Agent Applications

Boi Faltings

Value Propositions

- Autonomous agents: reactivity
 - Personal agents, ambient intelligence
- Agent-oriented software: structure
 - Simulation, control; shop-floor, etc.
- Self-interested agents: mediation
 - e-commerce, decision-making, etc.

Autonomous agents

- Agents that work for their users
- Reactive/deliberative architecture
- Act/react in environment

Teamed Autonomous UAVs

Human team leader

Mission Management - agent based planning & control

Trajectory Management i.e. FMS, control of vehicle path

Attitude Management i.e.autopilot, vehicle in stable flight

Human team leader:

"Report intention"

RF Emitter response:

"Goal is jam SAM radar,

RWR on, currently taking

avoiding action"

RF emitter

TV camera

Designator

Autonomous UAV "wing men" team members

SAM radar

Games and Entertainment

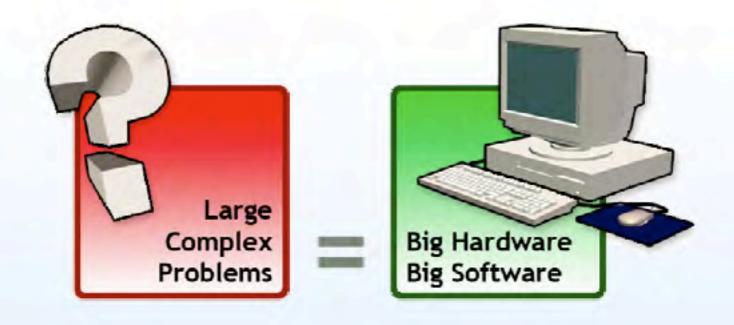
Computer Games:

Ex: Creatures from GameWare:
 Simulated environments with
 synthetic agents that a user can
 interact with in real-time.

Entertainment:

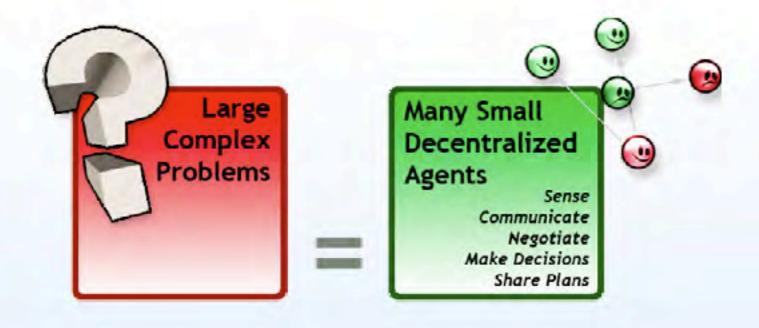
- Ex: Battle Scenes of the Lord of the Rings use the Massive Agent System
- Each character has its own independent behavior.

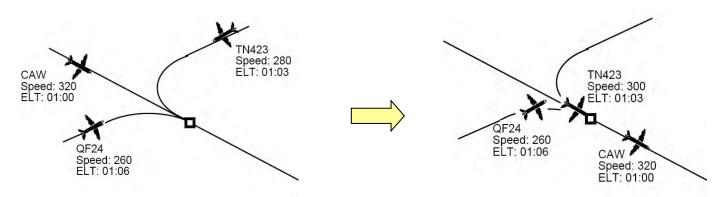
www.massivesoftware.com



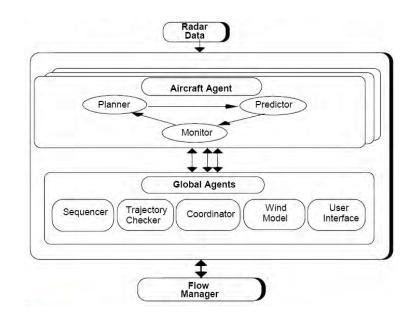
Agent-oriented software

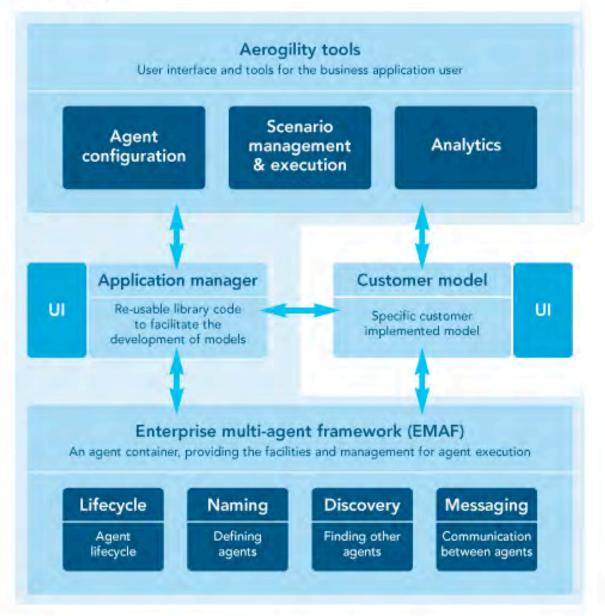
- Software that models many interacting processes becomes very complex
- Agents simplify structure:
 - Reduce cost
 - Easier to maintain


The Old Equation...



