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Multi-agent Architectures

Centralized, shared-memory: all agents run on a common
platform and share the same data structures.

Mediator: agents interact by well-defined messages through a
central mediator.

Distributed: agents interact through message exchange.

Decentralized: agents exchange no messages, but might
observe common signals (e.g. traffic lights, prices,
movements).

Today: decentralized/distributed architectures.
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Degrees of interaction

Decentralized, no message exchange:

Social laws: no message exchange.

Multi-agent learning.

Distributed, with message exchange:

Coordination protocols: peer-to-peer message passing.

Cooperative planning: distributed algorithm with guarantees.
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Social laws

Common rules that all agents follow to avoid conflicts.

Example: Traffic laws

drive on the right
at crossings, traffic from left has right of way

⇒ no collisions, even though drivers do not explicitly consider
each other’s actions.

Similar examples in nature: flocks of birds, insect colonies, etc.
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Generating social laws

Laws must still allow agents to achieve any goal.

Formally: exists sequence of transitions to move between any
pair of a set of focal states (⊆ all states).

⇒ finding useful social laws is NP-complete in number of states
(not just focal states).

Remember: number of states is already very large!
⇒ not a paradigm for programming agent systems in general.
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Multi-agent learning

Many situations repeat themselves:

accessing resources, e.g. in wireless communication.

task allocation, e.g. distributing mail.

stock and commodity trading.

selling ice cream.

Agents learn strategies that coordinate their behavior.
Like social laws, but specific to the scenario
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No-regret learning

A learning algorithm is no-regret if the strategy it learns will
eventually have performance equal to the best possible
(deterministic) strategy.

We have seen several no-regret algorithms,e.g. upper
confidence bounds.

Q-learning with infinite representative samples also becomes
no-regret.

Does not take into account cost of exploration, e.g. through
bandit algorithms.
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Equilibrium

Optimal action also depends on other agents’ strategies:

A combination of strategies is in equilibrium if each strategy
takes the optimal action given the other agents’ strategies.

There can be multiple equilibria.

Theorem: under mild conditions (smoothness), agents using
no-regret learning will converge to an equilibrium.
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Example

2 agents A and B want to repeatedly transmit data on
frequencies 1 and 2.

Action space = (1, 2), if both choose the same, they collide
and fail.

2 Equilibria:
1 (A, 1) and (B, 2)
2 (A, 2) and (B, 1)

Both start out with the same channel 1 ⇒ reward = 0

If once they choose different channels, both will get higher
rewards ⇒ for each agent, this choice will have better Q-value
and thus be chosen more and more often in the future.

Boi Faltings Distributed Multiagent Systems 9/62



Social laws
Multi-agent learning

Task exchange in contract nets
Distributed Constraint Satisfaction

No-regret learning
Anti-coordination

Example (2)

Example run:
Step QA(1) QA(2) Action(A) QB(1) QB(2) Action(B) Reward
1 0 0 1 0 0 1 0
2 0 0 2 0 0 2 0

...
5 0 0 1 0 0 2 1
6 0.5 0 2 0 0.5 2 0
7 0.5 0 1 0 0.4 2 1
8 0.75 0 1 0 0.7 2 1

...
1000 1 0 1 0 1 2 1

Q-learning converges to one of the equilibria with probability 1.
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Confidence bounds

Other agents’ strategies are unknown ⇒ learning with uncertainty.

To learn optimal strategy, need to explore effects of all
different actions.

Remaining uncertainty characterized by the upper confidence
bound (UCB) on the expected regret.

However, regret is not stable when opponents also adapt their
strategy.

Violates major assumption of confidence bounds; leads to
poor convergence.
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Anti-coordination

Agents have to learn different strategies (like in channel
allocation).

Very common scenario.

Difficult to learn because there are many different optimal
strategies.
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Courteous learning

Suppose that agents can also observe other agents’ actions.

Courteous rule: agents that have converged on a strategy no
longer change, and

Agents that have not converged will not use conflicting
actions.

