Distributed Multiagent Systems

Boi Faltings

Laboratoire d'Intelligence Artificielle
boi.faltings@epfl.ch
http://moodle.epfl.ch/

Boi Faltings Distributed Multiagent Systems 1/62

Multi-agent Architectures

o Centralized, shared-memory: all agents run on a common
platform and share the same data structures.

@ Mediator: agents interact by well-defined messages through a
central mediator.

@ Distributed: agents interact through message exchange.

@ Decentralized: agents exchange no messages, but might
observe common signals (e.g. traffic lights, prices,
movements).

Today: decentralized/distributed architectures.

Boi Faltings Distributed Multiagent Systems 2/62

Degrees of interaction

Decentralized, no message exchange:
@ Social laws: no message exchange.
@ Multi-agent learning.
Distributed, with message exchange:
@ Coordination protocols: peer-to-peer message passing.

o Cooperative planning: distributed algorithm with guarantees.

Boi Faltings Distributed Multiagent Systems 3/62

Social laws

Social laws

@ Common rules that all agents follow to avoid conflicts.
o Example: Traffic laws

o drive on the right
e at crossings, traffic from left has right of way

= no collisions, even though drivers do not explicitly consider
each other’s actions.

@ Similar examples in nature: flocks of birds, insect colonies, etc.

Boi Faltings Distributed Multiagent Systems 4/62

Social laws

Generating social laws

@ Laws must still allow agents to achieve any goal.

@ Formally: exists sequence of transitions to move between any
pair of a set of focal states (C all states).

= finding useful social laws is NP-complete in number of states
(not just focal states).

@ Remember: number of states is already very large!
= not a paradigm for programming agent systems in general.

Boi Faltings Distributed Multiagent Systems 5/62

Multi-agent learning o- learning

Multi-agent learning

Many situations repeat themselves:
@ accessing resources, e.g. in wireless communication.
o task allocation, e.g. distributing mail.
@ stock and commodity trading.
o selling ice cream.

Agents learn strategies that coordinate their behavior.
Like social laws, but specific to the scenario

Boi Faltings Distributed Multiagent Systems 6/62

Multi-agent learning No-regret learning
Anti-coordination

No-regret learning

@ A learning algorithm is no-regret if the strategy it learns will
eventually have performance equal to the best possible
(deterministic) strategy.

@ We have seen several no-regret algorithms,e.g. upper
confidence bounds.

@ Q-learning with infinite representative samples also becomes
no-regret.

@ Does not take into account cost of exploration, e.g. through
bandit algorithms.

Boi Faltings Distributed Multiagent Systems 7/62

Multi-agent learning No-regret learning
Anti-coordination

Equilibrium

Optimal action also depends on other agents’ strategies:

@ A combination of strategies is in equilibrium if each strategy
takes the optimal action given the other agents’ strategies.

@ There can be multiple equilibria.

@ Theorem: under mild conditions (smoothness), agents using
no-regret learning will converge to an equilibrium.

Boi Faltings Distributed Multiagent Systems 8/62

Multi-agent learning No-regret learning
Anti-coordination

Example

2 agents A and B want to repeatedly transmit data on
frequencies 1 and 2.

Action space = (1,2), if both choose the same, they collide
and fail.
2 Equilibria:

Q (A1) and (B,2)

Q@ (A2) and (B,1)

Both start out with the same channel 1 = reward = 0

If once they choose different channels, both will get higher
rewards = for each agent, this choice will have better Q-value
and thus be chosen more and more often in the future.

Boi Faltings Distributed Multiagent Systems 9/62

Multi-agent learning No-regret learning
Anti-coordination

Example (2)

Example run:

Step | Qa(l) | Qa(2) | Action(A) | Qs(1) | @s(2) | Action(B) | Reward
1 0 0 1 0 0 1 0
2 0 0 2 0 0 2 0
5 0 0 1 0 0 2 1
6 0.5 0 2 0 0.5 2 0
7 0.5 0 1 0 0.4 2 1
8 0.75 0 1 0 0.7 2 1
1000 | 1 |0 1 | 0 |1 W |1

Q-learning converges to one of the equilibria with probability 1.

