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Although Productive Failure has shown to be effective (Kapur, 2016; Loibl, Roll, & Rummel, 2017), it is not clear
if failure in problem-solving is necessary. Initial work in a quasi-experimental setting suggests that explicitly
designing for experiences of failure leads to better learning outcomes than designing for success. We build on this
to report on a controlled experimental study where students are exposed to failure-driven, success-driven, or no
explicit scaffolding in problem-solving prior to instruction. For assessments of non-isomorphic conceptual un-
derstanding, our results align with those from prior work. Despite the similarity in posttest scores, students
exposed to failure-driven scaffolding demonstrate higher quality of constructive reasoning than those receiving
success-driven scaffolding. Additionally, our study reveals learning benefits of failure-driven scaffolding (for both
posttest scores and reasoning quality) on assessments of transfer. Several cognitive, affective and meta-cognitive
mechanisms are investigated to explain robust learning benefits of failure-driven scaffolding in preparatory

problem-solving.

1. Introduction

Problem-solving followed by instruction (PS-I) comprises an initial
generative problem-solving phase requiring students to generate mul-
tiple solutions to a problem. A formal instruction phase subsequently
introduces targeted concepts and the canonical solution. PS-I learning
designs activate students’ prior knowledge, raise awareness of knowl-
edge gaps, and aid in recognition of deep problem features (Loibl et al.,
2017). These preparatory benefits have been posited to account for the
relative efficacy of PS-I over instruction-first approaches, as evidenced
by effect sizes favoring PS-I in a recent meta-analysis of the field
(Hedge’s g 0.36 [95% CI 0.20, 0.51], N = 166 comparisons) by Sinha &
Kapur (2021a). Given such a robust trend of the superiority of PS-I de-
signs across diverse learning domains and student populations, research
into improving its effectiveness has intensified.

One such approach is to explicitly scaffold the initial problem-phase,
typically towards success, by providing cognitive or metacognitive
support (Holmes, Day, Park, Bonn, & Roll, 2014; Kapur, 2011; Loibl &
Rummel, 2014a). However, meta-analytic evidence from Sinha & Kapur
(2021b) suggests that relative to an unscaffolded PS-I design, such
scaffolding attempts have largely been unsuccessful (Hedge’s g = —0.08,
95% CI [-0.20, 0.04], N = 60 comparisons). An alternative approach to

improve the effectiveness of preparatory problem-solving is explicit
failure-driven scaffolding. To our knowledge, only one recent study has
shown that nudging students towards suboptimal solutions via explicit
failure-driven scaffolds may lead to stronger conceptual understanding
than nudging students towards optimal solutions via explicit
success-driven scaffolds (Sinha et al., 2020). However, this was a
classroom-based study and not a fully controlled experiment.

Further, to the best of our knowledge, there is no research within PS-I
comparing explicit failure-driven scaffolding to unscaffolded prepara-
tory problem-solving. PS-I designs are usually aimed at introducing new
concepts to novices in a domain. Therefore, they typically have high
failure-rates even without any failure-scaffolding. This naturally leads to
the question of whether there is an added efficacy of explicit scaffolding
prior to instruction. Before emphasizing the design of explicit failure-
driven experiences prior to formal instruction, thorough testing and
replication in more controlled environments with similar student de-
mographics and task domains is needed. That is precisely the aim of our
study.

2. Theoretical background

We focus on differential preparatory effects of failure-driven and
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success-driven scaffolding within PS-I. To better situate our experi-
mental replication context, we start by describing the role of scaffolding
in PS-I (cf. section 2.1), cognitive and affective mechanisms that can be
posited to be triggered in scaffolded PS-I (cf. section 2.2), and finally
individual differences in student characteristics that may affect learning
from scaffolded PS-I (cf. section 2.3). At a theoretical level, we are
interested in the extent to which learning mechanisms are differentially
triggered in scaffolded PS-1. At a more practical level, we are interested
in the generalizability of the impact of failure and success-driven scaf-
folding to our study context (data science education) and targeted
population (postgraduates).

2.1. Preparatory problem-solving and scaffolding

To combine strengths and mitigate drawbacks of engaging students
in standalone problem-solving or lecture, prior research (Kapur & Bie-
laczyc, 2012; Loibl et al., 2017; Schwartz & Martin, 2004) has proposed
the PS-I design that implicates a temporal ordering between these two
learning activities. Scaffolding, or administering just-in-time support to
allow students to make meaningful progress in a problem-solving task
(Wood, Bruner, & Ross, 1976), is one way to facilitate learning through
preparatory problem-solving without shrinking the problem-space
upfront (Hmelo-Silver, Duncan, & Chinn, 2007; Quintana et al.,
2004). There has been a longstanding debate on whether scaffolded
problem-solving should lean towards being more success-driven or
failure-driven (Kapur, 2016; Lee & Anderson, 2013).

