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Deliberative Architecture
State-based planning

Planning with adversaries

Deliberative architecture

Reactive architecture: difficult to

plan over time

act with varying goals (e.g. receive instructions)

coordinate with other agents

Explicit consideration of action outcomes
⇒ deliberative architecture

“... the art and practice of thinking before acting.” - P. Haslum
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Example: delivery problem

a
b

c
d

e
f

A

B

C

1>f 2>d
5>a

3>e

6>a

4>b

Agent A delivers packages 1..6 to their destinations
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Requirements

Reactive agents = Decision processes:

every state is assumed to be reachable!

State encodes many variables (carrying packages, location of
objects, etc.) ⇒ combinatorial explosion:

S = pos(robot)× pos(1)× holding(1)× ...

= {a..f } × {a..f } × {T ,F} × ...

|S| = 67 · 26 = 17′915′904
|A| � 10⇒ |T | = 3′209′796′161′372′160 entries
⇒ does not fit into any computer memory!
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Requirements (2)

1 Changing goals
Example: new packages to be delivered
Effect: changing reward structure

2 Actions of other agents
Example: Agents B,C also move packages, block pathways
Effect: changing transition and reward structure

⇒ requires recomputing entire policy each time.
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Reactive ⇒ deliberative agents

Observation:

When the state space is large, or when a problem is
solved only once, only a small subset of the states are
actually visited

⇒ computing optimal actions for every state is a waste of effort!
Examples:

Package 5 should never be moved to to c,d,e, or f

Package 3 will never be moved to a

if A starts in a, it will not leave both packages 1 and 2 in a

⇒ unnecessary states
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Agent with explicit goals

Agent

E
n
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Sensors

Effectors

What it will be like
  if I do action A

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Goals
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Utility-based agent

Agent
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Effectors

What it will be like
  if I do action A

What the world
is like now

How happy I will be
   in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility
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Deliberative solution of decision processes
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Deliberative solution of decision processes

Focus only on current state and successors.

Myopic search does not find best plan.

Need to search all possible sequences ⇒ tree search.

State space grows exponentially ⇒ stop at bounded depth.
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Depth-first search
Iterative Deepening
Optimization
Heuristic Search: A*

Example

Initial state:

s0 : pos(A) = a, pos(1) = a, pos(2) = a, pos(3) = c , ...

Goal states:

st1 : pos(A) = a, pos(1) = f , pos(2) = d , pos(3) = e, ...

st1 : pos(A) = b, pos(1) = f , pos(2) = d , pos(3) = e, ...

...

Actions:

pick up/drop off package

move along the graph

Boi Faltings Deliberative Agents 11/56



Deliberative Architecture
State-based planning

Planning with adversaries

Depth-first search
Iterative Deepening
Optimization
Heuristic Search: A*

State-based planning algorithms

Assume initial state is known, e.g.:
s0: (pos(A)=a, pos(1)=a, pos(2)=a, pos(3)=c, pos(4)=e, pos(5)=b, pos(6)=d)

Consider only states that can be reached from known states:
s1: (pos(A)=b, pos(1)=a, pos(2)=a, pos(3)=c, pos(4)=e, pos(5)=b, pos(6)=d)
s2: (pos(A)=b, pos(1)=b, pos(2)=a, pos(3)=c, pos(4)=e, pos(5)=b, pos(6)=d)
s3: (pos(A)=b, pos(1)=a, pos(2)=b, pos(3)=c, pos(4)=e, pos(5)=b, pos(6)=d)

⇒ every step multiplies number of states by branching factor b
Number of states up to level l (assuming no duplicates):

c(l) =
l∑

i=0

bi =
bl+1 − 1

b − 1
< bl+1

Exponential growth with each level, but often less states than for
value/policy iteration: b = 3, l = 10⇒ c(l) ≈ 88′573.
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Formalization

Algorithm = search:

systematically generate possible action sequences and
test each whether it leads from initial to goal state.