Boi Faltings Distributed Multiagent Systems 10/62

Multi-agent learning No-regret learning
Anti-coordination

Confidence bounds

Other agents' strategies are unknown = learning with uncertainty.

@ To learn optimal strategy, need to explore effects of all
different actions.

@ Remaining uncertainty characterized by the upper confidence
bound (UCB) on the expected regret.

@ However, regret is not stable when opponents also adapt their
strategy.

@ Violates major assumption of confidence bounds; leads to
poor convergence.

Boi Faltings Distributed Multiagent Systems 11/62

Multi-agent learning No-regret learning
Anti-coordination

Anti-coordination

e Agents have to learn different strategies (like in channel
allocation).

@ Very common scenario.

o Difficult to learn because there are many different optimal
strategies.

Boi Faltings Distributed Multiagent Systems 12/62

Multi-agent learning No-regret learning
Anti-coordination

Courteous learning

@ Suppose that agents can also observe other agents’ actions.

@ Courteous rule: agents that have converged on a strategy no
longer change, and

@ Agents that have not converged will not use conflicting
actions.

= Fast convergence in nlog n time (Cigler & Faltings 2011).

Boi Faltings Distributed Multiagent Systems 13/62

Task exchange in contract nets

Task Allocation in Contract Nets

@ First come, first served
= impossible to resolve conflicts.

eB—+D—=F—I
may block A—-D —-F —H

= idea: exchange tasks among agents to optimize allocation.

Boi Faltings Distributed Multiagent Systems 14/62

Task exchange in contract nets

Task exchange protocol

@ Some task allocations are more profitable than others.

@ ldea: trade unprofitable task to other agents where they are
more profitable.

Each agent computes marginal cost of their tasks.

Offers those with high cost to other agents who may have a
lower cost, through message exchange.

Should improve overall efficiency over time.

Boi Faltings Distributed Multiagent Systems 15/62

Task exchange in contract nets

Marginal costs

Marginal cost to A; of task t given a remaining set of tasks T:
Cadd(Ai, t) = cost(A;, T U t) — cost(A;, T)

Principle:
@ agent A; announces t with limit ¢ < caqq(Ai, t)
@ agent A; bids for t with bid b > c,qq(A;, t)

@ tis reassigned to A; if it is the lowest bid and b < c,
agent A; pays b to A;

Boi Faltings Distributed Multiagent Systems 16/62

Task exchange in contract nets

Implementation

@ Agents look for tasks t that have particularly high marginal
cost.

e Find other agents A; that may have lower marginal cost.
@ Announce the task to these agents.

@ Agents A; place bids for qualifying tasks and wait for decision.

Boi Faltings Distributed Multiagent Systems 17/62

Task exchange in contract nets

Issues for announcers

@ where to announce task?
@ how long to wait until picking a winner?
@ how to decide whether bid is still profitable?

= requires knowledge of other agents’' capabilities and expected
costs

Boi Faltings Distributed Multiagent Systems 18/62

Task exchange in contract nets

Issues for bidders

@ how to bid considering outstanding bids and announced tasks?
@ marginal cost depends on other tasks
@ large risks while offers have not been answered

= very difficult to even manage the messages, almost impossible
to guarantee convergence
Need a more systematic way to solve such problems

Boi Faltings Distributed Multiagent Systems 19/62

isfaction Problems

Dynamic Pr
Distributed Constraint Satisfaction Distribute

General coordination

Task allocation = for each task, decide what agent does it.

Resource sharing = for each resource, decide which agent gets
it at a certain time.

Scheduling = deciding when agents do their tasks.
All can be expressed as constraint satisfaction.

Distributed coordination = distributed constraint satisfaction.

Systematic approach with provable properties.

