Intelligent Agents

Boi Faltings

Laboratoire d'Intelligence Artificielle boi.faltings@epfl.ch http://moodle.epfl.ch/

Administrative Information

- Taught by: Boi Faltings, Al Laboratory
- Course site & materials:
 - http://moodle.epfl.ch
 - -> Informatique -> Master -> Intelligent Agents
- Moodle Enrolment key: intelagent77
- Assistants:
 - Ljubomir Rokvic, Zeki Erden, Shaobo Cui

Bibliography

- Michael Wooldridge: An Introduction to Multi-Agent Systems (2nd edition), John Wiley & Sons, 2009.
- Stuart Russell and Peter Norvig: Artificial Intelligence: A Modern Approach (2nd/3rd/4th Edition), Prentice Hall Series in Artificial Intelligence, 2003/2016/2021.

Further background reading: see Moodle site

Prerequisites

- Exercises require significant Java programming.
- Large student numbers mean less individual supervision.
- First week exercise session will give more explanation about the tools and environment.
- No previous AI course: easier to make up with textbooks.

Data Science vs. Artificial Intelligence

- Data Science = gaining *insight* from data.
- Artificial Intelligence = making intelligent decisions.
- Insight is a condition for decisions, but...
- ...decisions can be optimal even without complete and accurate insight.
- Often, data is not available or has to be actively obtained.

Computers as autonomous agents

Software agents automate individual decisions:

- autonomous devices (home automation, cars, etc.): decisions needed for operation.
- autonomous robots (lawnmower ⇒ vacuum cleaner ⇒ ?):
 actions to achieve and maintain a goal.
- automated stock trading: buy/sell at good moments.
- game playing (Alpha Go): moves to win against an oponent.
- movie characters: behavior that looks like people.
- autonomic computing: manage computing infrastructure.

Computers as mediators

Multi-agent systems find coherent decisions for multiple agents:

- group theater ticket reservations: tradeoff preferences
 ⇔ availability.
- autonomous cars: avoid conflicts and collisions.
- infrastructure (smart grid): balance resource usage.
- traffic management: distribute traffic to avoid jams.
- procurement auctions: optimize supply chain.

What is a software agent?

Defining characteristics:

- autonomy
- reactivity/embeddedness
- proactiveness

Autonomy

Programs are controlled by user interaction.

Agents take action without user control:

- monitor:Is current energy price low enough to run wash?
- answer requests:Can you reduce power consumption?
- negotiate:
 I buy 1KW for next two hours at \$0.10.

 OK but you have to pay \$0.20.

. . .

Techniques for Autonomy

Procedures are replaced by *behaviors*: map situation ⇒ action

 $Programming \ agents = defining$

- behaviors
- control architecture

Why is this important?

- Fight information overload: user does not have to initiate every action.
- React even when user is not available.
- Implement complex protocols, e.g. for negotiation or bidding in auctions.

Reactivity/Embeddedness

Programs have well-defined input and outputs Agents

- react to changes in their environment
- change their environment by their actions
- need to act in real time

Techniques for embedded agents

Behaviors rather than procedures

Challenge: real-time response

- table-lookup for instantaneous reaction
- anytime algorithms: solution quality improves with time

Why is this important?

Agents need to act before environment changes:

- place auction bid before close
- turn on freezer before temperature gets too high
- ...

Proactiveness

Agents need to plan for the future:

- to take advantage of opportunities in the environment.
- to avoid future problems, deadlocks, etc.
- to propagate changes or distribute information.

Techniques for proactive agents

- Agents must have explicit goals Run washing machine before 18:00.
- Goals are linked to plans for achieving them.
 Negotiate energy for time slot within budget.
- Plans are continously reevaluated; new opportunities lead to replanning break laundry cycle in two to reduce cost.
 - ⇒ deliberative agents

Why is this important?

Goals allow acting on user's behalf.

Actions have preconditions:

- be in the right position to cut grass/vaccum the floor/etc.
- collect information about action effects to make decisions.
- obtain agreement of others for joint actions.

Intelligent Agents

Intelligence = adaptive behavior:

- rationality: choose best action given current situation
- learning: learn to improve choices from past experience

Rational Agents

```
Programs/Algorithms =

always do the same thing
e.g. run washing machine every day.

Rational agents =

do the right thing
```

e.g. run washing machine when enough load and energy is cheap.

