Deliberative Agent:
Model Solution

By Shaobo Cui

1. State Definition
* How to define a unique state?

2. BFS Algorithm
* Generate its following children node(state).
* PickUp children and Delivery children

3. A* Algorithm

e Definition of heuristic function

1. State Definition

* How to define a unique state?

State Definition

public State (City currentCity, TaskSet carriedTasks, TaskSet availableTasks, int currentVehicleCapacity) {

this.currentCity = currentCity;

this.carriedTasks = carriedTasks;

this.availableTasks = availableTasks;
this.currentVehicleCapacity = currentVehicleCapacity;
this.actionsToReach = new LinkedList<Action>();
this.costToReach = 0;

Vehicle’s current \

-) Vehicle’s environment
situation

INENEERENS

Current City

Carried Tasks

Shared by all the
vehicles

Current Vehicle
Capacity

Vehicle’s previous
actions/cost

Actions to reach
this situation

Actions to reach
this situation

=~

I’,
-

R

e e o e

State Definition

Vehicle’s current
situation

Current City

Vehicle is In
which city?

Carried Tasks

Current Vehicle
Capacity

Carried task?

Vehicle’s environment

How much
capacity left?

INEIEERENS

Shared by all the

vehicles

Available tasks

State Definition: Previous Actions/Costs

...
ffff
N,

Vehicle’s previous
actions/cost
Actions to reach * Keep record of agent’s action to reach to this node,
this situation including its costs to this state.

Costs to reach
this situation

- ==
~ -
N e e o e e

public State (City currentCity, TaskSet carriedTasks, TaskSet availableTasks, int currentVehicleCapacity) {
this.currentCity = currentCity;
this.carriedTasks = carriedTasks;
this.availableTasks = availableTasks;
this.currentVehicleCapacity = currentVehicleCapacity;
this.actionsToReach = new LinkedList<Action>();
this.costToReach = 0;

2. BFS Algorithm
* Generate its following children node(state).

* PickUp children and Delivery children

Breadth First Search Algorithm
Think why there we use a HashMap<State, Double>

public static Plan bfsPlan(Vehicle vehicle, TaskSet available, State initialState) {

Queue<State> Q = new LinkedList<~>();
L[l To store the coct for ooch node T we come hock to the same node, we will check this to see if we found a better path.

HashMap<State, Double> history = new HashMap<~>();
ArrayList<State> finalStates = new ArraylList<~>();

Q.add(initialState);
while (!Q.isEmpty()) {
State node = Q.remove(); // Pop the state with the least cost
// Check whether the state is a final one. In that case we return the plan

if (node.isFinal())
finalStates.add(node);

Advantages:

@ Always finds the shortest plan.

@ Not penalized by bad initial decisions.
Disadvantage:

@ Requires large amounts of memory to store all nodes of the
tree at each level.

Breadth First Search Algorithm

* If this is the first time to be visited: put it in history.
* If this node’s cost is smaller than before, replace the with the original state.

// We add the note and its children if

// 1) this is the first time it is visited or

// 2) the cost has decreased

if (!'history.containsKey(node) || (node.getCostToReach() < history.getOrDefault(node, Double.MAX_VALUE))) {
history.put(node, node.getCostToReach());
Q.addAll(node.generateChildren());

} If the state is update (either
i/ Return the optimal state added first time or updated

// we can have reached the final states multiple times. We keep the best path. due to the m|n|mum COSt
State optimalState = Collections.min(finalStates);

return new Plan(vehicle.getCurrentCity(), optimalState.getActionsToReach()); ChangES), update itSEIf
and its children.

Generate Its Children Node(State)

1.generateDeliveryChildren():deliver one of its carried tasks

* Firstly, the agent should firstly move to the delivery city of the task.
* Then deliver the task and update its capability.

* Get the cost of children state node.
2.generatePickUpChildren():pick up one of available tasks.

* Firstly, the agent should move to the city of the task.
* Then pick up the task and update its capability.

e Get the cost of children state node.

Generate Its Children Node(State)

public LinkedList<State> generateChildren(){
LinkedList<State> children = this.generateDeliveryChildren();
children.addAll1(this.generatePickUpChildren());
return children;

Delivery Children State: deliver one of its carried tasks

for (Task task: this.getCarriedTasks()) ﬂ
// We do a deep copy
TaskSet childCarriedTasks = this.getCarriedTasks().clone();
childCarriedTasks.remove(task);
TaskSet childAvailableTasks = this.getAvailableTasks().clone();

// Create the state

State child = new State (
task.deliveryCity,
childCarriedTasks,

childAvailableTasks,
currentVehicleCapacity: this.getCurrentVehicleCapacity() + task.weight);

Delivery Children State: deliver one of its carried tasks

// We add the action move to every city in the path
LinkedList<Action> branchActions = new LinkedList<~>(this.getActionsToReach());

for (City city: currentCity.pathTo(task.deliveryCity)) {
branchActions.add(new Action.Move(city));

} 1. Move to the delivery cit
// And finally, the delivery action

branchActions.add(new Action.Delivery(task));
child.setActionsToReach(branchActions); N 2. Deliver the task.