Boi Faltings Distributed Multiagent Systems 20/62

Constraint Satisfaction Problems
Backtrackin
Dynamic Pr

Distributed Constraint Satisfaction Distribute

Constraint Satisfaction Problems (CSP)

Given < X, D, C,R >:
@ variables X = xy, ..., X,
@ domains D = di, ..., d,
e constraints C = c1(Xj.1,Xk,1), ---» Cm(Xi,ms Xk, m)

e relations R = (n = {(v1, v2), (v3,va), ...}, ooy rm =
{(Vo, vp), (vg: vi), ---}),
Find solution = (x1 = vi € di, ..., xn = v, € dp) such that for all
constraints, value combinations are allowed by relations
Can express most NP problems

Boi Faltings Distributed Multiagent Systems 21/62

Constraint Satisfaction Problems
Backtrac
Dynamic Pr

Distributed Constraint Satisfaction Distributed

Example of a CSP: Resource Allocation

Goal: assign ressources to tasks T1 - T4:

d1 ={B,C

I 0
2] d3={B,C}
A,B}

I x_ 11 X4] da ={A,

Boi Faltings Distributed Multiagent Systems 22/62

isfaction Problems

e

Distributed Constraint Satisfaction

Resource Allocation (2)

CSP model:
@ Variables = Tasks
@ Domains = Resources that can carry out the task

@ Constraints = between each pair of tasks that overlap in time

@ Relations = inequality relations

);é/(x3=(B,C}

x1={B,C} <—> x2={A,C}

4 E

x4={A,B}

23/62

Boi Faltings Distributed Multiagent Systems

Constraint Satisfaction Problems
Backtrackin
Dynamic Pr

Distributed Constraint Satisfaction Distribute

Solving a CSP

Importance of CSP: large theory and tools for computing solutions.
Common methods:

@ backtrack search: assign one variable at a time, backtrack
when no assignment without satisfying constraints

@ dynamic programming: eliminate variables and replace by
constraints until a single one remains

@ local (parallel) search: start with random assignment, make
changes to reduce number of constraint violations

Boi Faltings Distributed Multiagent Systems 24/62

Constraint Satisfaction Problems
Backtrackin
Dynamic Pr

Distributed Constraint Satisfaction Distribute

Distributed CSP (DCSP)

Problem is distributed in a network of agents
Each variable belongs to one agent (call by variable name)

Constraints are known to all agents with variables in it

Distributed = parallel: distribution of variables to agents
cannot be chosen to optimize performance

Boi Faltings Distributed Multiagent Systems 25/62

Constraint Satisfaction Problems
Backtrackin
Dynamic Pr

Distributed Constraint Satisfaction Distribute

Algorithms for solving DisCSP

© Distributed backtracking:

e synchronous
e asynchronous

@ Dynamic programming
© Local search

All algorithms require an ordering of agents.

Boi Faltings Distributed Multiagent Systems 26/62

Constraint Satisfaction Problems

Backtrackin

Dynamic P in
Distributed Constraint Satisfaction Distribute

Synchronous Backtracking

x1=v1
: x1=v1 : x2=v2 : .
— — /
backtrack

© first agent generates a partial solution for x1, k=2

k-th agent generates an extension to this partial solution
if solution cannot be extended, k=k-1

if solution can be extended, k=k+1

if k <1, stop: unsolvable

unless k > n, goto 2

©0 0000

solution = current assignment

Boi Faltings Distributed Multiagent Systems 27/62

Constraint Satisfaction Problems

Dynamic
Distributed Constraint Satisfaction Distribute

Improvements

Synchronous backtracking allows common CSP heuristics:

e forward checking: partial instantiations extended to future
agents

@ dynamic variable ordering: select next variable according to
domain size

= strong efficiency gains

Boi Faltings Distributed Multiagent Systems 28/62

Constraint Satisfaction Problems

Dynamic
Distributed Constraint Satisfaction

Implementing CSP heuristics

Distributed forward checking:
o A(xk) sends (x1 = vi,..,xk = vk) to all A(x;), j > k
e A(x;) initiates backtrack at x, whenever domain becomes
empty
Dynamic variable ordering:
o A(x;j) sends back size of remaining domain for x;