The New Equation...




Air Traffic Management

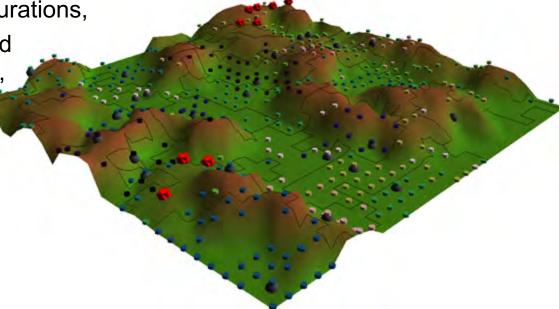
- Optimal Aircraft Sequencing using Intelligent Scheduling (OASIS)
- Assigns landing times 20 to 45 min. before arrival time.
- Continuous monitors aircrafts until they land at an airport
- Based on BDI-agents
- Used at Sydney airport

Simulation Applications

- Multiagent simulations offer strong models for representing real-world environments
- Differ from traditional kinds of simulation (e.g. with differential equations) in that the simulated entities are modeled in terms of agents with strategies
- Allows mixing software with human agents
- Three broad application areas:
 - Social structures and institutions:
 - Ex: marketplace simulation where agents represent consumers of products
 - Physical systems:
 - Ex: Traffic systems (Tunnel of Glion), biological populations
 - Software systems:
 - Ex: Traffics in telecommunication networks

Agent-Based Simulation

 GeoSim, an agent-based simulation framework of geopolitical processes


Prof. Cederman, International Conflict Research, ETHZ – www.icr.ethz.ch

Explores complex issues in world politics:

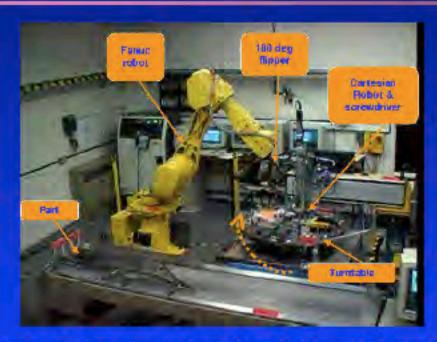
influence of polarity configurations,evolution of democracy and

nationalist transformations,

 reconstruction of war-size and state-size distributions.

Holonic Manufacturing Systems (HMS)

"Holonics"


- A Holon is the combination of a physical process and and an intelligent agent
- Holonic manufacturing systems are autonomous and co-operative

Holons can be in teams

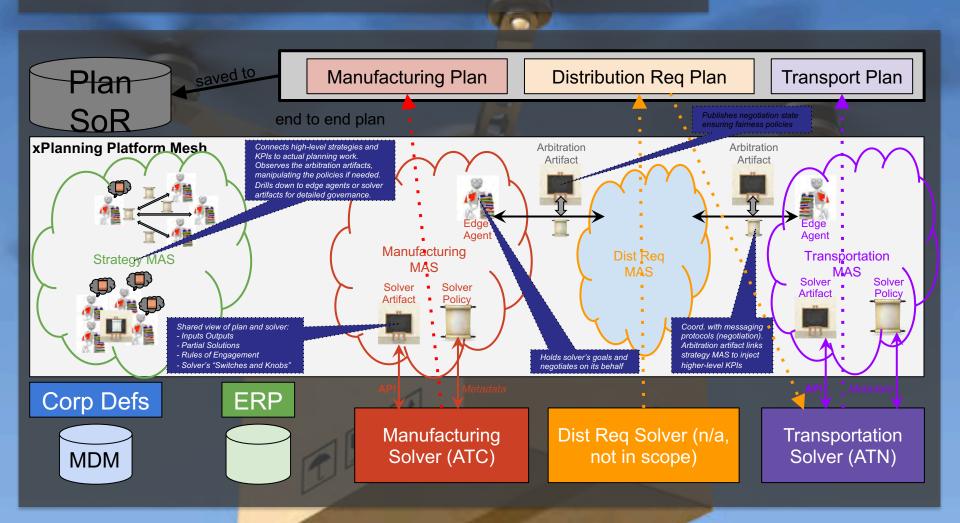
 A team of holons can be a group of machines, each with a role