Search node:
n = a state

Successor function:

succ(n) = list of nodes (states) reached from n by
simulating all different actions.
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Depth-first search

The search space is considered as a tree:
1

2

3

4 5

6

7

Depth-first: always expand the first node found until there are no
more successors (or a final node is found)
⇒ backtrack: return to the last level with an untried possibility
and continue from there.
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Properties (depth-first search)

Advantage:

memory required = list of ”open” nodes
grows linearly with depth of search
(logarithmic in size of search space)

Disadvantages:

Plan found may not be the shortest

Heavy-tailed distributions: may be stuck in unpromising
branch
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Breadth-first search

1

2 3

4 5 6 7

Level 1

Level 0

Level 2

Breadth-first: exploring the tree layer by layer
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Properties (breadth-first search)

Advantages:

Always finds the shortest plan.

Not penalized by bad initial decisions.

Disadvantage:

Requires large amounts of memory to store all nodes of the
tree at each level.
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Algorithms

Depth-first:

1: Function DFS (InitialNode)
2: Q ← (InitialNode)
3: repeat
4: n ← first(Q), Q ← rest(Q)
5: if n is a goal state, return n
6: S ← succ(n)
7: Q ← append(S, Q)
8: until Q is empty
9: return FAIL

Breadth-first: exchange the order in step 7:
7. Q ← append(Q, S)
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Depth-limited search

Usually, breadth-first search requires too much memory to be
practical.

Main problem with depth-first search:
can follow a dead-end path very far before this is discovered.

⇒ impose a depth limit l :
never explore nodes at depth > l
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Depth-Limited Search (DLS)

1: Function DLS (InitialNode,l)
2: depth-limit(InitialNode) ← l
3: Q ← (InitialNode)
4: repeat
5: n ← first(Q), Q ← rest(Q)
6: if n is a goal node, return n
7: S ← succ(n)
8: for nn ∈ S do
9: depth-limit(nn) ← depth-limit(n)-1

10: if depth-limit(n) > 0 then Q ← append(S,Q)
11: until Q is empty
12: return FAIL

Q: What is the right depth limit l?
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Iterative Deepening

Increase the limit:

1: Function Iterative-deepening(InitialNode)
2: l ← 2
3: repeat
4: solution← DLS(InitialNode, l)
5: l ← l + 1
6: until solution �= {}

Every step repeats earlier search steps....
Isn’t this costly?
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Complexity

If the algorithm finds a solution at depth l , it has explored all
subspaces of depth l , l − 1, ..., 2.
Let there be c(i) = bi+1 − 1 nodes in the search space up to depth
i , then the total complexity is:

l∑
i=2

c(i) =
l∑

i=2

(bi+1 − 1)

=

(
bl+1

l−2∑
i=0

b−i

)
− (l − 1)

<

(
bl+1 · b

b − 1

)
− (l − 1) ≤ 2c(l)

⇒ as long as b ≥ 2, l ≥ 3, complexity is no more than doubled!
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Finding the optimal plan

cost of plan = sum of costs of actions.

step from node n’ to successor n has a cost c(n’,n):

thus, the cost g(n) of node n is:

g(n) = c(n′, n) + g(n′) = c(n′, n) +
∑

n′,n′′∈ancestors(n)
c(n′, n′′)
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Optimization in DFS

Keep track of the best goal node found so far.

Insight: for any node n, cost of a successor can never be lower
than cost of n.

⇒ any node that has higher cost than the best solution found so
far can not lead to a better solution.

⇒ all such nodes can be ignored (branch-and-bound).

optimal plan = best plan when queue is empty.

Boi Faltings Deliberative Agents 24/56



Deliberative Architecture
State-based planning

Planning with adversaries

Depth-first search
Iterative Deepening
Optimization
Heuristic Search: A*

Heuristic search

Search should be guided to first explore the most promising
solutions.

This can be done using a heuristic function:
h(n) = estimate of minimal cost from node n to a goal node.

Define g(n) = cost of the best path to node n, then:

f(n) = g(n) + h(n)

is an estimate of the cost of the best path from initial to goal
node passing through node n.

⇒ first explore nodes with a low value of f(n).
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Algorithm A* (best-first)

1: Function ASTAR (InitialNode)
2: Q ← (InitialNode)
3: C ← ()
4: repeat
5: n ← first(Q), Q ← rest(Q)
6: if n is a goal state, return n
7: if n �∈ C, or has lower cost than its copy in C then
8: C ← append(n,C)
9: S ← succ(n)

10: S ← sort(S,f)
11: Q ← merge(Q,S,f) {Q is ordered by f(n) = g(n) + h(n)}
12: until Q is empty
13: return FAIL
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Example of a heuristic search

Search order (without heuristic):
(S1(0))
(S2(1),S3(2))
(S3(2),S4(3))
(S4(3),S5(5))
(S5(5),G(13))
(G(6),G(13))
Search order (A*):
(S1(0+0)=0)
(S3(2+3=5),S2(1+8=9))
(S5(5+1=6),S2(9))
(G(6),S2(9))

S5 S4

S3S2

S1

10 1

2 3

1 2

(3)

(1)(7)

(8)

G
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Optimality in A*

The performance of A* depends largely on the quality of the
heuristic function.

