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Deliberative Architecture

Deliberative architecture

Reactive architecture: difficult to
@ plan over time
@ act with varying goals (e.g. receive instructions)
@ coordinate with other agents

Explicit consideration of action outcomes
= deliberative architecture

. the art and practice of thinking before acting.” - P. Haslum
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Deliberative Architecture

Example: delivery problem

Agent A delivers packages 1..6 to their destinations

Boi Faltings Deliberative Agents 3/56



Deliberative Architecture

Requirements

Reactive agents = Decision processes:

every state is assumed to be reachable!

State encodes many variables (carrying packages, location of
objects, etc.) = combinatorial explosion:

S = pos(robot) x pos(1) x holding(1) x ...
= {a.f}x{a.f}x{T,F}x..

|S| = 67 -2° = 17'915/904
|A] ~ 10 = | T| = 3'209'796'161'372/160 entries
= does not fit into any computer memory!
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Deliberative Architecture

Requirements (2)

@ Changing goals
Example: new packages to be delivered
Effect: changing reward structure
© Actions of other agents
Example: Agents B,C also move packages, block pathways
Effect: changing transition and reward structure

= requires recomputing entire policy each time.
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Deliberative Architecture

Reactive = deliberative agents

Observation:
When the state space is large, or when a problem is
solved only once, only a small subset of the states are
actually visited

=- computing optimal actions for every state is a waste of effort!
Examples:

@ Package 5 should never be moved to to c,d,e, or f
@ Package 3 will never be moved to a
@ if A starts in a, it will not leave both packages 1 and 2 in a

=> unnecessary states

Boi Faltings Deliberative Agents 6/56



Boi Faltings

Deliberative Architecture

nt with explicit goals

What my actions do

Goals

Agent

What the world
How the world evolves z F

Sensors

What it will be like
if | do action A

What action |
should do now

Effectors

JusWUOAIAUT

Deliberative Agents



Deliberative Architecture

Utility-based age
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Deliberative Architecture

Deliberative solution of decision processes
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Deliberative Architecture

Deliberative solution of decision processes

@ Focus only on current state and successors.
@ Mpyopic search does not find best plan.
@ Need to search all possible sequences = tree search.

@ State space grows exponentially = stop at bounded depth.
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State-based planning

Example

Initial state:
so : pos(A) = a, pos(1) = a, pos(2) = a, pos(3) = c, ...
Goal states:

se1: pos(A) = a, pos(1) = f,pos(2) = d, pos(3) = e, ...
se1: pos(A) = b, pos(1) = f, pos(2) = d, pos(3) = e, ...

Actions:
@ pick up/drop off package
@ move along the graph
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State-based planning

State-based planning algorithms

Assume initial state is known, e.g.:
so: (pos(A)=a, pos(1)=a, pos(2)=a, pos(3)=c, pos(4)=e, pos(5)=b, pos(6)=d)

Consider only states that can be reached from known states:

s1: (pos(A)=b, pos(1)=a, pos(2)=a, pos(3)=c, pos(4)=e, pos(5)=b, pos(6)=d)
s2: (pos(A)=b, pos(1)=b, pos(2)=a, pos(3)=c, pos(4)=e, pos(5)=b, pos(6)=d)
s3: (pos(A)=b, pos(1)=a, pos(2)=b, pos(3)=c, pos(4)=e, pos(5)=b, pos(6)=d)

= every step multiplies number of states by branching factor b
Number of states up to level | (assuming no duplicates):

b’+1 1
C(/ Z bl b/+1

Exponential growth with each level, but often less states than for
value/policy iteration: b =3,/ =10 = ¢(/) ~ 88'573.
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State-based planning

Formalization

Algorithm = search:
systematically generate possible action sequences and
test each whether it leads from initial to goal state.

Search node:
n = a state

Successor function:

succ(n) = list of nodes (states) reached from n by
simulating all different actions.
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State-based planning

Depth-first search

The search space is considered as a tree:
1

4 5 7

Depth-first: always expand the first node found until there are no
more successors (or a final node is found)
= backtrack: return to the last level with an untried possibility

and continue from there.
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State-based planning

Properties (depth-first search)

Advantage:

@ memory required = list of "open” nodes
grows linearly with depth of search
(logarithmic in size of search space)

Disadvantages:
@ Plan found may not be the shortest

@ Heavy-tailed distributions: may be stuck in unpromising
branch
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State-based planning

Breadth-first search

Level 0

Level 1

Level 2

o000 0O
Breadth-first: exploring the tree layer by layer
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State-based planning

Properties (breadth-first search)

Advantages:

@ Always finds the shortest plan.

