Distributed Multiagent Systems

Boi Faltings

Laboratoire d'Intelligence Artificielle boi.faltings@epfl.ch http://moodle.epfl.ch/

Multi-agent Architectures

- Centralized, shared-memory: all agents run on a common platform and share the same data structures.
- Mediator: agents interact by well-defined messages through a central mediator.
- Distributed: agents interact through message exchange.
- Decentralized: agents exchange no messages, but might observe common signals (e.g. traffic lights, prices, movements).

Today: decentralized/distributed architectures.

Degrees of interaction

Decentralized, no message exchange:

- Social laws: no message exchange.
- Multi-agent learning.

Distributed, with message exchange:

- Coordination protocols: peer-to-peer message passing.
- Cooperative planning: distributed algorithm with guarantees.

Social laws

- Common rules that all agents follow to avoid conflicts.
- Example: Traffic laws
 - drive on the right
 - at crossings, traffic from left has right of way
- ⇒ no collisions, even though drivers do not explicitly consider each other's actions.
 - Similar examples in nature: flocks of birds, insect colonies, etc.

Generating social laws

- Laws must still allow agents to achieve any goal.
- Formally: exists sequence of transitions to move between any pair of a set of focal states (⊆ all states).
- ⇒ finding useful social laws is NP-complete in number of states (not just focal states).
 - Remember: number of states is already very large!
 - \Rightarrow not a paradigm for programming agent systems in general.

Multi-agent learning

Many situations repeat themselves:

- accessing resources, e.g. in wireless communication.
- task allocation, e.g. distributing mail.
- stock and commodity trading.
- selling ice cream.

Agents learn strategies that coordinate their behavior.

Like social laws, but specific to the scenario

No-regret learning

- A learning algorithm is no-regret if the strategy it learns will eventually have performance equal to the best possible (deterministic) strategy.
- We have seen several no-regret algorithms, e.g. upper confidence bounds.
- Q-learning with infinite representative samples also becomes no-regret.
- Does not take into account cost of exploration, e.g. through bandit algorithms.

Equilibrium

Optimal action also depends on other agents' strategies:

- A combination of strategies is in *equilibrium* if each strategy takes the optimal action given the other agents' strategies.
- There can be multiple equilibria.
- Theorem: under mild conditions (smoothness), agents using no-regret learning will converge to an equilibrium.

Example

- 2 agents A and B want to repeatedly transmit data on frequencies 1 and 2.
- Action space = (1,2), if both choose the same, they collide and fail.
- 2 Equilibria:
 - **1** (A,1) and (B,2)
 - (A, 2) and (B, 1)
- Both start out with the same channel $1 \Rightarrow \text{reward} = 0$
- If once they choose different channels, both will get higher rewards ⇒ for each agent, this choice will have better Q-value and thus be chosen more and more often in the future.

Example (2)

Example run:

Step	$Q_A(1)$	$Q_A(2)$	Action(A)	$Q_B(1)$	$Q_B(2)$	Action(B)	Reward
1	0	0	1	0	0	1	0
2	0	0	2	0	0	2	0
5	0	0	1	0	0	2	1
6	0.5	0	2	0	0.5	2	0
7	0.5	0	1	0	0.4	2	1
8	0.75	0	1	0	0.7	2	1
· · · · · · · · · · · · · · · · · · ·							
1000	1	0	1	0	1	2	1

Q-learning converges to one of the equilibria with probability 1.

Confidence bounds

Other agents' strategies are unknown \Rightarrow learning with uncertainty.

- To learn optimal strategy, need to explore effects of all different actions.
- Remaining uncertainty characterized by the upper confidence bound (UCB) on the expected regret.
- However, regret is not stable when opponents also adapt their strategy.
- Violates major assumption of confidence bounds; leads to poor convergence.

Anti-coordination

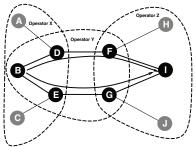
- Agents have to learn *different* strategies (like in channel allocation).
- Very common scenario.
- Difficult to learn because there are many different optimal strategies.

Courteous learning

- Suppose that agents can also observe other agents' actions.
- Courteous rule: agents that have converged on a strategy no longer change, and
- Agents that have not converged will not use conflicting actions.
- \Rightarrow Fast convergence in $n \log n$ time (Cigler & Faltings 2011).

Task Allocation in Contract Nets

First come, first served
 ⇒ impossible to resolve conflicts.



