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Reinforcement
Renaissance

The power of deep neural networks has sparked renewed
interest in reinforcement learning, with applications to game:s,

robotics, and beyond.

ACH TIME DEEPMIND has an-
nounced an amazing accom-
plishment in game-playing
computers in recent months,
people have taken notice.
First, the Google-owned, London-
based artificial intelligence (AI) re-
search center wowed the world with
a computer program that had taught
itself to play nearly 50 different 1980s-
era Atari games—from Pong and
Breakout to Pac-Man, Space Invaders,
Boxing, and more—using as input
nothing but pixel positions and game
scores, performing at or above the hu-
man level in more than half these var-
ied games. Then, this January, Deep-
Mind researchers impressed experts
with a feat in the realm of strategy
games: AlphaGo, their Go-playing pro-
gram, beat the European champion in
the ancient board game, which poses a
much tougher AI challenge than chess.
Less than two months later, AlphaGo
scored an even greater victory: it won 4
games in a best-of-5 series against the
best Go player in the world, surprising
the champion himself.
The idea that a computer can learn
to play such complex games from
scratch and achieve a proficient level

elicits gee-whiz reactions from the
general public, and DeepMind’s tri-
umphs have heightened academic
and commercial interest in the AI

field behind DeepMind’s methods:
a blend of deep neural networks and
reinforcement learning called “deep
reinforcement learning.”

12 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL.59 | NO.8

“Reinforcement learning is a mod-
el of learning where you’re not given
a solution—you have to discover it by
trial and error,” explains Sridhar Ma-
hadevan, a professor at the University
of Massachusetts Amherst, a long-
time center of research into reinforce-
ment learning.
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The clearest contrast is with super-
vised learning, the kind used to train
image recognition software, in which
the supervision comes in the form
of labeled examples (and requires
people to label them). Reinforcement
learning, on the other hand, “is a way
of not needing labels, or labeling au-
tomatically by who’s winning or los-
ing—by the rewards,” explains Uni-
versity of Alberta computer scientist
Rich Sutton, a co-founder of the field
of reinforcement learning and co-au-
thor of the standard textbook on the
subject. In reinforcement learning,
the better your moves are, the more
rewards you get, “so you can learn to
play the Go game by playing the moves
and winning or losing, and no one has
to tell you if that was a good move or a
bad move because you can figure it out
for yourself; it led to a win, so it was a
good move.”

Sutton knows the process is not
as simple as that. Even in the neat,
tightly controlled world of a game,
deducing which moves lead to a win
is a notoriously difficult problem be-
cause of the delay between an action
and its reward, a key feature of rein-
forcement learning. In many games,
youreceive no feedback at all until the
end of the game, such as a 1 for a win
or a -1 for aloss.

“Typically, you have to go through
hundreds of actions before your score
increases,” explains Pieter Abbeel, an
associate professor at the University
of California, Berkeley, who applies
deep reinforcement learning to robot-
ics. (For a robot, a reward comes for
completing a task, such as correctly as-
sembling two Lego pieces.) “Before you
understand how the game works, and
are learning through your own trial and
error,” Abbeel says, “you just kind of do
things, and every now and then your
score goes up, and every now and then
it goes down, or doesn’t go up. How do
you tease apart which subset of things
that you did contributed to your score
going up, and which subset was just
kind of a waste of time?”

This thorny question—known as the
credit assignment problem—remains
a major challenge in reinforcement
learning. “Reinforcement learning is
unique in that it’s the only machine
learning field that’s focused on solving
the credit assignment problem, which

D
Despite the buzz
around DeepMind,
combining
reinforcement
learning with

neural networks

is not new.

I think is at the core of intelligence,”
says computer scientist Itamar Arel, a
professor of electrical engineering and
computer sciences at the University of
Tennessee and CEO of Osaro, a San
Francisco-based AI startup. “If some-
thing good happens now, can I think
back to the last n steps and figure out
what I did that led to the positive or
negative outcome?”