Rationality \Leftarrow *goals*

Energy manager:

- satisfy user's wish.
- make sure freezer doesn't go over -8 degrees.
- ...
- make sure laundry gets washed within 2 days.
- \Rightarrow action = satisfy the goals! Extend from plans to actions.

Techniques for implementing rationality

Simple action space (e.g. video games, stock trading):

- optimization
- learning
- \Rightarrow policies, neural nets

Complex action sequences (e.g. go, autonomous cars):

- symbolic reasoning
- constraint satisfaction
- planning
- ⇒ knowledge systems

Why is this important?

- Implement proactiveness in a principled way
- Optimize user's return
- Predictable behavior as a basis for coordination and negotiation

Adaptation \Rightarrow Learning

- Rationality = adaptation in real time.
- Repeated tasks (driving a car, etc.): learn to act by repeating observed or derived actions.
- Examples: self-driving cars, videogame players.
- Does not fundamentally change problem.

Autonomy Reactivity Proactiveness Intelligent Agents

Reinforcement learning

Agents may need to learn effects of actions:

- satisfaction of its goals.
- changes to the world.
- transitions to other agent states.

Need to balance exploration and exploitation.

Multi-agent systems

- Agent actions influence the real world.
- ⇒ also influence the world for *other* agents.
 - Influence may be negative (competition) or positive (cooperation).
 - It always pays off to take other agents into account by design: multi-agent systems.

Agent-oriented Software Engineering

Model complex software as collection of agents:

- air traffic control: one agent per aircraft.
- simulation in social sciences/business.

Advantage: more flexible than homogeneous design. Same techniques as in distributed multi-agent systems.

Smart Infrastructure

Example: smart grid

- use electricity when it is available.
- agents reponsible for households, producers, grid operators.
- coordinate their behavior to achieve overall balance.

Similar: allocate parking spaces, charging stations, air space, etc.

Populations of autonomous agents

- Self-driving cars should not get into each others' way.
- IoT devices need to share wireless spectrum.
- Trading agents influence each others' behavior.

Agents may be *self-interested*: own goals more important than collective goals.

Issues in multi-agent systems

- Coordination of agent actions.
- Making self-interested agents cooperate.
- Distributed implementation.

Coordination

Different agents need to act in a coordinated fashion:

- deliver parts when they are needed
- only 1 truck per delivery
- ...

Difficulties:

- distributedness
- confidentiality
- planning with uncertainty

Agent cooperation

Exploit synergies between agents' goals:

- optimize sharing of resources.
- different agents adress complementary goals.
- one action serves multiple agents' plans.

Techniques for coordination

- Multi-objective optimization techniques:
 - centralized (for tightly coupled problems)
 - distributed (for loosely coupled problems)
- Reinforcement learning to learn coordinated strategies.
- Social choice mechanisms such as voting.

Why is this important?

- Avoid conflicts between multiple intelligent agents (e.g. autonomous vehicles).
- Self-configuring, self-adapting smart infrastructure.
- Cover a joint set of goals by multiple agents.

Self-interest

- Each agent represents a different entity.
- ⇒ goals may be in conflict.
- ⇒ agents may not want to cooperate with coordination protocol.
- Most often: several agents want to access the same resource.

Price of Anarchy

Uncoordinated actions have a cost:

- collisions in wifi transmissions.
- too many cars take the same road: traffic jam.
- multiple taxis picking up the same passenger.

Price of anarchy:

$$\frac{\sum Cost(uncoordinated agents)}{\sum cost(coordinated agents)}$$

Dealing with self-interest: no communication

- Attach values to achieving goals ⇒
 game theory allows to predict rational agent actions.
- For multiple agents: optimum ⇒ equilibrium: actions are best responses to each other.
- There can be many equilibria, but (under weak conditions) there always is at least one.

Dealing with self-interest: with communication

- Voting: trusted third party makes a joint decision for all agents.
- Mechanisms: trusted third party provides incentives for agents to cooperate. Example: auctions.
- Negotiation: messaging protocols for finding a mutual agreement on a conflicting issue.

Why is this important?