- $\bullet \ \mathsf{B} \to \mathsf{D} \to \mathsf{F} \to \mathsf{I} \\ \mathsf{may} \ \mathsf{block} \ \mathsf{A} \to \mathsf{D} \to \mathsf{F} \to \mathsf{H} \\$
- ⇒ idea: exchange tasks among agents to optimize allocation.

Task exchange protocol

- Some task allocations are more profitable than others.
- Idea: trade unprofitable task to other agents where they are more profitable.
- Each agent computes marginal cost of their tasks.
- Offers those with high cost to other agents who may have a lower cost, through message exchange.
- Should improve overall efficiency over time.

Marginal costs

Marginal cost to A_i of task t given a remaining set of tasks T:

$$c_{add}(A_i, t) = cost(A_i, T \cup t) - cost(A_i, T)$$

Principle:

- agent A_i announces t with limit $c < c_{add}(A_i, t)$
- agent A_j bids for t with bid $b > c_{add}(A_j, t)$
- t is reassigned to A_j if it is the lowest bid and b < c, agent A_i pays b to A_j

Implementation

- Agents look for tasks t that have particularly high marginal cost.
- Find other agents A_i that may have lower marginal cost.
- Announce the task to these agents.
- Agents A_j place bids for qualifying tasks and wait for decision.

Issues for announcers

- where to announce task?
- how long to wait until picking a winner?
- how to decide whether bid is still profitable?
- \Rightarrow requires knowledge of other agents' capabilities and expected costs

Issues for bidders

- how to bid considering outstanding bids and announced tasks?
- marginal cost depends on other tasks
- large risks while offers have not been answered
- \Rightarrow very difficult to even manage the messages, almost impossible to guarantee convergence

Need a more systematic way to solve such problems

General coordination

- Task allocation = for each task, decide what agent does it.
- Resource sharing = for each resource, decide which agent gets it at a certain time.
- Scheduling = deciding when agents do their tasks.
- All can be expressed as *constraint satisfaction*.
- Distributed coordination = distributed constraint satisfaction.
- Systematic approach with provable properties.

Constraint Satisfaction Problems (CSP)

Given $\langle X, D, C, R \rangle$:

- variables $X = x_1, ..., x_n$
- domains $D = d_1, ..., d_n$
- constraints $C = c_1(x_{i,1}, x_{k,1}), ..., c_m(x_{i,m}, x_{k,m})$
- relations $R = (r_1 = \{(v_1, v_2), (v_3, v_4), ...\}, ..., r_m = \{(v_o, v_p), (v_q, v_r), ...\}),$

Find solution = $(x_1 = v_1 \in d_1, ..., x_n = v_n \in d_n)$ such that for all constraints, value combinations are allowed by relations Can express most NP problems

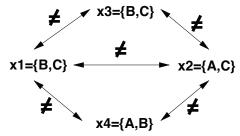
Example of a CSP: Resource Allocation

Goal: assign ressources to tasks T1 - T4:

Resource Allocation (2)

CSP model:

- Variables = Tasks
- Domains = Resources that can carry out the task
- Constraints = between each pair of tasks that overlap in time
- Relations = inequality relations



Solving a CSP

Importance of CSP: large theory and tools for computing solutions. Common methods:

- backtrack search: assign one variable at a time, backtrack when no assignment without satisfying constraints
- dynamic programming: eliminate variables and replace by constraints until a single one remains
- local (parallel) search: start with random assignment, make changes to reduce number of constraint violations

Distributed CSP (DCSP)

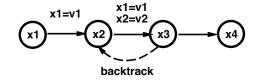
- Problem is distributed in a network of agents
- Each variable belongs to one agent (call by variable name)
- Constraints are known to all agents with variables in it
- Distributed ≠ parallel: distribution of variables to agents cannot be chosen to optimize performance

Algorithms for solving DisCSP

- O Distributed backtracking:
 - synchronous
 - asynchronous
- ② Dynamic programming
- Search
 Search

All algorithms require an *ordering* of agents.