@ A(xk) chooses smallest one to be xi1

Boi Faltings Distributed Multiagent Systems 29/62

Constraint Satisfaction Problems

Backtracking

Dynamic Programming
Distributed Constraint Satisfaction Distribute e

Asynchronous Backtracking

@ Agents work in parallel without synchronization

@ Global priority ordering among variables (ex.: unique processor
id); assume x; has higher priority than x; whenever i < j

@ Asynchronous message delivery, but all messages arrive in
order in which they were sent

@ Performance similar to synchronous backtracking

Boi Faltings Distributed Multiagent Systems 30/62

Constraint Satisfaction Problems

Backtracking

Dynamic Programming
Distributed Constraint Satisfaction Distribute e

Distributed Monte-Carlo search

@ Monte-Carlo search: search for an optimal solution by
generating candidates randomly and observing their quality.
@ Deliberative agent: search in 2 phases:
@ cost estimation using random sampling
@ value assignment picking the values that seem best
o Different branches of a tree are independent: sampling can
run in parallel.
@ Generalize to constraint graphs with cycles by using a
pseudotree ordering.

Boi Faltings Distributed Multiagent Systems 31/62

G raint Sati
Backtracking

Dynamic P
Distributed local s

(

Distributed Constraint Satisfaction

Pseudotrees

Depth-first search traversal:
@ move to neighbour not yet visited
@ connect neighbours already in
graph by back edges
@ backtrack when no new neighbour

—

All edges connect to ancestors
= no edges between nodes in different

branches!
32/62

Distributed Multiagent Systems

Boi Faltings

Constraint Satisfaction Problems

Backtracking

Dynamic Programming
Distributed Constraint Satisfaction Distribute e

Cost Estimation

@ Each variable receives a context from its ancestors.

@ For each context, samples different values for its own variable
and forwards to its descendants.

@ Generalize from conflicts to cost of constraint (violations).
@ Leaf nodes compute cost and send up to direct ancestor.

@ Ancestor forms averages of samples and sends up to its own
ancestor.

Boi Faltings Distributed Multiagent Systems 33/62

Constraint S ction Problems
Backtracking
Dynamic Pr

Distributed Constraint Satisfaction Distribute

Cost Estimation(2)

context zq:a,

context z, : as

Boi Faltings Distributed Multiagent Systems 34/62

Backtracking
Dynamic
Distributed Constraint Satisfaction

Value Assignment

@ Root picks optimal value and sends to descendants as value
contexts.

@ Descendants pick optimal values depending on the context
received from ancestors and results of Monte-Carlo sampling.

Boi Faltings Distributed Multiagent Systems 35/62

Constraint Satisfaction Problems
Backtracking
Dynamic Pro

Distributed Constraint Satisfaction Distributed lo

Value Assignment (2)

context zq :aq

\ context xso : as

Boi Faltings Distributed Multiagent Systems 36/62

Constraint Satisfaction Problems

Dynamic
Distributed Constraint Satisfaction Distribute

Distributed UCT

e DUCT algorithm implements distributed Monte-Carlo search.

@ Uses random sampling controlled by multi-armed bandit
model.

@ Model = upper confidence bound in trees (as in game tree
search)

@ Orders of magnitude faster than systematic search.

Boi Faltings Distributed Multiagent Systems 37/62

Constraint Satisfaction Problems

Dynamic
Distributed Constraint Satisfaction Distribute

Problems with backtrack search

@ Every step in the search requires at least one message =
number of messages grows exponentially with variables

@ Message delivery is much slower than computation = process
does not scale to large problems

o Better: fewer large messages

Boi Faltings Distributed Multiagent Systems 38/62

isfaction Problems
B €
Dynamic Programming
Distributed Constraint Satisfaction Distributed local search