Scaffolding towards success is likely to result in high performance, as
one might expect when working with the suggested correct procedure. A
straightforward implication is that non-promising solution pathways
can be curtailed early, as students focus on improvement and making
things work. However, it is also plausible that students’ focus on high
performance insufficiently challenges prior knowledge, bypasses inquiry
points, and comes at the expense of depth of understanding of under-
lying domain principles (Kapur, 2016; Soderstrom & Bjork, 2015).
Hidslugh performance does not guarantee that students are aware of the
inconsistency between what solution approach works in a given context
and the extent to which it generalizes to future contexts (Schwartz,
Chase, & Bransford, 2012).

Scaffolding towards failure, on the other hand, is likely to result in an
initial dip in performance, as one might expect when working with the
suggested incorrect procedure. Repeated failures can also be penalizing,
in that they can increase self-doubt and stability of future failure ex-
pectancies leading to the absence of control (Mikulincer, 1994). Expe-
riencing failures might make students more susceptible to negative
affective reactions (Tulis & Ainley, 2011) and increase stickiness to
self-generated suboptimal solutions (Johnson & Seifert, 1994). Howev-
er, numerous theoretical lenses also speak to the importance of failure in
problem-solving (see Kapur (2016) and Metcalfe (2017) for reviews).
One common thread tying these frameworks is the predication that
failures initiate explanation and reflection processes to make sense of
something that is not immediately apparent. By maximizing information
gained from each problem-solving failure, the route to discovery can be
made tractable. Echoing this philosophy, Hammer (2000, p. 58) has
remarked that “wrong thinking should be seen as productive if it helps
develop resources for right thinking later on”. Negative knowledge
(Gartmeier, Bauer, Gruber, & Heid, 2008), or the knowledge of what is
not part of a concept and what procedure does not work and why,
resulting from deliberately-designed failure experiences might enhance
reflection quality. Even if students can activate partial knowledge of
what does not work and why during preparatory problem-solving, it
might still serve as a strong foundation to acquire robust knowledge
when exposed to instruction later.

The incommensurability between initial training performance (as
assessed during the preparatory problem-solving phase of PS-I) and
delayed testing performance (as assessed via posttest following the in-
struction phase of PS-I), an argument advanced by Kapur (2016), is of
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prime interest for the current article. Although on one hand, “substantial
learning could occur in the absence of any discernible changes in per-
formance ... more recent research ... have demonstrated the converse to
also be true - specifically, that changes in short-term performance often
bear no relationship to long-term learning” (Soderstrom & Bjork, 2015,
p- 193). By tapping into multiple performance measures throughout our
PS-I design, we evaluate the differential impact of scaffolding towards
success and failure on training and testing phases.

2.2. Mechanisms underlying preparatory problem-solving

To open possible explanatory bases for why certain PS-I designs work
better than others, research syntheses by Kapur (2016) and Loibl et al.
(2017) have consolidated a set of cognitive mechanisms. These mech-
anisms include, but are not limited to.

1. Intentionally activating relevant prior knowledge (prior knowledge
activation)

2. Enhancing students’ awareness of the problem situation and own
knowledge gaps (knowledge gap awareness)

3. Focusing attention on the search for deeper patterns rather than
surface characteristics of the problem (deep feature recognition)

4. Inducing germane processing of information (Leppink, Paas, Van
Gog, van Der Vleuten, & Van Merrienboer, 2014) to resolve in-
congruity and uncertainty that is inherent in the problem-solving
process (cognitive load)

There is an equally important affective and motivational aspect
inherent in the design of PS-I. For instance, the initial problem-solving is
expected to facilitate students’ curiosity (Naylor, 1981) to learn targeted
concepts after spending time grappling with a novel problem. The
overall perceived affect (a collective term for describing feeling states
like emotions and moods) too plays an important role in regulating
cognition and behavior (Watson, Clark, & Tellegen, 1988). PS-I, in
particular, because of integrating variant-invariant features and con-
trasting cases in the problem design to create an affective hook, can be
expected to evoke positive affect in the form of surprise, interest and
confusion. These knowledge emotions associated with thinking and
comprehending (Silvia, 2009) motivate exploratory action that is
needed to keep generating multiple solutions.

On the other hand, moderate levels of negative affect in the form of
anger, disgust and contempt can also be posited to be prevalent in
preparatory problem-solving because of its deliberately designed ill-
structured nature (Sinha, 2021). As a hostility triad of emotions often
experienced together (Izard, 1977), appropriately appraising the
resulting negative evaluation of the task may encourage active behav-
iors to address problematic aspects and mollify the situation (Har-
mon-Jones, Price, Gable, & Peterson, 2014). Finally, with high expected
failure rates, students can also be expected to experience discomfort as
they endure an unpleasant task situation with no specific accuracy
feedback (cognitive dissonance) — this level of induced dissonance (Fes-
tinger, 1962; Levin, Harriott, Paul, Zhang, & Adams, 2013) might in turn
differentially affect problem-solving performance.