If we always have h(n) = 0, nodes are explored in the order
of their cost: any plan found will always have the lowest
possible cost, and is thus optimal.

If the function h(n) overestimates the true cost h∗(n)
remaining from n to a goal state, we can have:
g(n’) + h(n’) < g(n) + h(n) (> g(n) + h∗(n))

even if total cost of the path through n is less than that
through n’:

g(n’) + h∗(n’) > g(n) + h∗(n)
⇒ the solution found might be sub-optimal!

One can prove that A* always finds the optimal solution as
long as h(n) never over-estimates the true cost.
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Beam search

List Q in A* algorithm may get very long

Idea: limit Q to only keep n best nodes, throw away the others.

⇒ beam search with width n

Incomplete: can miss the best solution!

Iteratively increasing limit does not solve the problem of
suboptimal solution.
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Planning with an adversary

Planning world may include other agents that

do random actions

compete, or

are direct adversaries

⇒ plan has to take their actions into account
Purest form: games
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Games as search

state =
board position + turn

successor function =
moves that can be made by the next player

goal states =
positions where one or the other has won, possibly with a
payoff (cost) function

⇒ possible games = search tree
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Example of a game tree

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

. . . . . . . . . . . .

. . .

. . .

. . .

TERMINAL
XX

−1  0 +1Utility
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Minimax search

Each player controls only certain layers of the outcome ⇒ assume:

when agent is in control, it will maximize payoff

when others are in control, they will minimize payoff

⇒ backpropagation to earlier states
MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3A

2

A 13A 12A 11
A 21 A 23

A 22
A 33A 32

A 31

3 2 2
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Imperfect decisions

Real games do not allow generating the entire game tree!

Chess:

d = 50 moves, b = 35 possibilities ⇒ 3550 states!

⇒ can only search to a certain depth!

Assume that horizon states are final states, evaluate with a
heuristic
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Evaluating horizon states

Encode features of board position = xi :

number of pieces

number of pieces threatening another

points already won

...

State evaluation = heuristic based on board position:

f = a1 · x1 + a2 · x2 + ...+ an · xn
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Alpha-Beta pruning

Minimax search can be optimized:

MAX

3 12 8 2 14 5 2

MIN

3

A
1

A
3A

2

A 13A 12A 11
A 21 A 23

A 22
A 33A 32

A 31

23 <=2

⇒ abandon A2 without searching A22,A23
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Principle

DFS algorithm keeps record of:

α = best choice found on this path for MAX

β = best choice found for MIN

Abandon a branch as soon as:

MAX > β: the opponent would never allow us to get there

MIN < α: we have already found a branch where the
opponent can do us less harm
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Performance of chess programs
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Beyond Alpha-Beta

Stochastic models can simplify complex deterministic games.
Example: Go (Weiqi, Baduk)

Very large branching factor / search space:
d = 150 moves, b = 361 possibilities ⇒ 361150 states!

Replace details by stochastic models.
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Go: Traditional Approaches

Alpha-beta search: combine global and local searches.

Large branching factor.

Difficult to define boundaries for local search.

Selective search: encoding human expert-knowledge.

Require human expertise.

Require extensive manual tuning.
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Go: Traditional Approaches
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A New Approach for Go

State evaluation using Monte Carlo Algorithm:

Given a state, ‘randomly roll-out’ sequences of legal moves to
the end of the game.
Estimate winning probabilities by statistics over many
roll-outs.
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Simple Monte Carlo Search

Evaluate all possible next states using Monte Carlo algorithm with
N roll-outs, pick the best move.
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Roll-out policy

Problem: many “random” moves are simply useless.
Solution: Assign a simple roll-out policy to avoid useless/harmful
moves, and play important/winning moves:

Non-suicidal

Handicrafted pattern matching (MoGo 2006)

Learnt from expert game database (CrazyStone 2007)
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Selective Sampling

Problem: Simple Monte Carlo samples many poor moves.

