Intelligent Agents

Paper Exercise: Coalitions and Group Decisions **Ungraded**

Question 1: Consider the following characteristic function for coalitions of four agents A, B, C and D:

А	1	AB	3	BD	4	ACD	6
В	1	AC	4	CD	4	BCD	6
С	2	AD	4	ABC	6	ABCD	8
D	1	ВС	3	ABD	7		

Figure 1: Game in characteristic function form.

Is this game superadditive? If not, what set of coalitions would be a counterexample?

Is the grand coalition (ABCD) the best coalition structure? If not, what is the best coalition structure?

Question 2: In the game of Figure 1, suppose that the payoff of the grand coalition is changed from 8 to 9. Is the game superadditive?

Is the game convex? If not, what set of coalitions would be a counterexample?

What is the Shapley value of each agent in the coalition (ABD)?

Is this payoff distribution in the core?

For the following questions, consider the following voter preferences:

No. of voters	1 st choice	2 nd choice	3 rd choice
20	А	С	В
18	В	С	А
5	С	В	Α

Question 3:

Is there a Condorcet winner?
Who wins in plurality voting?
Who wins if alternative B is removed?
Who wins if alternative C is removed?
Who wins using plurality voting with elimination?
Who wins using Borda counts?

Question 4: How many voters would have to change to that C would win in plurality voting?

Question 5: What manipulation will make candidate B win in plurality voting?

Question 6: Compute the Slater ranking for this example! How many voters would need to change to manipulate it?