factored representations for deliberative agents

@ Factoring helps to reduce complexity of decision processes.

o But still generates policies for all imaginable states =
unnecessary complexity.

o Often, need to use deliberative agents.

Boi Faltings Factored Representations 26/54

Factored representations for planning

A simple delivery world

Consider a robot moving packages among a network of locations.
We use the following predicates to model the world in state S:

@ AT(p,1,S): object p is at location 1

@ LOC(1,S): the robot is at location 1

@ CONN(11,12,5): there is a connection from location 11 to 12
Argument S allows different truth values in different states.

Boi Faltings Factored Representations 27/54

tment planning
Factored representations for planning

Modeling world states

States modelled by a set of propositions, e.g. state Sp:

AT(P1,A,Sy)

AT(P2,C, So) R
LOC(B, So)
CONN(A,B, Sp)
CONN(B,A, Sp)
CONN(B,C, Sp)
CONN(C,B, Sp)
CONN(C,D, Sp)
CONN(D,C, Sp)

P1 P2

Boi Faltings Factored Representations 28/54

world
Situation calculus
Least committment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Situations and states

States contain unnecessary details:
AT (P2,C,Sy) not important for plan = drop

= partial models = Situations
@ Situations allow specifying goals, more general plans.
@ Operators model agent actions.

@ In situation calculus, operators transform situations.

Boi Faltings Factored Representations 29/54

nittment planning
Factored representations for planning
Satisfiability

Operators (situation calculus = STRIPS)

An operator S; = S;.1 is characterized by:

@ preconditions: propositions which must be true in S; for the
operator to be applicable.

@ postconditions: propositions which will be true in S5;41 as a
result of the action. Also called ADD-LIST.

@ DELETE-LIST: propositions which will no longer be true in
Si+1. Often identical with preconditions.

Formalized in the Planning Domain Definition Language (PDDL).

Boi Faltings Factored Representations 30/54

Factored representations for planning

Example: CARRY

CARRY(p,11,12,5;) models the action of the robot carrying
object p from location 11 to 12.
It is defined as follows:

e preconditions (P): CONN(11,12,5;), LOC(11,S)),
AT (p,11,S5)

e add-list (A): LOC(12,S5;,1), AT(p,12,5;41)

@ delete-list (D): LOC(11,S5;41), AT(p,11,S5i+1)

Boi Faltings Factored Representations 31/54

Factored representations for planning

Example: MOVE

MOVE(11,12,5;) models the action of the robot moving from
location 11 to 12 without carrying anything.
It is defined as follows:

e preconditions (P): CONN(11,12,S5;), LOC(11,S;)
@ add-list (A): LOC(12, S;4+1)
o delete-list (D): LOC(11, Sj4+1)

Boi Faltings Factored Representations 32/54

ttment planning
Factored representations for planning
Satisfiability

Situation calculus as a factored representation

@ Most factors of the world state have no influence on current
action.
@ For example, moving a package in a delivery problem is not

influenced by the positions of other packages.

Situation calculus does not represent these
= automatically groups equivalent states.

@ Situation calculus operators model progression of situations as
a result of actions, similar to dynamic Bayes nets.

Boi Faltings Factored Representations 33/54

Least committment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Least committment

@ Plans are sequences of multiple actions: can we factor as well?
@ Assume actions A,...,Z can be carried out in any order.
= 26! different (ordered) plans:

(A,B,...2),(B,A,...2),...

Search treats all of them as separate alternatives!

@ Delay committment on order =
1 plan with 26 parallel actions:

(.. {A,B, ... Z},..)

Less to enumerate = more efficient search.

Boi Faltings Factored Representations 34/54

Situatio

Least committment planning
Factored representations for planning Graphplan

Planning as Satisfiability

Non-linear (partial-order) planning

Plan indicates partial orders:

Boxes = operations
Arrows = precedence relations

Boi Faltings Factored Representations 35/54

Least committment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Making nonlinear planning efficient

@ Problem: complexity of establishing causal links in a
non-conflicting fashion.

o Idea: explicitly generate sets of actions that can be executed
in parallel.

= plan = sequence of (potentially parallel) action groups.
@ Generate the groups to avoid conflicts in causal links.