// Compute the distance

double branchCost = currentCity.distanceTo(task.deliveryCity);
child.setCostToReach(this.getCostToReach()+branchCost); 3. Compute the

cost (distance) of
this new state.

children.add(child);

Pickup Children State: PickUp One of Available Tasks

for (Task task: this.getAvailableTasks()) ﬂ
if (this.getCurrentVehicleCapacity() >= task.weight) A{
TaskSet childCarriedTasks = this.getCarriedTasks().clone();
childCarriedTasks.add(task);
TaskSet childAvailableTasks = this.getAvailableTasks().clone();
childAvailableTasks.remove(task);

State child = new State (
task.pickupCity,
childCarriedTasks,
childAvailableTasks,

currentVehicleCapacity: this.getCurrentVehicleCapacity() - task.weight);

Pickup Children State: PickUp one of Available Tasks

1. Move to the

F)I(:L(LJF) (:rt\/- LinkedList<Action> branchActions = new LinkedList<~>(this.getActionsToReach());
for(City city : currentCity.pathTo(task.pickupCity)) {

branchActions.add(new Action.Move(city));
}

branchActions.add(new Action.Pickup(task));

2 . P I C ku p t h e ta S k . child.setActionsToReach(branchActions);

double branchCost = currentCity.distanceTo(task.pickupCity);
child.setCostToReach(this.getCostToReach()+branchCost);

children.add(child);

3. Compute the }
cost(distance) of this
new state.

3. A* Algorithm

e Definition of heuristic function

A* Algorithm

In PriorityQueue, elements are retrieved in sorted order.

public static class StateComparator implements Comparator<State> {
@verride
public int compare(State s1, State s2) { return (int) |(sl.getCostFunctionValue() - s2.getCostFunctionValuve()); }

public static Plan aStarPlan(Vehicle vehicle, TaskSet available, State initialState) {
// Efficient data-structure to get cities that have the lowest score
PriorityQueue<State> Q = new PriorityQueuve<~>(new StateComparator());
// To store the cost for each node. If we come back to the same node, we will check this to see if we found a better path.
HashMap<State, Double> history = new HashMap<~>();

Q.add(initialState);

A* Algorithm

Always pop out the state with the least cost.
But how to estimate the cost of State?

while (!Q.isEmpty()) {
State node = Q.remove(); // Pop the state with the least cost

// Check whether the state is a final one. In that case we return the plan
if (node.isFinal()) {
return new Plan(vehicle.getCurrentCity(), node.getActionsToReach());

// We add the note and its children if 1) this 1is the first time it is visited or 2) the cost has decreased
if ('history.containsKey(node) || (node.getCostToReach() < history.getOrDefault(node, Double.MAX_VALUE))) A
history.put(node, node.getCostToReach());
Q.addA1ll(node.generateChildren());

return null; // We should never reach this step

A* Algorithm: Cost Function Estimation

public double getCostFunctionValue () {
return this.getCostToReach() + this.getHeuristicValue();

}

f(n) =gn)+ h(n) ,
But how to get heuristic value of state.

There are many possible ways as long as the heuristic
value is the underestimate of the true value.

A* Algorithm: Cost Function Estimation

1. Get all the cities that the agents have to visit.
2. Get all the cities that the agents already visited.

3. Two loops to iterate through all visited ones.

a. For a ToVisitCity, we suppose that we could always locate in this city’s nearest visited
neighbors.
b. Get this minimum value

c. Add this ToVisitCity from ToVisitCity set to the VisitedCity set.

This is an obvious underestimate as we can’t always ensure that
we can reach to the ToVisitCity from its nearest neighbor. In other
words, the current city is not always the nearest neighbor.

A* Algorithm: Cost Function Estimation

public double getHeuristicValue () {
double minCostBetweenCities = 0;
Set<City> citiesVisited = new HashSet<~>();

Set<City> citiesToVisit = new HashSet<~>(); ¢ The ﬁnal state iS that
et ot the eiriee thee e it it the citiesToVisit

for (Task task: this.getCarriedTasks()) set iS empty
citiesToVisit.add(task.deliveryCity);

for (Task task: this.getAvailableTasks()) {
citiesToVisit.add(task.pickupCity);
citiesToVisit.add(task.deliveryCity);

e Build the citiesToVisit and
citiesVisited set.

/ /J 7] . . . 1
~ "nomnvo 21112l ~linron ™~ !]
// L.‘ e remove o0oul current c1tTy

| How to estimate the
citiesToVisit.remove(this.getCurrentCity()); ° °
citiesVisited.add(this.getCurrentCity()); h e u rl Stlc Va I u e ?

A* Algorithm: Cost Function Estimation

// Go through all cities to compute the heuristic
while (!'citiesToVisit.isEmpty()) {

double minDistance = Double.MAX_VALUE;

City closestCity = null;

yd ~
f for (City cityVisited: citiesVisited) { ‘\
for (City cityToVisit: citiesToVisit) { . .
|
. double distance = cityVisited.distanceTo(cityToVisit); ' Iterate tWO |OOpS tO Obtaln
I s . L
. if (distance < minDistance) { ! the shortest way to reach
| minDistance = distance; ; . .
; closestCity = cityToVisit; . tO Certa|n C|ty-
) } l
: : !
} .
\’ /7
S e o EE D S S P S P S P B § O EEE O EEE F EES § EEE § EE N e N EEe § Em N [
citiesToVisit.remove(closestCity);
citiesVisited.add(closestCity);
minCostBetweenCities += minDistance;
}

return minCostBetweenCities;

Thanks!