Dynamic Programming

@ Principle: replace variables by constraints
@ Consider variable x having constraint with y
@ For each value of x, there may be a consistent value of y
= replace y by a constraint on x:
x=v is allowed if there is a consistent value of y
@ Optimization version:
utility(x=v) = utility(x=v,y=w);
w = best possible value of y given x=v

@ Utility = inverse of cost, maximized

Boi Faltings Distributed Multiagent Systems 39/62

“tion Problems

Dy gramming

Distributed Constraint Satisfaction Distributed local search

Example

value(x)
{V b util(x)
Cay)= x93
b2 1
util(x) = 47

e A(y) summarizes constraint in util(x) message (table for x)
= A(x) can decide best value for x and (implicitly) y locally

@ A(x) informs A(y) of value using value(x) message

Boi Faltings Distributed Multiagent Systems

40/62

“tion Problems

3
Dy gramming
Distributed Constraint Satisfaction Distributed local search

Dynamic programming in trees

@ Rooted tree: every node has exactly \ value(x1)

one parent
util(x1)

@ Agents send util messages to their
util(x2)
parents

@ Best values of x3, x4 = unary util(x2) '/Iue(x\\}

constraint on x2

@ A(x2) sums up util messages + own
constraint = unary constraint on x1

@ A(x1) picks best value v(x1); sends
value(x1=v(x1)) to A(x2)

@ A(x2) picks best value given x1 and
informs A(x3),A(x4)

Boi Faltings Distributed Multiagent Systems 41/62

ction Problems

Programming
Distributed Constraint Satisfaction Distributed local search

Dynamic Programming in Graphs

. value(x1)
@ Pseudo-trees: util messages refer to \
. . . \
all variables in the context, not just util(x1) \
the parent.
u\!l(x1 ,X2)

@ Two messages per variable (util and

value) = number of messages grows util(x2) %ue(x\
linearly with the size of the problem

@ However, maximum message size
grows exponentially with the
tree-width of the induced graph
(maximum number of backedges)

@ In many distributed problems, the
tree-width is relatively small

Boi Faltings Distributed Multiagent Systems 42/62

Distributed Constraint Satisfaction Distributed local search

Distributed local search

Local search:
@ initialize variables to arbitrary values
@ iteratively make local improvements
@ stop when no more improvements are found

Advantages: simple to implement, low complexity
Disadvantage: incomplete, usually only gets within 2-3% of the
best solution

Boi Faltings Distributed Multiagent Systems 43/62

Distributed Constraint Satisfaction Distributed local search

Min-conflicts

@ Assign random value to each variable in parallel (this will
conflict with some constraints)

@ At each step, find the change in variable assignment which
most reduces the number of conflicts

@ Corresponds to search by "hill-climbing”

Boi Faltings Distributed Multiagent Systems 44/62

isfaction Problems

Distributed Constraint Satisfaction Distributed local search

Distributed min-conflicts

e Neighbourhood of N(x;) = variables connected to x; through
constraints

@ Change to x; can happen asynchronously with others as long
as there is no other change in the neighbourhood

= two neighbouring agents are not allowed to change
simultaneously:

o highest improvement wins
o ties broken by fixed ordering

= parallel, distributed execution

Boi Faltings Distributed Multiagent Systems 45/62

tion Problems

D ming
Distributed Constraint Satisfaction Distributed local search

Example: resource allocation

Variables: Constraints:
x1 € {B, C} Clxa, x) 1 {(B,A), (B, C),(C,A)}
x» € {A, C} C(x,x3) : {(B,C),(C,B)}
X3 € {Ba C} C(XI’X4) : {(B7A))(C7 B)v(CvA)}
xas € {A, B} C(x2,x3) : {(A, B), (A, C),(C,B)}
C(X27X4) {(A7 8)7 (C7 A)? (C7 B)}

= neighbourhoods:
N(x1) = {x2, x3, x4 }
N(x2) = {x1,x3, x4 }
N(X3) = {X1,X2}
N(xa) = {x1, %2}

Boi Faltings Distributed Multiagent Systems 46/62

ction Problems
ckin
ynamic Programming
Distributed Constraint Satisfaction Distributed local search