Just as for human players, figuring
out smart moves enables the program
to repeat that move the next time it
faces the same situation—or to try a
new, possibly better move in hope of
stumbling into an even higher reward.
In extremely small worlds (think of a
simple game like Tic-Tac-Toe, also
known as Noughts and Crosses), the
same exact situations come up again
and again, so the learning agent can
store the best action for every possible
situation in alookup table. In complex
games like chess and Go, however, it is
impossible to enumerate all possible
situations. Even checkers has so much
branching and depth that the game
yields a mind-boggling number of
different positions. So imagine what
happens when you move from games
to real-world interactions.

“You’re never going to see the same
situation a second time in the real
world,” says Abbeel, “so instead of a
table, you need something that under-
stands when situations are similar to
situations you’ve seen before.” This is
where deep learning comes in, because
understanding similarity—being
able to extract general features from
many specific examples—is the great
strength of deep neural networks.
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These networks, whose multiple layers
learn relevant features at increasingly
higher levels of abstraction, are cur-
rently the best available way to mea-
sure similarities between situations,
Abbeel explains.

The two types of learning—rein-
forcement learning and deep learning
through deep neural networks—com-
plement each other beautifully, says
Sutton. “Deep learning is the greatest
thing since sliced bread, but it quickly
becomes limited by the data,” he ex-
plains. “If we can use reinforcement
learning to automatically generate
data, even if the data is more weakly
labeled than having humans go in and
label everything, there can be much
more of it because we can generate it
automatically, so these two together

really fit well.”
Despite the buzz around DeepMind,
combining reinforcement learning

with neural networks is not new. TD-
Gammon, a backgammon-playing pro-
gram developed by IBM’s Gerald Tes-
auro in 1992, was a neural network that
learned to play backgammon through
reinforcement learning (the TD in the
name stands for Temporal-Difference
learning, still a dominant algorithm in
reinforcement learning). “Back then,
computers were 10,000 times slower
per dollar, which meant you couldn’t
have very deep networks because
those are harder to train,” says Jiirgen
Schmidhuber, a professor of artificial
intelligence at the University of Lu-
gano in Switzerland who is known for
seminal contributions to both neural
networks and reinforcement learning.
“Deep reinforcement learning is just
a buzzword for traditional reinforce-
ment learning combined with deeper
neural networks,” he says.
Schmidhuber also notes the tech-
nique’s successes, though impressive,
have so far been in narrow domains,
in which the current input (such as
the board position in Go or the current
screen in Atari) tells you everything you
need to know to guide your next move.
However, this “Markov property” does
not normally hold outside of the world
of games. “In the real world, you see
just a tiny fraction of the world through
your sensors,” Schmidhuber points out,
speaking of both robots and humans.
As humans, we complement our lim-
ited perceptions through selective
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memories of past observations; we
also draw on decades of experience to
combine existing knowledge and skills
to solve new problems. “Our current
reinforcement learners can do this in
principle, but humans still do it much
better,” he says.

Researchers continue to push rein-
forcement learners’ capabilities, and are
already finding practical applications.

“Part of intelligence is knowing
what to remember,” says University
of Michigan reinforcement learning
expert Satinder Singh, who has used
the world-building game Minecraft to
test how machines can choose which
details in their environment to look
at, and how they can use those stored
memories to behave better.

Singh and two colleagues recently
co-founded Cogitai, a software com-
pany that aims to use deep reinforce-
ment learning to “build machines
that can learn from experience the way
humans can learn from experience,”
Singh says. For example, devices like
thermostats and refrigerators that
are connected through the Internet of
Things could continually get smarter
and smarter by learning not only from

their own past experiences, but also
from the aggregate experiences of oth-
er connected devices, and as a result
become increasingly better at taking
the right action at the right time.

Osaro, Arel’s software startup, also
uses deep reinforcement learning, but
promises to eliminate the costly ini-
tial part of the learning curve. For ex-
ample, a computer learning to play the
Atari game Pong from scratch starts
out completely clueless, and therefore
requires tens of thousands of plays to
become proficient—whereas humans’
experience with the physics of balls
bouncing off walls and paddles makes
Pong intuitive even to children.