⇒ Fast convergence in n log n time (Cigler & Faltings 2011).
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Task Allocation in Contract Nets

First come, first served
⇒ impossible to resolve conflicts.

A

B

C

D

E

F

G

H

I

J

Operator X

Operator Y

Operator Z

B → D → F → I
may block A → D → F → H

⇒ idea: exchange tasks among agents to optimize allocation.
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Task exchange protocol

Some task allocations are more profitable than others.

Idea: trade unprofitable task to other agents where they are
more profitable.

Each agent computes marginal cost of their tasks.

Offers those with high cost to other agents who may have a
lower cost, through message exchange.

Should improve overall efficiency over time.
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Marginal costs

Marginal cost to Ai of task t given a remaining set of tasks T:

cadd(Ai , t) = cost(Ai ,T ∪ t)− cost(Ai ,T )

Principle:

agent Ai announces t with limit c < cadd(Ai , t)

agent Aj bids for t with bid b > cadd(Aj , t)

t is reassigned to Aj if it is the lowest bid and b < c ,
agent Ai pays b to Aj
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Implementation

Agents look for tasks t that have particularly high marginal
cost.

Find other agents Aj that may have lower marginal cost.

Announce the task to these agents.

Agents Aj place bids for qualifying tasks and wait for decision.
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Issues for announcers

where to announce task?

how long to wait until picking a winner?

how to decide whether bid is still profitable?

⇒ requires knowledge of other agents’ capabilities and expected
costs
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Issues for bidders

how to bid considering outstanding bids and announced tasks?

marginal cost depends on other tasks

large risks while offers have not been answered

⇒ very difficult to even manage the messages, almost impossible
to guarantee convergence
Need a more systematic way to solve such problems
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General coordination

Task allocation = for each task, decide what agent does it.

Resource sharing = for each resource, decide which agent gets
it at a certain time.

Scheduling = deciding when agents do their tasks.

All can be expressed as constraint satisfaction.

Distributed coordination = distributed constraint satisfaction.

Systematic approach with provable properties.

Boi Faltings Distributed Multiagent Systems 20/62



Social laws
Multi-agent learning

Task exchange in contract nets
Distributed Constraint Satisfaction

Constraint Satisfaction Problems
Backtracking
Dynamic Programming
Distributed local search

Constraint Satisfaction Problems (CSP)

Given < X ,D,C ,R >:

variables X = x1, ..., xn

domains D = d1, ..., dn

constraints C = c1(xi ,1, xk,1), ..., cm(xi ,m, xk,m)

relations R = (r1 = {(v1, v2), (v3, v4), ...}, ..., rm =
{(vo , vp), (vq, vr ), ...}),

Find solution = (x1 = v1 ∈ d1, ..., xn = vn ∈ dn) such that for all
constraints, value combinations are allowed by relations
Can express most NP problems
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Example of a CSP: Resource Allocation

Goal: assign ressources to tasks T1 - T4:
.

temps

x1

x2

x3 x4

d1 = {B,C}
d2 = {A,C}
d3 = {B,C}
d4 = {A,B}
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Resource Allocation (2)

CSP model:

Variables = Tasks

Domains = Resources that can carry out the task

Constraints = between each pair of tasks that overlap in time

Relations = inequality relations

=

==

=

=

x1={B,C} x2={A,C}

x3={B,C}

x4={A,B}
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Solving a CSP

Importance of CSP: large theory and tools for computing solutions.
Common methods:

backtrack search: assign one variable at a time, backtrack
when no assignment without satisfying constraints

dynamic programming: eliminate variables and replace by
constraints until a single one remains

local (parallel) search: start with random assignment, make
changes to reduce number of constraint violations
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Distributed CSP (DCSP)

Problem is distributed in a network of agents

Each variable belongs to one agent (call by variable name)

Constraints are known to all agents with variables in it

Distributed ̸= parallel: distribution of variables to agents
cannot be chosen to optimize performance

Boi Faltings Distributed Multiagent Systems 25/62



Social laws
Multi-agent learning

Task exchange in contract nets
Distributed Constraint Satisfaction

Constraint Satisfaction Problems
Backtracking
Dynamic Programming
Distributed local search