Example (min-conflicts)

Initial assignment:
(x1 =B, x2=A,x3=B,x4 =A)
= 2 conflicts: c(x1,x3) et c(x2,x4)

1st step:
change ‘ conflicts ‘ nconf
x1 — C c(x2,x4) 1
x2 — C c(x1,x3) 1
x3 = C c(x2,x4) 1

x4 — B | c(x1,x3),c(x1,x4) | 2
Accept x; — C, changes to x», x3 and x4 blocked because of
neighbourhood
(Possible simultaneous change: x3 and xa)

Boi Faltings Distributed Multiagent Systems 47/62

Distributed Constraint Satisfaction Distributed local search

Example (min-conflicts)...

(x1=C,x2=A,x3=B,x4 =A)
= 1 conflict: ¢(x2,x4)

2nd step:
change ‘ conflicts ‘ nconf
x1 — B | ¢(x1,x3), c(x2,x4) | 2
x2 — C c(x1,x2) 1
x3 = C | ¢(x1,x3),c(x2,x4) | 2
x4 — B - 0

accept (x4 — B) = solution:
(x1 =C,x2=A, x3=B, x4 =B)

Boi Faltings Distributed Multiagent Systems 48/62

Distributed Constraint Satisfaction Distributed local search

Asynchronous assignments

Basic procedure for assigning values:
O select value x; = v;
@ send OK?(x; = v;) message to each neighbour
© receive OK(xx = ..) message from each neighbour x

= each agent knows the values of its neighbours

Boi Faltings Distributed Multiagent Systems 49/62

isfaction Problems

Distributed Constraint Satisfaction Distributed local search

Asynchronous changes

If conflicts:

©Q Agent view = find best possible improvement by changing
own value

@ broadcast improvement to neighbours

© receive improvements from neighbours
evaluate if:

@ own improvement > every neighbour x;'s, or

@ own improvement > every neighbour x;'s and x; has higher
priority than every x; with equal improvement

= assign different value if condition is satisfied

Boi Faltings Distributed Multiagent Systems 50/62

isfaction Problems

y rramming
Distributed Constraint Satisfaction Distributed local search

Example 2 (min-conflicts)

Initial assignment:
(x1 =B, x2=A,x3=B,x4 =A)
= 2 conflicts: c(x1,x3) et c(x2,x4)

1st step:
change ‘ conflicts ‘ nconf
x1 — C c(x2,x4) 1
x2 — C c(x1,x3) 1
x3 = C c(x2,x4) 1
x4 — B | c(x1,x3),c(x1,x4) | 2

accept (x2 — C)

Boi Faltings Distributed Multiagent Systems 51/62

isfaction Problems

y rramming
Distributed Constraint Satisfaction Distributed local search

Example 2 (min-conflicts)...

(x1 =B, x2=C, x3=B, x4 =A)
= 1 conflict: ¢(x1,x3)

2nd step:
change ‘ conflicts ‘ nconf
x1 = C c(x1,x2) 1
x2 = A | c(x1,x3),c(x2,x4) | 2
x3 — C c(x2,x3) 1

x4 — B | c(x1,x3),c(x1,x4) | 2
no improvement possible: local minimum!

Boi Faltings Distributed Multiagent Systems 52/62

isfaction Problems

Distributed Constraint Satisfaction Distributed local search

Breakout Algorithm

@ Similar to min-conflict, but assign dynamic priority to every
conflict (constraint), initially =1

@ Modify variable which reduces the most the sum of the
priority values of all conflicts.