Synchronous Backtracking



- \bullet first agent generates a partial solution for x1, k=2
- 2 k-th agent generates an extension to this partial solution
- if solution cannot be extended, k=k-1
- \bullet if solution can be extended, k=k+1
- **1** if k < 1, stop: unsolvable
- unless k > n, goto 2
- solution = current assignment

Improvements

Synchronous backtracking allows common CSP heuristics:

- forward checking: partial instantiations extended to future agents
- dynamic variable ordering: select next variable according to domain size
- \Rightarrow strong efficiency gains

Implementing CSP heuristics

Distributed forward checking:

- $A(x_k)$ sends $(x_1 = v_1, ..., x_k = v_k)$ to all $A(x_j)$, j > k
- $A(x_j)$ initiates backtrack at x_k whenever domain becomes empty

Dynamic variable ordering:

- $A(x_j)$ sends back size of remaining domain for x_j
- $A(x_k)$ chooses smallest one to be x_{k+1}

Asynchronous Backtracking

- Agents work in parallel without synchronization
- Global priority ordering among variables (ex.: unique processor id); assume x_i has higher priority than x_i whenever i < j
- Asynchronous message delivery, but all messages arrive in order in which they were sent
- Performance similar to synchronous backtracking

Distributed Monte-Carlo search

- Monte-Carlo search: search for an optimal solution by generating candidates randomly and observing their quality.
- Deliberative agent: search in 2 phases:
 - 1 cost estimation using random sampling
 - value assignment picking the values that seem best
- Different branches of a tree are independent: sampling can run in parallel.
- Generalize to constraint graphs with cycles by using a pseudotree ordering.

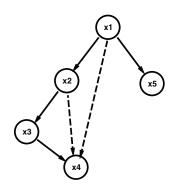
Pseudotrees

Depth-first search traversal:

- move to neighbour not yet visited
- connect neighbours already in graph by back edges
- backtrack when no new neighbour

All edges connect to ancestors

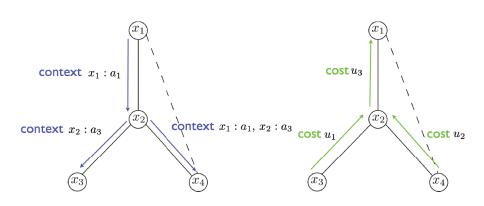
⇒ no edges *between* nodes in different branches!



Cost Estimation

- Each variable receives a *context* from its ancestors.
- For each context, samples different values for its own variable and forwards to its descendants.
- Generalize from conflicts to cost of constraint (violations).
- Leaf nodes compute cost and send up to direct ancestor.
- Ancestor forms averages of samples and sends up to its own ancestor.

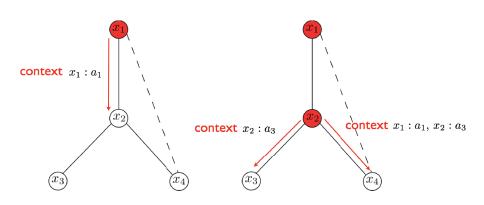
Cost Estimation(2)



Value Assignment

- Root picks optimal value and sends to descendants as value contexts.
- Descendants pick optimal values depending on the context received from ancestors and results of Monte-Carlo sampling.

Value Assignment (2)



Distributed UCT

- DUCT algorithm implements distributed Monte-Carlo search.
- Uses random sampling controlled by multi-armed bandit model.
- Model = upper confidence bound in trees (as in game tree search)
- Orders of magnitude faster than systematic search.

Problems with backtrack search

- Every step in the search requires at least one message ⇒ number of messages grows exponentially with variables
- Message delivery is much slower than computation ⇒ process does not scale to large problems
- Better: fewer large messages

Dynamic Programming

- Principle: replace variables by constraints
- Consider variable x having constraint with y
- For each value of x, there may be a consistent value of y
- ⇒ replace y by a constraint on x:
 x=v is allowed if there is a consistent value of y
 - Optimization version:

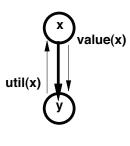
$$utility(x=v) = utility(x=v,y=w);$$

 $w = best possible value of y given x=v$

Utility = inverse of cost, maximized

Example

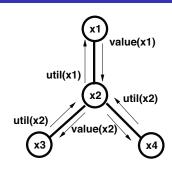
$$C(x,y) = x \frac{\begin{vmatrix} y & b \\ w & 1 & 3 \\ b & 2 & 1 \end{vmatrix}}{util(x) = \frac{w & b}{3 & 2}}$$



- A(y) summarizes constraint in util(x) message (table for x)
- \Rightarrow A(x) can decide best value for x and (implicitly) y locally
 - A(x) informs A(y) of value using value(x) message

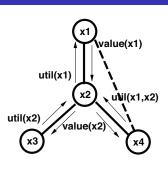
Dynamic programming in trees

- Rooted tree: every node has exactly one parent
- Agents send util messages to their parents
- Best values of x3, x4 ⇒ unary constraint on x2
- A(x2) sums up util messages + own constraint ⇒ unary constraint on x1
- A(x1) picks best value v(x1); sends value(x1=v(x1)) to A(x2)
- A(x2) picks best value given x1 and informs A(x3),A(x4)