Algorithms for solving DisCSP

1 Distributed backtracking:

synchronous
asynchronous

2 Dynamic programming

3 Local search

All algorithms require an ordering of agents.
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Synchronous Backtracking

x1 x2 x3 x4

x1=v1
x1=v1

x2=v2

backtrack

1 first agent generates a partial solution for x1, k=2

2 k-th agent generates an extension to this partial solution

3 if solution cannot be extended, k=k-1

4 if solution can be extended, k=k+1

5 if k < 1, stop: unsolvable

6 unless k > n, goto 2

7 solution = current assignment
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Improvements

Synchronous backtracking allows common CSP heuristics:

forward checking: partial instantiations extended to future
agents

dynamic variable ordering: select next variable according to
domain size

⇒ strong efficiency gains
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Implementing CSP heuristics

Distributed forward checking:

A(xk) sends (x1 = v1, .., xk = vk) to all A(xj), j > k

A(xj) initiates backtrack at xk whenever domain becomes
empty

Dynamic variable ordering:

A(xj) sends back size of remaining domain for xj

A(xk) chooses smallest one to be xk+1
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Asynchronous Backtracking

Agents work in parallel without synchronization

Global priority ordering among variables (ex.: unique processor
id); assume xi has higher priority than xj whenever i < j

Asynchronous message delivery, but all messages arrive in
order in which they were sent

Performance similar to synchronous backtracking
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Distributed Monte-Carlo search

Monte-Carlo search: search for an optimal solution by
generating candidates randomly and observing their quality.

Deliberative agent: search in 2 phases:
1 cost estimation using random sampling
2 value assignment picking the values that seem best

Different branches of a tree are independent: sampling can
run in parallel.

Generalize to constraint graphs with cycles by using a
pseudotree ordering.
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Pseudotrees

Depth-first search traversal:

move to neighbour not yet visited

connect neighbours already in
graph by back edges

backtrack when no new neighbour

All edges connect to ancestors

⇒ no edges between nodes in different

branches!

x1

x2

x3

x4

x5
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Cost Estimation

Each variable receives a context from its ancestors.

For each context, samples different values for its own variable
and forwards to its descendants.

Generalize from conflicts to cost of constraint (violations).

Leaf nodes compute cost and send up to direct ancestor.

Ancestor forms averages of samples and sends up to its own
ancestor.
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Cost Estimation(2)
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Value Assignment

Root picks optimal value and sends to descendants as value
contexts.

Descendants pick optimal values depending on the context
received from ancestors and results of Monte-Carlo sampling.
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Value Assignment (2)
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Distributed UCT

DUCT algorithm implements distributed Monte-Carlo search.

Uses random sampling controlled by multi-armed bandit
model.

Model = upper confidence bound in trees (as in game tree
search)

Orders of magnitude faster than systematic search.
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Problems with backtrack search

Every step in the search requires at least one message ⇒
number of messages grows exponentially with variables

Message delivery is much slower than computation ⇒ process
does not scale to large problems

Better: fewer large messages
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Dynamic Programming

Principle: replace variables by constraints

Consider variable x having constraint with y

For each value of x, there may be a consistent value of y

⇒ replace y by a constraint on x:
x=v is allowed if there is a consistent value of y

Optimization version:
utility(x=v) = utility(x=v,y=w);
w = best possible value of y given x=v

Utility = inverse of cost, maximized
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Example

C (x , y) = x

y
w b

w 1 3
b 2 1

util(x) =
w b

3 2

value(x)

y

x

util(x)

A(y) summarizes constraint in util(x) message (table for x)

⇒ A(x) can decide best value for x and (implicitly) y locally

A(x) informs A(y) of value using value(x) message
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Dynamic programming in trees

Rooted tree: every node has exactly
one parent

Agents send util messages to their
parents

Best values of x3, x4 ⇒ unary
constraint on x2

A(x2) sums up util messages + own
constraint ⇒ unary constraint on x1

A(x1) picks best value v(x1); sends
value(x1=v(x1)) to A(x2)

A(x2) picks best value given x1 and
informs A(x3),A(x4)

x4x3

x2

x1

util(x2)

util(x1)

value(x1)

value(x2)

util(x2)
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Dynamic Programming in Graphs

Pseudo-trees: util messages refer to
all variables in the context, not just
the parent.