@ Not penalized by bad initial decisions.
Disadvantage:

@ Requires large amounts of memory to store all nodes of the
tree at each level.
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State-based planning

Algorithms

Depth-first:
: Function DFS (InitialNode)
: Q < (InitialNode)
. repeat
n < first(Q), Q « rest(Q)

2
3
4
5. if n is a goal state, return n
6
7
8

[y

S < succ(n)
Q < append(S, Q)
. until Q is empty
9: return FAIL
Breadth-first: exchange the order in step 7:
7. Q < append(Q, S)
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Depth-first search

State-based planning D ipenlng

Depth-limited search

@ Usually, breadth-first search requires too much memory to be
practical.

@ Main problem with depth-first search:
can follow a dead-end path very far before this is discovered.

= impose a depth limit I
never explore nodes at depth > /
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Depth-f arch
Iterative Deepening
i

State-based planning Opt

Depth-Limited Search (DLS)

1: Function DLS (InitialNode,l)
2: depth-limit(InitialNode) <« |
3: Q « (InitialNode)
4: repeat
5 n <« first(Q), Q + rest(Q)
6: if nis a goal node, return n
7. S < succ(n)
8: fornneSdo
9 depth-limit(nn) <— depth-limit(n)-1
10:  if depth-limit(n) > 0 then Q « append(S,Q)
11: until Q is empty
12: return FAIL
Q: What is the right depth limit /?
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Depth-first search

State-based planning D ipenlng

Iterative Deepening

Increase the limit:

1. Function lterative-deepening(InitialNode)
2. [+ 2
3: repeat

4:  solution <— DLS(InitialNode, I)

5. [+ 1+1

until solution # {}

Every step repeats earlier search steps....
Isn't this costly?
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Depth-firs

State-based planning Iteratlve

H»m\t\ Search: /

Complexity

If the algorithm finds a solution at depth /, it has explored all
subspaces of depth /, I — 1, ..., 2.

Let there be ¢(i) = b+l — 1 nodes in the search space up to depth
i, then the total complexity is:

/

I
doeliy = D (B -1)

i=2 i=2
— (b’“Zb ) (/-1)
< <b’+1-rb1>—(l—1)§2c(/)

= as long as b > 2,/ > 3, complexity is no more than doubled!
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State-based planning

Finding the optimal plan

@ cost of plan = sum of costs of actions.
@ step from node n’ to successor n has a cost c(n’,n):

@ thus, the cost g(n) of node n is:

g(n) = c(n',n) + g(n') = c(n’, n) + > c(n',n")

n’,n’"’ €ancestors(n)
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State-based planning

Optimization in DFS

@ Keep track of the best goal node found so far.

@ Insight: for any node n, cost of a successor can never be lower
than cost of n.

= any node that has higher cost than the best solution found so
far can not lead to a better solution.

= all such nodes can be ignored (branch-and-bound).

@ optimal plan = best plan when queue is empty.
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State-based planning
Search: A*

Heuristic search

@ Search should be guided to first explore the most promising
solutions.

@ This can be done using a heuristic function:
h(n) = estimate of minimal cost from node n to a goal node.

@ Define g(n) = cost of the best path to node n, then:
f(n) = g(n) + h(n)

is an estimate of the cost of the best path from initial to goal
node passing through node n.

= first explore nodes with a low value of f(n).
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State-based planning

Heuristic Search: A*

Algorithm A* (best-first)

1:
2:
3:
4:
5:
6:
7
8:
9:

Function ASTAR (InitialNode)
Q « (InitialNode)
C+()
repeat
n < first(Q), Q < rest(Q)
if n is a goal state, return n
if n ¢ C, or has lower cost than its copy in C then
C + append(n,C)
S « succ(n)
S « sort(S,f)
Q < merge(Q,S,f) {Q is ordered by f(n) = g(n) + h(n)}
: until Q is empty
: return FAIL

el el e
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State-based planning

ion
Search: A*

Example of a heuristic search

Search order (without heuristic):

(51(0))

(52(1),53(2)) L 2
(53(2).54(3))

(54(3),55(5)) ® )
(55(5).G(13)) ) R
(G(6).G(13))

Search order (A*): 7) 0
$1(0+0)=0)

$3(24-3=5),52(1+8=9)) 10 !

(
(
(S5(5+1=6),52(9))
(6(6).52(9))
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State-based planning

Heuristic Search: A*

Optimality in A*

@ The performance of A* depends largely on the quality of the
heuristic function.

@ If we always have h(n) = 0, nodes are explored in the order
of their cost: any plan found will always have the lowest
possible cost, and is thus optimal.