@ When local minimum:
increase weight of every existing conflict

Eventually, new conflicts will have lower weight than existing
ones = breakout

Boi Faltings Distributed Multiagent Systems 53/62

on Pro

amming
Distributed Constraint Satisfaction Distributed local search

Local minima

If all improvements = 0:
@ increase weight of all constraint violations

@ restart asynchronous changes

Boi Faltings Distributed Multiagent Systems 54/62

isfaction Problems

Distributed Constraint Satisfaction Distributed local search

Termination detection

If constraint violation: t — count + 0
If no constraint violation: t — count < t — count + 1

Send t — count to neighbours

When receiving t — count; from another agent:
t — count < min(t — count, t — count;)

@ Termination when t — count > d, d = max. distance of any
agent

@ Requires synchronous communication with time bounds

Boi Faltings Distributed Multiagent Systems 55/62

ction Problems

ynamic Programming
Distributed Constraint Satisfaction Distributed local search

Example (Distributed Breakout)

@ Assume initial choice = local minimum:
(x1 =B, x2=C,x3=B, x4 =A)
1 conflict ¢(x1,x3)

e Al: x1 — C: c(x1,x2); improvement = 0
A2: t — count <1
A3: x3 — C : c(x2,x3); improvement = 0
Ad: t — count + 1

= local minimum for Al, A3

= increase weight of existing conflict c(x1,x3)

Boi Faltings Distributed Multiagent Systems 56/62

ction Problems

yn: ramming
Distributed Constraint Satisfaction Distributed local search

Example (Distributed Breakout)...

Increased weight — conflict weight = 2
Al: x1 — C: c(x1,x2); improvement = 1
A2: t — count < min(1,0) =0

A3: x3 — C : ¢(x2,x3); improvement = 1
A4: t — count < min(1,0) =0

=> Al higher in priority order

= accept change x1 = C

Boi Faltings Distributed Multiagent Systems 57/62

ction Problems

yn: ramming
Distributed Constraint Satisfaction Distributed local search

Example (Distributed Breakout)...

e (x1=C,x2=C,x3=B,x4=A)
1 conflict ¢(x1, x2)

e Al: x1 — B: c(x1,x3); improvement = —1
A2: x2 — A: c(x2, x4); improvement = 0
A3: t — count <1
Ad: t — count <1

@ local minimum for A1,A2

@ increase weight of existing conflict c(x1, x2)

Boi Faltings Distributed Multiagent Systems 58/62

ction Problems

ynamic Programming
Distributed Constraint Satisfaction Distributed local search

Example (Distributed Breakout)...

@ Increased weight — conflict weight = 2
e Al: x1 — B : ¢(x1, x3); improvement = 0
A2: x2 — A: c(x2, x4); improvement = 1
A3: t — count < min(1,0) =0
A4: t — count <~ min(1,0) =0
= A2 higher improvement
= accept change x2 = A

Boi Faltings Distributed Multiagent Systems 59/62

ction Problems

ynamic Programming
Distributed Constraint Satisfaction Distributed local search

Example (Distributed Breakout)...

e (x1 =C, x2=A,x3=B,x4=A)
1 conflict c(x2, x4)

o Al: t — count <1
A2: x2 — C : c(x1,x2); improvement = —1
A3: t — count <1
A4: x4 — B : consistent; improvement = 1

= change x4 — B

Boi Faltings Distributed Multiagent Systems 60/62

ction Problems

Dynamic Programming
Distributed Constraint Satisfaction Distributed local search

Detecting Termination

Al: t—count <+ 1+ 2>d

A2: t —count <1<+ 2>d

A3: t—count+1+2+3>d

Ad: t—count +— 1+ 2+ 3>d

= solution: (x1 = C, x2 = A, x3 = B, x4 = B)

Boi Faltings Distributed Multiagent Systems 61/62

Distributed Constraint Satisfaction Distributed local search

Summary

Distributed coordination = no central coordinator.
Social Laws rarely feasible.
Distributed Contract Nets: problems with convergence

Distributed Constraint Satisfaction

o Backtrack search algorithms
e Dynamic Programming
o Local search

Boi Faltings Distributed Multiagent Systems 62/62

	Social laws
	Multi-agent learning
	No-regret learning
	Anti-coordination

	Task exchange in contract nets
	Distributed Constraint Satisfaction
	Constraint Satisfaction Problems
	Backtracking
	Dynamic Programming
	Distributed local search