= no need for backtracking on this link structure.

Boi Faltings Factored Representations 36/54

Least committment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Constructing a finite decision space

@ Assumptions:

e finite universe =
situation calculus uses a finite set of propositions
o plan has at most n steps (use iterative deepening)

@ Each proposition becomes a state variable = universe of state
variables for each of the n states.

@ Only reachable propositions are represented!

Boi Faltings Factored Representations 37/54

tment planning
Factored representations for planning Graphpl

Planning as Satisfiability

Example

5 state variables:

e ls,rs: wearing left/right sock
@ lh,rh: wearing left/right shoe
@ p: wearing pants
Initial state: = 1s,— rs,— 1lh,— rh,— p
5 operators:
@ left/right sock:
P={-1s/rs, —1lh/rh}, D={-1s/rs}, A={1ls/rs}
o left/right shoe:
P = {-1h/rh, 1s/rs}, D = {—-1h/rh}, A = {1h/rh}
@ pants:
P = {-p, —1h, —rh}, D = {-p}, A = {p}

Boi Faltings Factored Representations 38/54

committment planning
Factored representations for planning phplan
Planning as Satisfiability

Planning graphs

o Idea: consider what actions can be carried out simultaneously.
@ Graph has layers. Each layer contains nodes
e for each possible proposition that could hold
e for each possible action
o First layer: initial state 4 actions possible in initial state.
o Following layers: propositions and actions that might be

possible.

@ Construction: polynomial time.

Boi Faltings Factored Representations 39/54

mmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Planning graph example

left sock ii pants I:
left sock left shoe i pants I:

left shoe pants

pant:-

Boi Faltings Factored Representations 40/54

Deli

Situation ¢

Least committment planning
Factored representations for planning Graphplan

Planning as Satisfiability

Exclusion relations

-ls Is =lh lh 7P p -rh rh s rs
r— | °
—
left sock w
[]
- T =
left sock q ocul a o

- L

left sock

et sock E it shoc MR~ ight sock

-ls Is =lh -p p -rh th -rs rs

@ Interference, Competing needs = constraints!

@ Result: identify what actions can take place in parallel.

Boi Faltings Factored Representations

41/54

lus
e nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Backward search

o Goals at time t: 1s,rs,lh,rh,p
@ Select set of non-exclusive actions at time t:

© {pants, left sock, right sock}
@ {left shoe, right shoe}

= Goals at time t-1:
Q@ ~p, 1s, - rs, = 1h, = rh, 1h, rh
@ — lh, = rh, 1s, rs, p

@ Goals (1) contradictory = backup.

Boi Faltings Factored Representations 42/54

lus
e nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Search (continued)

@ Goals (2) = non-exclusive actions:
{left sock, right sock, pants}
= Goals at time t-2:
- p, 0 1s, - rs, = 1h, - rh
Satisfied by initial conditions!
o Plan:

@ {left sock, right sock, pants}
@ {left shoe, right shoe}

Boi Faltings Factored Representations 43/54

committment planning
Factored representations for planning phplan
Planning as Satisfiability

Testing for unsolvability

o After n levels, all levels of the graph will become identical.

o If the goal state is not contained in this state, or ruled out by
mutual-exclusion constraints, the problem is unsolvable.

@ Extension of this criterion for general unsolvability test.

Boi Faltings Factored Representations 44/54

Factored representations for planning
Planning as Satisfiability

Does Graphplan give all solutions?

No - plan not included:
left sock, pants, left shoe, right sock,
right shoe

However, complete:
no solution in Graphplan
= no plan exists

Boi Faltings Factored Representations 45/54

Factored representations for planning
Planning as Satisfiability

Using Graphplan as a heuristic

@ Simplification: ignore all delete lists.

= after forming feasible sets, can find a plan without
backtracking.

@ Use Graphplan on simplified problem as a heuristic for
planning with A* algorithm:
Fast Forward algorithm.

@ FF often much faster than Graphplan itself.