Two messages per variable (util and
value) ⇒ number of messages grows
linearly with the size of the problem

However, maximum message size
grows exponentially with the
tree-width of the induced graph
(maximum number of backedges)

In many distributed problems, the
tree-width is relatively small

x4x3

x2

x1

util(x1,x2)

util(x2)

util(x1)

value(x1)

value(x2)
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Distributed local search

Local search:

initialize variables to arbitrary values

iteratively make local improvements

stop when no more improvements are found

Advantages: simple to implement, low complexity
Disadvantage: incomplete, usually only gets within 2-3% of the
best solution
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Min-conflicts

Assign random value to each variable in parallel (this will
conflict with some constraints)

At each step, find the change in variable assignment which
most reduces the number of conflicts

Corresponds to search by ”hill-climbing”
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Distributed min-conflicts

Neighbourhood of N(xi ) = variables connected to xi through
constraints

Change to xi can happen asynchronously with others as long
as there is no other change in the neighbourhood

⇒ two neighbouring agents are not allowed to change
simultaneously:

highest improvement wins
ties broken by fixed ordering

⇒ parallel, distributed execution
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Example: resource allocation

Variables:
x1 ∈ {B,C}
x2 ∈ {A,C}
x3 ∈ {B,C}
x4 ∈ {A,B}

Constraints:
C (x1, x2) : {(B,A), (B,C ), (C ,A)}
C (x1, x3) : {(B,C ), (C ,B)}
C (x1, x4) : {(B,A), (C ,B), (C ,A)}
C (x2, x3) : {(A,B), (A,C ), (C ,B)}
C (x2, x4) : {(A,B), (C ,A), (C ,B)}

⇒ neighbourhoods:
N(x1) = {x2, x3, x4}
N(x2) = {x1, x3, x4}
N(x3) = {x1, x2}
N(x4) = {x1, x2}
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Example (min-conflicts)

Initial assignment:
(x1 = B, x2 = A, x3 = B, x4 = A)
⇒ 2 conflicts: c(x1,x3) et c(x2,x4)
1st step:
change conflicts nconf

x1 → C c(x2,x4) 1
x2 → C c(x1,x3) 1
x3 → C c(x2,x4) 1
x4 → B c(x1,x3),c(x1,x4) 2

Accept x1 → C , changes to x2, x3 and x4 blocked because of
neighbourhood
(Possible simultaneous change: x3 and x4)
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Example (min-conflicts)...

(x1 = C, x2 = A, x3 = B, x4 = A)
⇒ 1 conflict: c(x2,x4)
2nd step:
change conflicts nconf

x1 → B c(x1,x3), c(x2,x4) 2
x2 → C c(x1,x2) 1
x3 → C c(x1,x3),c(x2,x4) 2
x4 → B - 0

accept (x4 → B) ⇒ solution:
(x1 = C, x2 = A, x3 = B, x4 = B)
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Asynchronous assignments

Basic procedure for assigning values:

1 select value xi = vj
2 send OK?(xi = vj) message to each neighbour

3 receive OK (xk = ..) message from each neighbour xk

⇒ each agent knows the values of its neighbours
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Asynchronous changes

If conflicts:

1 Agent view ⇒ find best possible improvement by changing
own value

2 broadcast improvement to neighbours

3 receive improvements from neighbours

evaluate if:

own improvement > every neighbour xj ’s, or

own improvement ≥ every neighbour xj ’s and xi has higher
priority than every xj with equal improvement

⇒ assign different value if condition is satisfied
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Example 2 (min-conflicts)

Initial assignment:
(x1 = B, x2 = A, x3 = B, x4 = A)
⇒ 2 conflicts: c(x1,x3) et c(x2,x4)
1st step:
change conflicts nconf

x1 → C c(x2,x4) 1
x2 → C c(x1,x3) 1
x3 → C c(x2,x4) 1
x4 → B c(x1,x3),c(x1,x4) 2

accept (x2 → C)
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Example 2 (min-conflicts)...