@ If the function h(n) overestimates the true cost h*(n)
remaining from n to a goal state, we can have:

gn’) + h(n’) < g(n) + h(n) ¢ gl + h*(@))
even if total cost of the path through n is less than that
through n':

gn’) + h*(n’) > g(n) + h*(n)
= the solution found might be sub-optimal!

@ One can prove that A* always finds the optimal solution as

long as h(n) never over-estimates the true cost.
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State-based planning

Heuristic Search: A*

Beam search

@ List Q in A* algorithm may get very long

@ ldea: limit Q to only keep n best nodes, throw away the others.
= beam search with width n

@ Incomplete: can miss the best solution!

@ lteratively increasing limit does not solve the problem of
suboptimal solution.
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Planning with adversaries

Planning with an adversary

Planning world may include other agents that
@ do random actions
@ compete, or
@ are direct adversaries

= plan has to take their actions into account
Purest form: games
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Planning with adversaries

Games as search

@ state =
board position + turn

@ successor function =
moves that can be made by the next player

@ goal states =
positions where one or the other has won, possibly with a
payoff (cost) function

= possible games = search tree
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Game tree search

Planning with adversaries

Example of a game tree

MAX (X)

MIN (0)

MAX (X)

MIN (0)

Utility 0
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Game tree search
Alpha

Planning with adversaries

Minimax search

Each player controls only certain layers of the outcome = assume:
@ when agent is in control, it will maximize payoff
@ when others are in control, they will minimize payoff

= backpropagation to earlier states
MAX

MIN

Boi Faltings Deliberative Agents 33/56



Planning with adversaries

Imperfect decisions

@ Real games do not allow generating the entire game tree!
@ Chess:
d = 50 moves, b = 35 possibilities = 35°° states!

= can only search to a certain depth!

@ Assume that horizon states are final states, evaluate with a
heuristic
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Planning with adversaries

Evaluating horizon states

Encode features of board position = x;:
@ number of pieces
@ number of pieces threatening another
@ points already won
o ..

State evaluation = heuristic based on board position:

f=a1-x1+ay-xo+ ...+ a, X,
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Game tree search
pruning
arlo Tree Search
th chance

Planning with adversaries

Alpha-Beta pruning

Minimax search can be optimized:
MAX

MIN

= abandon A; without searching Ajs, A3z
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Planning with adversaries

Principle

DFS algorithm keeps record of:
@ « = best choice found on this path for MAX
@ (3 = best choice found for MIN
Abandon a branch as soon as:
@ MAX > (3: the opponent would never allow us to get there

@ MIN < «: we have already found a branch where the
opponent can do us less harm
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Game tree search
Alpha-Beta pruning

Planning with adversaries
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Game tree search
3 pruning

Planning with adversaries iz Seae

Beyond Alpha-Beta

Stochastic models can simplify complex deterministic games.
Example: Go (Weigqi, Baduk)

@ Very large branching factor / search space:
d = 150 moves, b = 361 possibilities = 361150 states!

@ Replace details by stochastic models.
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Game t earch
Alph pruning
. . . Monte-Carlo Tree Search
Planning with adversaries 5 )
Gam th chance

Go: Traditional Approaches

Alpha-beta search: combine global and local searches.

@ Large branching factor.
@ Difficult to define boundaries for local search.

Selective search: encoding human expert-knowledge.

@ Require human expertise.
@ Require extensive manual tuning.
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pruning
Monte-Carlo Tree Search

Planning with adversaries )
th chance

Go: Traditional Approaches
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Game t earch
Alph pruning
Monte-Carlo Tree Search

Planning with adversaries 5 )
Gam th chance

A New Approach for Go

State evaluation using Monte Carlo Algorithm:

@ Given a state, ‘randomly roll-out’ sequences of legal moves to
the end of the game.

@ Estimate winning probabilities by statistics over many
roll-outs.
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Planning with adversaries

Simple Monte Carlo Search

Evaluate all possible next states using Monte Carlo algorithm with
N roll-outs, pick the best move.
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Game t earch
Alph pruning
Monte-Carlo Tree Search

Planning with adversaries 5 )
Gam th chance

Roll-out policy

Problem: many “random” moves are simply useless.
Solution: Assign a simple roll-out policy to avoid useless/harmful
moves, and play important/winning moves:

@ Non-suicidal

@ Handicrafted pattern matching (MoGo 2006)

@ Learnt from expert game database (CrazyStone 2007)
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Game tree search
3 pruning
rlo Tree Search

Planning with adversaries

Selective Sampling

Problem: Simple Monte Carlo samples many poor moves.

WANTED

A way to focus on " promising moves'.
We already know something about the moves from our Monte
Carlo sampling. Therefore, at each move, we need to consider:
@ Exploitation: moves optimized using existing estimates.
@ Exploration: moves that have not been sufficiently sampled.