WANTED

A way to focus on ”promising moves”.

We already know something about the moves from our Monte
Carlo sampling. Therefore, at each move, we need to consider:

Exploitation: moves optimized using existing estimates.

Exploration: moves that have not been sufficiently sampled.

This can be formulated as a Multi-Armed Bandit problem.
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Upper Confidence Bound Applied to Trees (UCT)

Upper Confidence Bound for Move i

UCBi =
Wi

Ni︸︷︷︸
=Q(i)

+ c

√
log(N)

Ni︸ ︷︷ ︸
exceeded with prob.<exp(−c2t/2)

Wi = win with move i; Ni = roll outs with move i;
N = total roll outs; c = exploration parameter.

Select player’s move i with the greatest upper confidence
bound UCBi on its Q-value.

Select opponent’s move with the minimal lower (sign
reversed) confidence bound on its Q-value.
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Monte Carlo Tree Search (MCTS)

A hybrid search algorithm:

Use UCT to build a game
tree.

Monte Carlo for
evaluating leaf nodes.

Leading Computer Go
programs based on MTCS:

CrazyStone, MoGo, Zen,
AlphaGo

Different heuristics are
used to guide UCT and
Monte Carlo.
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MCTS in Practice
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AlphaGo

AlphaGo combines Monte-Carlo search with deep neural nets.

Uses deep neural networks for:

evaluating the quality of a board position.
suggesting next moves to try during random rollout.

First trained on many many human games, then further
improved by playing against itself.

Neural nets good at recognizing patterns ⇒ very powerful
extension.

Beat best human player (Lee Sedol).
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Deep Learning in AlphaGo

(from Nature 529, 2016)
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Games with chance

Games include throwing a dice ⇒ game tree includes chance levels:

DICE

MIN

MAX

DICE

MAX

. . .

. . .

. . .

B

2 1 −1 1−1

. . .

6,66,51,1
1/36

1,2
1/18

TERMINAL

6,66,51,1
1/36

1,2
1/18

......

.........

.........

...... ......

...
C

Outcomes known to all players.
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Strategies

Simultaneously learn player and opponent’s strategies using
repeated self-play.

Optimize using regret: difference in reward between actual
play and best possible actions (in hindsight).

play according to expected return
= select action that minimizes expected regret.
(expectiminimax)
minimize exploitability = possibility of opponent to benefit
from ”bad luck”
= randomized strategy (as in adversarial bandits).

Multiple sequences of moves need to be considered
simultaneously ⇒ much more complex than ordinary game
tree search.
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Counterfactual Regret Minimization

How to compute probabilities in a randomized strategy:

like Monte-Carlo search: estimate quality of moves by
sampling outcomes of chance events.

counterfactual regret cf (a) = regret of having played another
action a′ instead of a.

determine randomized strategy by regret matching: play
action a with probability proportional to its counterfactual
regret.

will converge to an equilibrium where no agent can do better
given the strategy of the other agent.
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Information Sets

Uncertain information can be known only to one agent: for
example, cards dealt in poker game.

⇒ multiple information sets = sets of states with identical
private information.

Strategies of agent a can depend only on information set
known to agent a.

⇒ Opponent’s choice of action may reveal its private
information, but...

Opponent could bluff to mislead.
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Computer Poker

Complexity in poker comes from uncertainty, not size of the
game.

Heads-up limit Texas hold’em: 1013 decision points, solved
near-optimally using abstraction and CFR in 2012.

Heads-up no limit Texas hold’em: 10161 decision points
(similar to GO), best AI players (LIBRATUS, DeepStack)
reliably beat best human players (2017).

Libratus uses: game abstraction (blueprint solving), detailing
subgames, and self-improvement to exploit opponent’s
weaknesses.

DeepStack uses no abstraction, but approximates values of
horizon states using a deep neural network.

Significant to real applications such as stock trading or fighting
diseases.
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Summary

Limitations of reactive agents ⇒ deliberative agents.

Planning generates and optimizes strategy for a particular
scenario.

Can deal with bigger scenarios than MDP/POMDP.

Planning with adversaries: game playing algorithms.

Monte Carlo tree search scales to much larger problems.

Games with uncertainty: learn probabilistic strategies with
counterfactual regret minimization.
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