Dynamic Programming in Graphs

- Pseudo-trees: util messages refer to all variables in the context, not just the parent.
- Two messages per variable (util and value) ⇒ number of messages grows linearly with the size of the problem
- However, maximum message size grows exponentially with the tree-width of the induced graph (maximum number of backedges)
- In many distributed problems, the tree-width is relatively small



Distributed local search

Local search:

- initialize variables to arbitrary values
- iteratively make local improvements
- stop when no more improvements are found

Advantages: simple to implement, low complexity

Disadvantage: incomplete, usually only gets within 2-3% of the

best solution

Min-conflicts

- Assign random value to each variable in parallel (this will conflict with some constraints)
- At each step, find the change in variable assignment which most reduces the number of conflicts
- Corresponds to search by "hill-climbing"

Distributed min-conflicts

- Neighbourhood of $N(x_i)$ = variables connected to x_i through constraints
- Change to x_i can happen asynchronously with others as long as there is no other change in the neighbourhood
- ⇒ two neighbouring agents are not allowed to change simultaneously:
 - highest improvement wins
 - ties broken by fixed ordering
- ⇒ parallel, distributed execution

Example: resource allocation

Variables:

$$x_1 \in \{B, C\}$$
$$x_2 \in \{A, C\}$$

$$x_3 \in \{B, C\}$$

$$x_4 \in \{A, B\}$$

\Rightarrow neighbourhoods:

$$N(x_1) = \{x_2, x_3, x_4\}$$

$$N(x_2) = \{x_1, x_3, x_4\}$$

$$N(x_3) = \{x_1, x_2\}$$

$$N(x_4) = \{x_1, x_2\}$$

Constraints:

$$C(x_1, x_2) : \{(B, A), (B, C), (C, A)\}$$

$$C(x_1, x_3) : \{(B, C), (C, B)\}$$

$$C(x_1, x_4) : \{(B, A), (C, B), (C, A)\}$$

$$C(x_2, x_3) : \{(A, B), (A, C), (C, B)\}$$

$$C(x_2, x_4) : \{(A, B), (C, A), (C, B)\}$$

Example (min-conflicts)

Initial assignment:

$$(x1 = B, x2 = A, x3 = B, x4 = A)$$

 \Rightarrow 2 conflicts: $c(x1,x3)$ et $c(x2,x4)$

1st step:

change	conflicts	nconf
$x1 \to C$	c(x2,x4)	1
$x2 \to C$	c(x1,x3)	1
$x3 \rightarrow C$	c(x2,x4)	1
x4 o B	c(x1,x3),c(x1,x4)	2

Accept $x_1 \to C$, changes to x_2, x_3 and x_4 blocked because of neighbourhood

(Possible simultaneous change: x_3 and x_4)

Example (min-conflicts)...

$$(x1 = C, x2 = A, x3 = B, x4 = A)$$

 $\Rightarrow 1 \text{ conflict: } c(x2,x4)$
2nd step:

change	conflicts	nconf		
x1 o B	c(x1,x3), c(x2,x4)	2		
$x2 \to C$	c(x1,x2)	1		
$x3 \to C$	c(x1,x3),c(x2,x4)	2		
$x4 \to B$	-	0		
accept $(x4 \rightarrow B) \Rightarrow$ solution:				
(x1 = C, x2 = A, x3 = B, x4 = B)				

Asynchronous assignments

Basic procedure for assigning values:

- select value $x_i = v_j$
- **2** send OK? $(x_i = v_j)$ message to each neighbour
- receive $OK(x_k = ..)$ message from each neighbour x_k
- \Rightarrow each agent knows the values of its neighbours

Asynchronous changes

If conflicts:

- Agent view ⇒ find best possible improvement by changing own value
- broadcast improvement to neighbours
- receive improvements from neighbours

evaluate if:

- own improvement > every neighbour x_j 's, or
- own improvement \geq every neighbour x_j 's and x_i has higher priority than every x_j with equal improvement
- ⇒ assign different value if condition is satisfied

Example 2 (min-conflicts)

Initial assignment:

$$(x1 = B, x2 = A, x3 = B, x4 = A)$$

 \Rightarrow 2 conflicts: $c(x1,x3)$ et $c(x2,x4)$

1st step:

change	conflicts	nconf		
x1 o C	c(x2,x4)	1		
$x2 \to C$	c(x1,x3)	1		
$x3 \to C$	c(x2,x4)	1		
$x4 \to B$	c(x1,x3),c(x1,x4)	2		
accept (x2 \rightarrow C)				