This can be formulated as a Multi-Armed Bandit problem.
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Game tree search
Alpha-Beta pruning
Monte-Carlo Tree Search

Planning with adversaries 5 :
Games with chance

Upper Confidence Bound Applied to Trees (UCT)

Upper Confidence Bound for Move i

W log(N)
UCB, = WI —+ C NI'
~—

=Q()  exceeded with prob.<exp(—c2t/2)
W; = win with move i; N; = roll outs with move i;
N = total roll outs; ¢ = exploration parameter.

@ Select player's move i with the greatest upper confidence
bound UCB; on its Q-value.

@ Select opponent’s move with the minimal lower (sign
reversed) confidence bound on its Q-value.
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Planning with adversaries
h chance

Monte Carlo Tree Search (MCTS)

A hybrid search algorithm:

@ Use UCT to build a game
tree.
@ Monte Carlo for
evaluating leaf nodes.
Leading Computer Go
programs based on MTCS:
@ CrazyStone, MoGo, Zen,
AlphaGo

@ Different heuristics are
used to guide UCT and
Monte Carlo.
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Game tr ch
Alpha pruning
Monte-Carlo Tree Search

Planning with adversaries -
g Gam th cha

MCTS in Practice
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Game tree search
3 pruning

. . . rlo Tree Search
Planning with adversaries

AlphaGo

@ AlphaGo combines Monte-Carlo search with deep neural nets.
@ Uses deep neural networks for:

@ evaluating the quality of a board position.
@ suggesting next moves to try during random rollout.

@ First trained on many many human games, then further
improved by playing against itself.

@ Neural nets good at recognizing patterns = very powerful
extension.

@ Beat best human player (Lee Sedol).
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Game tr
Alpha-Beta pruning
Monte-Carlo Tree Search

Planning with adversaries -
Gamr h chance

Deep Learning in AlphaGo

(from Nature 529, 2016)
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Games with chance

Planning with adversaries

Games with chance

Games include throwing a dice = game tree includes chance levels:
MAX

DICE
MIN
DICE

MAX

TERMINAL 2 -1 1 -1 1

Outcomes known to all players.
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M

Planning with adversaries 7 -
g Games with chance

Strategies

@ Simultaneously learn player and opponent'’s strategies using
repeated self-play.

@ Optimize using regret: difference in reward between actual
play and best possible actions (in hindsight).

@ play according to expected return
= select action that minimizes expected regret.
(expectiminimax)

& minimize exploitability = possibility of opponent to benefit
from "bad luck”
= randomized strategy (as in adversarial bandits).

@ Multiple sequences of moves need to be considered
simultaneously = much more complex than ordinary game
tree search.
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Planning with adversaries

Counterfactual Regret Minimization

How to compute probabilities in a randomized strategy:
@ like Monte-Carlo search: estimate quality of moves by
sampling outcomes of chance events.

@ counterfactual regret cf(a) = regret of having played another
action a’ instead of a.

@ determine randomized strategy by regret matching: play
action a with probability proportional to its counterfactual
regret.

@ will converge to an equilibrium where no agent can do better
given the strategy of the other agent.
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o Tree Search

Planning with adversaries -
g Games with chance

Information Sets

@ Uncertain information can be known only to one agent: for
example, cards dealt in poker game.

= multiple information sets = sets of states with identical
private information.

@ Strategies of agent a can depend only on information set
known to agent a.

= Opponent’s choice of action may reveal its private
information, but...

@ Opponent could bluff to mislead.
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Planning with adversaries . -
g Games with chance

Computer Poker

@ Complexity in poker comes from uncertainty, not size of the
game.

@ Heads-up limit Texas hold’em: 103 decision points, solved
near-optimally using abstraction and CFR in 2012.

@ Heads-up no limit Texas hold’em: 10! decision points
(similar to GO), best Al players (LIBRATUS, DeepStack)
reliably beat best human players (2017).

@ Libratus uses: game abstraction (blueprint solving), detailing
subgames, and self-improvement to exploit opponent’s
weaknesses.

@ DeepStack uses no abstraction, but approximates values of
horizon states using a deep neural network.

Significant to real applications such as stock trading or fighting
diseases.
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o Tree Search

Planning with adversaries -
g Games with chance

Summary

@ Limitations of reactive agents = deliberative agents.

@ Planning generates and optimizes strategy for a particular
scenario.

Can deal with bigger scenarios than MDP/POMDP.
Planning with adversaries: game playing algorithms.

Monte Carlo tree search scales to much larger problems.

e & ¢ ¢

Games with uncertainty: learn probabilistic strategies with
counterfactual regret minimization.
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