Boi Faltings Factored Representations 46/54

ilus
mittment planning
Factored representations for planning Graphpla

Gra
Planning as Satisfiability

Graphplan = Satisfiability

@ Consider collection of clauses:

ILvi2vI3v..
for example:
(AT(P1,A,S0) A CARRY (P1,A,B,S)) = AT(P1, B, 51)
= clause:
-AT(P1,A,Sy) V ~CARRY(P1,A, B, S) v AT(P1,B, 5)

e Satisfiability (SAT): what truth assignment will make a
collection of clauses simultaneously true.

@ Research community has obtained efficient search tools for
this problem.

Boi Faltings Factored Representations 47/54

nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Graphplan as SAT

Variables:
@ each operator at each time instant.
@ each proposition at each time instant.
Constraints (clauses):
@ each operator with its preconditions in preceeding state.
@ each operator with its postconditions in following state.
@ exclusions among propositions in each state.
°

exclusions among operators using the same resource.

Boi Faltings Factored Representations 48/54

Factored representations for planning Graphplan
Planning as Satisfiability

Assumptions

Same as for Graphplan:
e finite set of propositions (fluents).
@ plan has at most n steps.

Time broken up into 2n points:
@ even: states.

@ uneven: actions.

Boi Faltings Factored Representations 49/54

culus
ttment planning
Factored representations for planning n
Planning as Satisfiability

Encoding as literals

Literals of the SAT problem =
o all propositions describing states at every even time, e.g.:
AT(P1,A,0),AT(P1,A,2),AT(P1,A,4),..AT(P1,A,2n)
AT(P1,B,0),AT(P2,A,0),AT(P2,B,0),...
@ all possible actions at every odd time, e.g.:
MOVE(A, B,1), MOVE(A, B, 3), ..., MOVE(A, B,2n — 1)
CARRY(P1,A,B,1), CARRY(P1,A,B,3), ...
Axioms:
@ INIT, GOAL: for initial and final conditions.
@ for every action op and every odd time t, an implication

op(t) = P(t —1),A(t+1),-D(t +1)

(Notation: E = AU-D)
@ frame axioms.
ot Faltngs || e e T

ment planning
Factored representations for planning

Frame Axioms

@ Frame axioms: ensure that propositions not affected by
actions remain true.

o Classical frame axioms: associated with every operator
AT(P1,C,t —1) A CARRY(P2,A,B,t) = AT(P1,C,t+1)

Complex: requires a separate axiom for every action and every
proposition.
@ Explanatory frame axioms:
AT(P2,C,t — 1) AN-AT(P2,C,t+1) =
CARRY (P2,C,D,t)V CARRY(P2,C,B,t) V ...

@ Exclusion constraints: actions with conflict between
precondition /effect cannot be executed in parallel.

Boi Faltings Factored Representations 51/54

nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Comparison with MDP

MDP:
@ any state can be sucessor to another state with some
probability.
@ = need to immediately plan for all states...
= focus instead on limited uncertainty:
@ uncertain effects (but with limited set of choices)
e conditional effects (predictable)
@ measurement actions

can be integrated particularly well with SAT and constraint
satisfaction techniques.
Active research area.

Boi Faltings Factored Representations 52/54

Factored representations for planning
Planning as Satisfiability

Phase transition behavior

@ SAT expected computation time depends on tightness:

computation time

many solutions no solution

time~ 1 solution

|
I
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
ime I
Timit |
+

+
acceptable

tightness problem

tightness

= agent has to operate with sufficient liberty.

Boi Faltings Factored Representations 53/54

nmittment planning
Factored representations for planning Graphplan
Planning as Satisfiability

Summary

@ Factored, logical representations can greatly reduce
complexity of planning.

e Can improve efficiency of reactive agents (but complex).

@ Neural nets can learn factored representations that fit well
with reactive agents (deep reinforcement learning).

@ Factoring is widely used in deliberative agents.

o Efficiency gains through least-committment principle:

e operator order: non-linear, partial-order planning
e operator choice: graphplan, SATplan

Boi Faltings Factored Representations 54/54

	Factored representations
	Factored Decision Processes
	Factoring Transitions
	Factoring the policy
	Factoring the value function
	Policy iteration

	Factored representations for planning
	Delivery world
	Situation calculus
	Least committment planning
	Graphplan
	Planning as Satisfiability