Example 2 (min-conflicts)...

$$(x1 = B, x2 = C, x3 = B, x4 = A)$$

 $\Rightarrow 1 \text{ conflict: } c(x1,x3)$

2nd step:

change	conflicts	nconf
$x1 \to C$	c(x1,x2)	1
$x2 \to A$	c(x1,x3),c(x2,x4) c(x2,x3)	2
$x3 \rightarrow C$	c(x2,x3)	1
$x4 \to B$	c(x1,x3),c(x1,x4)	2

no improvement possible: local minimum!

Breakout Algorithm

- Similar to min-conflict, but assign dynamic priority to every conflict (constraint), initially =1
- Modify variable which reduces the most the sum of the priority values of all conflicts.
- When local minimum: increase weight of every existing conflict

Eventually, new conflicts will have lower weight than existing ones \Rightarrow breakout

Constraint Satisfaction Problems Backtracking Dynamic Programming Distributed local search

Local minima

If all improvements = 0:

- increase weight of all constraint violations
- restart asynchronous changes

Termination detection

- If constraint violation: $t count \leftarrow 0$
- If no constraint violation: $t count \leftarrow t count + 1$
- Send t count to neighbours
- When receiving t − count_j from another agent:
 t − count ← min(t − count, t − count_j)
- Termination when t count > d, d = max. distance of any agent
- Requires synchronous communication with time bounds

Assume initial choice = local minimum:

$$(x1 = B, x2 = C, x3 = B, x4 = A)$$

1 conflict $c(x1, x3)$

- A1: $x1 \rightarrow C$: c(x1,x2); improvement = 0
 - A2: $t count \leftarrow 1$
 - A3: $x3 \rightarrow C$: c(x2, x3); improvement = 0
 - A4: $t count \leftarrow 1$
- \Rightarrow local minimum for A1, A3
- \Rightarrow increase weight of existing conflict c(x1, x3)

```
Increased weight \rightarrow conflict weight = 2 A1: x1 \rightarrow C: c(x1,x2); improvement = 1 A2: t-count \leftarrow min(1,0) = 0 A3: x3 \rightarrow C: c(x2,x3); improvement = 1 A4: t-count \leftarrow min(1,0) = 0 \Rightarrow A1 higher in priority order \Rightarrow accept change x1 \Rightarrow C
```

- (x1 = C, x2 = C, x3 = B, x4 = A)1 conflict c(x1, x2)
- A1: $x1 \rightarrow B$: c(x1, x3); improvement = -1A2: $x2 \rightarrow A$: c(x2, x4); improvement = 0A3: $t - count \leftarrow 1$ A4: $t - count \leftarrow 1$
- local minimum for A1,A2
- increase weight of existing conflict c(x1, x2)

- Increased weight \rightarrow conflict weight = 2
- A1: $x1 \rightarrow B$: c(x1, x3); improvement = 0

A2:
$$x2 \rightarrow A$$
: $c(x2, x4)$; improvement = 1

A3:
$$t - count \leftarrow min(1, 0) = 0$$

A4:
$$t - count \leftarrow min(1, 0) = 0$$

- ⇒ A2 higher improvement
- \Rightarrow accept change $x2 \Rightarrow A$

- (x1 = C, x2 = A, x3 = B, x4 = A)1 conflict c(x2, x4)
- A1: $t count \leftarrow 1$
 - A2: $x2 \rightarrow C$: c(x1, x2); improvement = -1
 - A3: $t count \leftarrow 1$
 - A4: $x4 \rightarrow B$: consistent; improvement = 1
- \Rightarrow change $x4 \rightarrow B$

Detecting Termination

```
A1: t - count \leftarrow 1 \leftarrow 2 > d

A2: t - count \leftarrow 1 \leftarrow 2 > d

A3: t - count \leftarrow 1 \leftarrow 2 \leftarrow 3 > d

A4: t - count \leftarrow 1 \leftarrow 2 \leftarrow 3 > d

\Rightarrow solution: (x1 = C, x2 = A, x3 = B, x4 = B)
```

Summary

- Distributed coordination = no central coordinator.
- Social Laws rarely feasible.
- Distributed Contract Nets: problems with convergence
- Distributed Constraint Satisfaction
 - Backtrack search algorithms
 - Dynamic Programming
 - Local search