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Reinforcement 
Renaissance
The power of deep neural networks has sparked renewed  
interest in reinforcement learning, with applications to games, 
robotics, and beyond.

“Reinforcement learning is a mod-
el of learning where you’re not given 
a solution—you have to discover it by 
trial and error,” explains Sridhar Ma-
hadevan, a professor at the University 
of Massachusetts Amherst, a long-
time center of research into reinforce-
ment learning. 

E
ACH TIM E  D EEPMIND  has an-
nounced an amazing accom-
plishment in game-playing 
computers in recent months, 
people have taken notice. 

First, the Google-owned, London-
based artificial intelligence (AI) re-
search center wowed the world with 
a computer program that had taught 
itself to play nearly 50 different 1980s-
era Atari games—from Pong and 
Breakout to Pac-Man, Space Invaders, 
Boxing, and more—using as input 
nothing but pixel positions and game 
scores, performing at or above the hu-
man level in more than half these var-
ied games. Then, this January, Deep-
Mind researchers impressed experts 
with a feat in the realm of strategy 
games: AlphaGo, their Go-playing pro-
gram, beat the European champion in 
the ancient board game, which poses a 
much tougher AI challenge than chess. 
Less than two months later, AlphaGo 
scored an even greater victory: it won 4 
games in a best-of-5 series against the 
best Go player in the world, surprising 
the champion himself.

The idea that a computer can learn 
to play such complex games from 
scratch and achieve a proficient level 

elicits gee-whiz reactions from the 
general public, and DeepMind’s tri-
umphs have heightened academic 
and commercial interest in the AI 
field behind DeepMind’s methods: 
a blend of deep neural networks and 
reinforcement learning called “deep 
reinforcement learning.” 

http://dx.doi.org/10.1145/2949662
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I think is at the core of intelligence,” 
says computer scientist Itamar Arel, a 
professor of electrical engineering and 
computer sciences at the University of 
Tennessee and CEO of Osaro, a San 
Francisco-based AI startup. “If some-
thing good happens now, can I think 
back to the last n steps and figure out 
what I did that led to the positive or 
negative outcome?”

Just as for human players, figuring 
out smart moves enables the program 
to repeat that move the next time it 
faces the same situation—or to try a 
new, possibly better move in hope of 
stumbling into an even higher reward. 
In extremely small worlds (think of a 
simple game like Tic-Tac-Toe, also 
known as Noughts and Crosses), the 
same exact situations come up again 
and again, so the learning agent can 
store the best action for every possible 
situation in a lookup table. In complex 
games like chess and Go, however, it is 
impossible to enumerate all possible 
situations. Even checkers has so much 
branching and depth that the game 
yields a mind-boggling number of 
different positions. So imagine what 
happens when you move from games 
to real-world interactions. 

“You’re never going to see the same 
situation a second time in the real 
world,” says Abbeel, “so instead of a 
table, you need something that under-
stands when situations are similar to 
situations you’ve seen before.” This is 
where deep learning comes in, because 
understanding similarity—being 
able to extract general features from 
many specific examples—is the great 
strength of deep neural networks. 

These networks, whose multiple layers 
learn relevant features at increasingly 
higher levels of abstraction, are cur-
rently the best available way to mea-
sure similarities between situations, 
Abbeel explains. 

The two types of learning—rein-
forcement learning and deep learning 
through deep neural networks—com-
plement each other beautifully, says 
Sutton. “Deep learning is the greatest 
thing since sliced bread, but it quickly 
becomes limited by the data,” he ex-
plains. “If we can use reinforcement 
learning to automatically generate 
data, even if the data is more weakly 
labeled than having humans go in and 
label everything, there can be much 
more of it because we can generate it 
automatically, so these two together 
really fit well.”

Despite the buzz around DeepMind, 
combining reinforcement learning 
with neural networks is not new. TD-
Gammon, a backgammon-playing pro-
gram developed by IBM’s Gerald Tes-
auro in 1992, was a neural network that 
learned to play backgammon through 
reinforcement learning (the TD in the 
name stands for Temporal-Difference 
learning, still a dominant algorithm in 
reinforcement learning). “Back then, 
computers were 10,000 times slower 
per dollar, which meant you couldn’t 
have very deep networks because 
those are harder to train,” says Jürgen 
Schmidhuber, a professor of artificial 
intelligence at the University of Lu-
gano in Switzerland who is known for 
seminal contributions to both neural 
networks and reinforcement learning. 
“Deep reinforcement learning is just 
a buzzword for traditional reinforce-
ment learning combined with deeper 
neural networks,” he says.