(x1 = B, x2 = C, x3 = B, x4 = A)
⇒ 1 conflict: c(x1,x3)
2nd step:
change conflicts nconf

x1 → C c(x1,x2) 1
x2 → A c(x1,x3),c(x2,x4) 2
x3 → C c(x2,x3) 1
x4 → B c(x1,x3),c(x1,x4) 2

no improvement possible: local minimum!
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Breakout Algorithm

Similar to min-conflict, but assign dynamic priority to every
conflict (constraint), initially =1

Modify variable which reduces the most the sum of the
priority values of all conflicts.

When local minimum:
increase weight of every existing conflict

Eventually, new conflicts will have lower weight than existing
ones ⇒ breakout
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Local minima

If all improvements = 0:

1 increase weight of all constraint violations

2 restart asynchronous changes
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Termination detection

If constraint violation: t − count ← 0

If no constraint violation: t − count ← t − count + 1

Send t − count to neighbours

When receiving t − countj from another agent:
t − count ← min(t − count, t − countj)

Termination when t − count > d , d = max. distance of any
agent

Requires synchronous communication with time bounds
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Example (Distributed Breakout)

Assume initial choice = local minimum:
(x1 = B, x2 = C, x3 = B, x4 = A)
1 conflict c(x1, x3)

A1: x1→ C : c(x1, x2); improvement = 0
A2: t − count ← 1
A3: x3→ C : c(x2, x3); improvement = 0
A4: t − count ← 1

⇒ local minimum for A1,A3

⇒ increase weight of existing conflict c(x1, x3)
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Example (Distributed Breakout)...

Increased weight → conflict weight = 2
A1: x1→ C : c(x1, x2); improvement = 1
A2: t − count ← min(1, 0) = 0
A3: x3→ C : c(x2, x3); improvement = 1
A4: t − count ← min(1, 0) = 0
⇒ A1 higher in priority order
⇒ accept change x1 ⇒ C
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Constraint Satisfaction Problems
Backtracking
Dynamic Programming
Distributed local search

Example (Distributed Breakout)...

(x1 = C, x2 = C, x3 = B, x4 = A)
1 conflict c(x1, x2)

A1: x1→ B : c(x1, x3); improvement = −1
A2: x2→ A : c(x2, x4); improvement = 0
A3: t − count ← 1
A4: t − count ← 1

local minimum for A1,A2

increase weight of existing conflict c(x1, x2)
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Constraint Satisfaction Problems
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Dynamic Programming
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Example (Distributed Breakout)...

Increased weight → conflict weight = 2

A1: x1→ B : c(x1, x3); improvement = 0
A2: x2→ A : c(x2, x4); improvement = 1
A3: t − count ← min(1, 0) = 0
A4: t − count ← min(1, 0) = 0

⇒ A2 higher improvement

⇒ accept change x2 ⇒ A
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Example (Distributed Breakout)...

(x1 = C, x2 = A, x3 = B, x4 = A)
1 conflict c(x2, x4)

A1: t − count ← 1
A2: x2→ C : c(x1, x2); improvement = −1
A3: t − count ← 1
A4: x4→ B : consistent; improvement = 1

⇒ change x4→ B
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Detecting Termination

A1: t − count ← 1← 2 > d
A2: t − count ← 1← 2 > d
A3: t − count ← 1← 2← 3 > d
A4: t − count ← 1← 2← 3 > d
⇒ solution: (x1 = C, x2 = A, x3 = B, x4 = B)
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Summary

Distributed coordination = no central coordinator.

Social Laws rarely feasible.

Distributed Contract Nets: problems with convergence

Distributed Constraint Satisfaction

Backtrack search algorithms
Dynamic Programming
Local search
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