“Deep reinforcement learning is a
promising framework, but applying it
from scratch is a bit problematic for re-
al-world problems,” Arel says. A factory
assembling smartphones, for example,
requires its robotic manufacturing
equipment to get up to speed on a new
design within days, not months. Osa-
ro’s solution is to show the learning
agent what good performance looks
like “so it gets a starting point far better
than cluelessness,” enabling the agent
to rapidly improve its performance.

Even modest amounts of demon-
stration, Arel says, “give the agent a
head start to make it practical to apply
these ideas to robotics and other do-
mains where acquiring experience is
prohibitively expensive.”
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Milestones

Computer Science Awards, Appointments

NEWEST AMERICAN
ACADEMY MEMBERS
INCLUDE SIX COMPUTER
SCIENTISTS
Among the 176 new Fellows
recently elected to the American
Academy of Arts and Scientists are
six in the computer science arena:

> Jeffrey A. Dean, Google. A
Google Senior Fellow, Dean is a
Fellow of ACM, and shared the
ACM-Infosys Foundation Award
for 2012 with Sanjay Ghemawat.

» Sanjay Ghemawat, Google.
A research scientist who works
with MapReduce and other large
distributed systems, Ghemawat
is also the author of the popular
calendar application iCal, and
with Dean, wrote the 2004 paper
“MapReduce: Simplified Data
Processing on Large Clusters.”

> Anna R. Karlin, University
of Washington. The Microsoft
Professor of Computer Science
& Engineering at the University
of Washington, Karlin, an
ACM Fellow since 2012, writes
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about the use of randomized
packet markings to perform IP
traceback, competitive analysis of
multiprocessor cache coherence
algorithms, unified algorithms
for simultaneously managing all
levels of the memory hierarchy,
Web proxy servers, and hash
tables with constant worst-case
lookup time.

» Tom M. Mitchell, Carnegie
Mellon University (CMU).

Chair of the Machine Learning
Department at CMU and E.
Fredkin University Professor,
Mitchell has contributed to
the advancement of machine
learning, artificial intelligence,
and cognitive neuroscience.

» Tal D. Rabin, IBM T.J.
Watson Research Center. Head of
the cryptography research group
at theWatson Research Center,
Rabin’s research focuses on
the design of efficient, secure
encryption algorithms, as well
as secure distributed algorithms,
the theoretical foundations of
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cryptography, number theory,
and the theory of algorithms and
distributed systems.

> Scott J. Shenker, University
of California, Berkeley. Leader of
the Initiatives Group and Chief
Scientist of the International
Computer Institute, Shenker
received the 2002 SIGCOMM for
lifetime contribution to the field
of communication networks
“For contributions towards
an understanding of resource
sharing on the Internet.” He has
been an ACM Fellow since 2003.

SCHNEIDER RECEIVES CRA
SERVICE AWARD
The Computing Research
Association (CRA) has named
Fred Schneider, Samuel B. Eckert
Professor and Chair of Computer
Science at Cornell University,
recipient of the Service to CRA
Award for his ongoing work with
the organization.

A member of the CRA

Board from 2007 to 2016,
Schneider served as chair of
the organization’s Government
Affairs Committee for seven
years, helping to drive CRA’s
policy agenda, and developing
the Leadership in Science Policy
Institute to educate computing
researchers on how science
policy in the U.S. is formulated.
Schneider led the
organization’s Committee
on Best Practices for Hiring,
Promotion, and Scholarship in
conducting interviews with more
than 75 academic and industry
computing and information
unit heads to understand issues
and gain insights from practice.
Preliminary recommendations
were vetted with department
chairs and CRA Deans at the CRA
Conference at Snowbird in 2014,
and were published in a CRA Best
Practices memo, “Incentivizing
Quality and Impact: Evaluating
Scholarship in Hiring, Tenure,
and Promotion.”