Schmidhuber also notes the tech-
nique’s successes, though impressive, 
have so far been in narrow domains, 
in which the current input (such as 
the board position in Go or the current 
screen in Atari) tells you everything you 
need to know to guide your next move. 
However, this “Markov property” does 
not normally hold outside of the world 
of games. “In the real world, you see 
just a tiny fraction of the world through 
your sensors,” Schmidhuber points out, 
speaking of both robots and humans. 
As humans, we complement our lim-
ited perceptions through selective 

The clearest contrast is with super-
vised learning, the kind used to train 
image recognition software, in which 
the supervision comes in the form 
of labeled examples (and requires 
people to label them). Reinforcement 
learning, on the other hand, “is a way 
of not needing labels, or labeling au-
tomatically by who’s winning or los-
ing—by the rewards,” explains Uni-
versity of Alberta computer scientist 
Rich Sutton, a co-founder of the field 
of reinforcement learning and co-au-
thor of the standard textbook on the 
subject. In reinforcement learning, 
the better your moves are, the more 
rewards you get, “so you can learn to 
play the Go game by playing the moves 
and winning or losing, and no one has 
to tell you if that was a good move or a 
bad move because you can figure it out 
for yourself; it led to a win, so it was a 
good move.”

Sutton knows the process is not 
as simple as that. Even in the neat, 
tightly controlled world of a game, 
deducing which moves lead to a win 
is a notoriously difficult problem be-
cause of the delay between an action 
and its reward, a key feature of rein-
forcement learning. In many games, 
you receive no feedback at all until the 
end of the game, such as a 1 for a win 
or a –1 for a loss. 

“Typically, you have to go through 
hundreds of actions before your score 
increases,” explains Pieter Abbeel, an 
associate professor at the University 
of California, Berkeley, who applies 
deep reinforcement learning to robot-
ics. (For a robot, a reward comes for 
completing a task, such as correctly as-
sembling two Lego pieces.) “Before you 
understand how the game works, and 
are learning through your own trial and 
error,” Abbeel says, “you just kind of do 
things, and every now and then your 
score goes up, and every now and then 
it goes down, or doesn’t go up. How do 
you tease apart which subset of things 
that you did contributed to your score 
going up, and which subset was just 
kind of a waste of time?” 

This thorny question—known as the 
credit assignment problem—remains 
a major challenge in reinforcement 
learning. “Reinforcement learning is 
unique in that it’s the only machine 
learning field that’s focused on solving 
the credit assignment problem, which 

Despite the buzz 
around DeepMind, 
combining 
reinforcement 
learning with  
neural networks  
is not new.
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their own past experiences, but also 
from the aggregate experiences of oth-
er connected devices, and as a result 
become increasingly better at taking 
the right action at the right time. 

Osaro, Arel’s software startup, also 
uses deep reinforcement learning, but 
promises to eliminate the costly ini-
tial part of the learning curve. For ex-
ample, a computer learning to play the 
Atari game Pong from scratch starts 
out completely clueless, and therefore 
requires tens of thousands of plays to 
become proficient—whereas humans’ 
experience with the physics of balls 
bouncing off walls and paddles makes 
Pong intuitive even to children. 

“Deep reinforcement learning is a 
promising framework, but applying it 
from scratch is a bit problematic for re-
al-world problems,” Arel says. A factory 
assembling smartphones, for example, 
requires its robotic manufacturing 
equipment to get up to speed on a new 
design within days, not months. Osa-
ro’s solution is to show the learning 
agent what good performance looks 
like “so it gets a starting point far better 
than cluelessness,” enabling the agent 
to rapidly improve its performance. 

Even modest amounts of demon-
stration, Arel says, “give the agent a 
head start to make it practical to apply 
these ideas to robotics and other do-
mains where acquiring experience is 
prohibitively expensive.”	
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memories of past observations; we 
also draw on decades of experience to 
combine existing knowledge and skills 
to solve new problems. “Our current 
reinforcement learners can do this in 
principle, but humans still do it much 
better,” he says.