Orders are pro-active - Order Holons

- Negotiate with resources to "make themselves"
- Novel view, inverts conventional concept of a static "order"

Institute of Manufacturing, Cambridge University

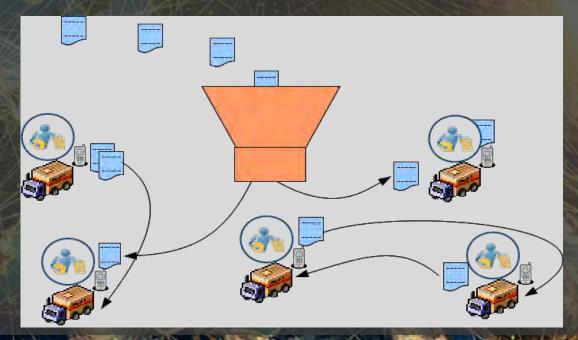
- assembly cell control using a JACK Team implementation
- combine holons with radio-based part identification - the future of manufacturing...


Manufacturing applications

- Industry 4.0
- See DaimlerChrysler presentation...

MAS Interactions for End-to-end Planning

Logistics applications


- Demand changes dynamically.
- Unforeseen problems: breakdowns, etc.
- Complex interdependencies with many participants.
- => difficult to handle in a centralized and static plan.

Adaptive Transportation Networks

Agent-based real-time optimization

Optimization problem space is automatically partitioned, distributed across a population of goal-directed agents and solved in real-time using multiple concurrent auctions

Adaptive Transportation Networks

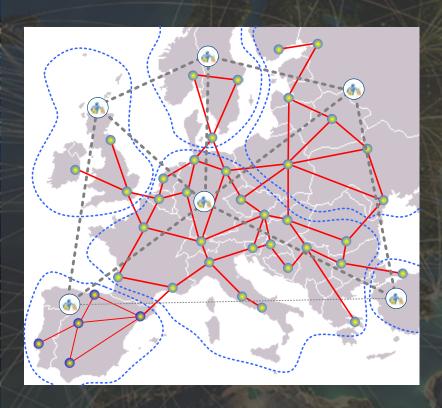
Whitestein product for optimizing freight transportation routing

MINISTER STATE OF THE STATE OF

Problem definition:

- 1. Improve ability to dispatch orders on real-time basis;
- 2. Provide pan-European visibility over dispatch operations

Product requirements:


- 1. Decision support for human dispatchers;
- 2. Higher utilization of multimodal transportation capacities;
- 3. Multiple Pick up and Delivery Problem with Time Windows;

THE RELIEF TO THE PROPERTY OF THE PROPERTY OF

- 4. Continuously produce feasible schedules in real-time;
- 5. Order exchange via combinatorial auctions;
- 6. Automated handling of plan deviations;
- 7. Real-time data feeds

Adaptive Transportation Networks Network of distributed route planning agents

DHL Freight Case

Optimized multimodal allocation of 90,000 orders/day to 35,000 trucks/trains/ships by 300 dispatchers across 24 countries with every order changing at least once

25-30% ↑ process efficiency 6-7% ↓ transportation costs

Self-interested agents

- Distributed multi-agent systems
- Purpose: mediate interests
- Non-manipulable
- Individually rational
- Efficient (optimization)

MAGENTA

Key Technology Features: Demand and Resource Matching

Agents representing individual elements of both demand and supply enter the Virtual Market and trade to meet their objectives. Once a demand agent matches with a supply agent a match contract is created. This contract describes the terms of the agreement. As changes effect demand and supply (such as cancelled orders or unavailable equipment) or as new demand and supply enter the Virtual Market, these contracts can be re-evaluated and broken or kept as is required to meet the level of response needed in the overall network.

Other interesting applications: iBundler

Delegating tasks in e-procurement

i50CO Services

Buyer RFQ form

Provider's Capabilities

Provider's Single Bids

Other interesting applications: Mortgage negotiation

Customers

Customer asks a web site for the best mortgage...

- A set of banks are asked for the best offer
- The "automatic mortgage agent" checks if a previous mortgage was issued,
- Each bank asks for the operation risk,
- The status is also checked...

Finally, the best offer is chosen ...