- Price of anarchy is often very high: want to avoid uncoordinated behavior.
- Agents may not reveal their true preferences: centralized coordination may not make sense.
- Protect against manipulation by malicious agents.

Distributedness

Programs have common data structures and algorithms Multi-agent systems model *distributed* systems; agents are independent entities and may:

- be programmed by different people.
- function according to different principles.
- be added and removed during operation.
- be unknown to other agents in the system.

Techniques for distributed agent systems

Agents run on platforms:

- runtime environment/interfaces.
- communication languages.
- support for mobility.

Simpler form: web services

Why is this important?

Agent system reflects structure of the real system:

- controlled by their owners.
- local decision making with local information.
- fault tolerant: no central authority.

Agents in practice

Examples of existing applications:

- Infrastructure management (smart grid, etc.).
- Auction agents (eBay), electronic marketplaces.
- Stock trading.
- Personal Agents (Siri, Alexa, etc.)
- Autonomous robots.
- Large-scale simulation (traffic, social systems).
- Integrating legacy systems.
- Shop floor optimization.

Personal Agents

Best known examples: Siri, Alexa Main challenges:

- recognizing user intent.
- planning to gather the right information.
- resolving ambiguities in user interaction.
- selecting the right actions to continue the dialogue.

Uses techniques we see in this course + natural language processing.

Agents in Optimization

Optimize use of machine tools (Daimler-Benz):

- assign machines to most important tasks using auctions.
- achieves 99.7 % of theoretical optimum.

Optimize use of trucks (DHL):

- coordination among local centers to share trucks.
- saves 5 % of trucking costs (= double the profit).

In both cases: centralized coordination hard to implement. because of unstructured environment.

Challenges for agent technology

- Difficult to predict behavior: arises from optimization.
- Ethical decisions: when agents are placed in extreme situations, e.g. accidents in self-driving cars.
- Preference elicitation: communicating users' goals and preferences.
- User acceptance: people may not accept computers acting on their behalf.
- Legal issues: agents are not considered legal entities.

Are Intelligent Agents Dangerous?

- Leaving decisions to computers can be dangerous: humans could loose control (Hawking, Gates, Musk,).
- Rational agents allow incorporating ethical constraints.
- ⇒ part of the solution, not the problem!

Agentic computing

- New Silicon Valley buzzword.
- Seems to mean simple autonomous agents.
- But focussed on execution on large language models (LLM)
- Performance far from state of the art, but...
- ...added flexibility from use of LLM.

Outline of the course

Topics to be treated:

- individual agents: reactive/deliberative.
- agent coordination and cooperation.
- self-interested agents: game theory.

Practical exercises

- The first part of the course concerns algorithms and is complemented with exercises that show their computer implementation. These use an agent platform written in Java.
 Requires good command of Java!
- We are planning to hold a competition in the last weeks of the course with bonus points for the winning solutions.
- The second part (game theory) is complemented with paper exercises.
- Exercises are not graded, but model solutions will be provided.
- Exercises are not optional, and quizzes and exams may refer to material from the exercises.

Boi Faltings Intelligent Agents 49/52

Midterm quiz

There is one midterm quiz to validate progression:

Thursday, November 7th, 19:15-20:00

I will try to find rooms during the exercise hours, so please make sure you are available during 13:15-16:00 on November 7th as well. The quiz is multiple-choice and counts for 30% of the grade. It is

open-book: all documents are allowed.

However, time is limited so do not plan to look up answers in the documents.

Final Exam

- The final exam will test all aspects of the course.
- Generally 2-3 major questions that require solving a problem using the techniques developed in the course.
- A few simple questions about other aspects of the course.
- Allowed: one A4 sheet of notes
 - if machine-written: one-sided
 - if hand-written: two-sided (or 2 one-sided sheets)
- Time:

Wednesday, December 18th, 19:15-22:00 I will try to find a time during the exercise hours on Thursday. Please also reserve these for a possible final exam.

Again, you need to reserve all these times.

Boi Faltings Intelligent Agents 51/52

Summary

Software agents:

autonomous and proactive software

Multi-agent systems:

Model of heterogeneous, federated software systems

 $Intelligence = adaptivity \ is \ an \ important \ element \ for \ both$