Researchers continue to push rein-
forcement learners’ capabilities, and are 
already finding practical applications. 

“Part of intelligence is knowing 
what to remember,” says University 
of Michigan reinforcement learning 
expert Satinder Singh, who has used 
the world-building game Minecraft to 
test how machines can choose which 
details in their environment to look 
at, and how they can use those stored 
memories to behave better. 

Singh and two colleagues recently 
co-founded Cogitai, a software com-
pany that aims to use deep reinforce-
ment learning to “build machines 
that can learn from experience the way 
humans can learn from experience,” 
Singh says. For example, devices like 
thermostats and refrigerators that 
are connected through the Internet of 
Things could continually get smarter 
and smarter by learning not only from 

NEWEST AMERICAN 
ACADEMY MEMBERS 
INCLUDE SIX COMPUTER 
SCIENTISTS
Among the 176 new Fellows 
recently elected to the American 
Academy of Arts and Scientists are 
six in the computer science arena: 

˲˲ Jeffrey A. Dean, Google. A 
Google Senior Fellow, Dean is a 
Fellow of ACM, and shared the 
ACM-Infosys Foundation Award 
for 2012 with Sanjay Ghemawat.

˲˲ Sanjay Ghemawat, Google. 
A research scientist who works 
with MapReduce and other large 
distributed systems, Ghemawat 
is also the author of the popular 
calendar application iCal, and 
with Dean, wrote the 2004 paper 
“MapReduce: Simplified Data 
Processing on Large Clusters.” 

˲˲ Anna R. Karlin, University 
of Washington. The Microsoft 
Professor of Computer Science 
& Engineering at the University 
of Washington, Karlin, an 
ACM Fellow since 2012, writes 

about the use of randomized 
packet markings to perform IP 
traceback, competitive analysis of 
multiprocessor cache coherence 
algorithms, unified algorithms 
for simultaneously managing all 
levels of the memory hierarchy, 
Web proxy servers, and hash 
tables with constant worst-case 
lookup time.

˲˲ Tom M. Mitchell, Carnegie 
Mellon University (CMU). 
Chair of the Machine Learning 
Department at CMU and E. 
Fredkin University Professor, 
Mitchell has contributed to 
the advancement of machine 
learning, artificial intelligence, 
and cognitive neuroscience.

˲˲ Tal D. Rabin, IBM T.J. 
Watson Research Center. Head of 
the cryptography research group 
at theWatson Research Center, 
Rabin’s research focuses on 
the design of efficient, secure 
encryption algorithms, as well 
as secure distributed algorithms, 
the theoretical foundations of 

cryptography, number theory, 
and the theory of algorithms and 
distributed systems.

˲˲ Scott J. Shenker, University 
of California, Berkeley. Leader of 
the Initiatives Group and Chief 
Scientist of the International 
Computer Institute, Shenker 
received the 2002 SIGCOMM for 
lifetime contribution to the field 
of communication networks 
“For contributions towards 
an understanding of resource 
sharing on the Internet.” He has 
been an ACM Fellow since 2003. 

SCHNEIDER RECEIVES CRA 
SERVICE AWARD 
The Computing Research 
Association (CRA) has named 
Fred Schneider, Samuel B. Eckert 
Professor and Chair of Computer 
Science at Cornell University, 
recipient of the Service to CRA 
Award for his ongoing work with 
the organization. 

A member of the CRA 

Board from 2007 to 2016, 
Schneider served as chair of 
the organization’s Government 
Affairs Committee for seven 
years, helping to drive CRA’s 
policy agenda, and developing 
the Leadership in Science Policy 
Institute to educate computing 
researchers on how science 
policy in the U.S. is formulated. 

Schneider led the 
organization’s Committee 
on Best Practices for Hiring, 
Promotion, and Scholarship in 
conducting interviews with more 
than 75 academic and industry 
computing and information 
unit heads to understand issues 
and gain insights from practice. 
Preliminary recommendations 
were vetted with department 
chairs and CRA Deans at the CRA 
Conference at Snowbird in 2014, 
and were published in a CRA Best 
Practices memo, “Incentivizing 
Quality and Impact: Evaluating 
Scholarship in Hiring, Tenure, 
and Promotion.”
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