Prior PS-I research has empirically assessed the impact of these
mechanisms across different study contexts such as mathematics
(Likourezos & Kalyuga, 2017; Loibl & Rummel, 2014b; Newman &
DeCaro, 2019), physics (Glogger-Frey, Gaus, & Renkl, 2017; Lamnina &
Chase, 2019), medicine (Marei, Donkers, Al-Eraky, & Van Merrienboer,
2019) and data science (Sinha et al., 2020), primarily for high school
students and undergraduates. However, their impact altogether thus far
has not been examined within a single study context. We also do not
know the extent to which these mechanisms are triggered in scaffolded
PS-I contexts, in particular, in the presence of explicit scaffolding to-
wards failure (cf. section 4.3.2). Additionally, novel mechanisms perti-
nent to students’ metacognitive biases have not been explored within
PS-I yet.
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We posit that the highly generative nature of tasks within the initial
problem-solving phase calls on students’ metacognitive monitoring and
regulation (Ackerman & Thompson, 2017) to think about progress.
Students use this knowledge to adapt and make changes to their
problem-solving strategies. These metacognitive judgments, often based
on heuristic cues due to non-readily verifiable outcomes of solution
revision, may not always reliably reflect actual knowledge. Such biases
have been previously emphasized in the metacognitive literature (see
Bjork, Dunlosky, and Kornell (2013) and Roebers (2017) for reviews).
We are therefore also interested in investigating whether students’
calibration bias (Kruger & Dunning, 1999), that is, the gap between
performance evaluation and actual performance, could offer new in-
sights into the impact of metacognitive awareness on learning within
PS-I designs. Prior PS-I research (e.g., Loibl and Rummel (2014b) and
follow-up work) has often used questionnaires tapping into the over-
arching construct of global awareness of knowledge gaps (that is,
awareness without being able to identify which specific component is
lacking) as an explanatory basis for the efficacy of PS-I designs. How-
ever, no prior work has directly measured metacognitive biases in close
relation to problems solved during the preparatory phase and/or
posttest.

The interplay between the aforementioned cognitive, affective, and
meta-cognitive learning mechanisms can be posited to contribute to the
pedagogical usefulness of PS-I, in particular in preparing students to
learn, or facilitating their readiness to learn a targeted concept in follow
up instruction (Schwartz & Martin, 2004). Capturing information about
these mechanisms (via pre-planned measurements) is therefore critical
to making claims about the explanatory basis of PS-I. Here, we use
several such probes (cf. section 4.6.3) to explain why some scaffolded
problem-solving experiences work better or worse than others.

2.3. Individual differences in learning from success and failure

Factoring individual differences in learning from failure and success
(Clifford, 1984) is imperative in view of examining the spectrum of
students who might differentially respond to scaffolding opportunities
during problem-solving. Because a key preparatory goal in PS-I is to
activate relevant prior knowledge (Kapur & Bielaczyc, 2012; Loibl et al.,
2017), it is natural to account for domain-specific and task-specific prior
knowledge that students use to generate and revise solutions. When a
concept is not formally learned yet (e.g., in preparatory
problem-solving), the associated cognitive demands are higher
compared to problem-solving that is focused solely on the practice of
already learned materials (Kapur, 2014; Likourezos & Kalyuga, 2017;
Newman & DeCaro, 2019). This calls on students’ effort regulation to
steer through the task by exercising self-control and remaining focused
(Pintrich, 1991).

Further, two motivational characteristics, self-esteem (Harter, 2012;
von Soest, Wichstrom, & Kvalem, 2016) and goal orientation (Button,
Mathieu, & Zajac, 1996), shape whether students view failures as op-
portunities to learn (Dweck, 1992), and more generally, affect their
attributional style (Fielstein et al., 1985) towards failure and success
(positive events to stable, global and internal causes, and negative
events to temporary, specific or external causes). Finally, students’
attitude toward mistakes (Leighton, Tang, & Guo, 2015) affects how they
appraise the value of making mistakes, behaviors and affective re-
actions, all of which can enhance or impede receptivity to failures.

Better incoming characteristics, as evidenced by the aforementioned
individual differences we measure in the current study (cf. section
4.6.1), can be assumed to positively influence responses to failure and
success. For example, students with high self-esteem and a learning goal
orientation disposition are likely to engage in deeper processing of in-
formation presented in the scaffold (Sinha et al., 2020). With sustained
efforts toward meaning-making with the scaffold (high effort regula-
tion), failure likelihood can be reduced.
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3. The replication context

We aim to carry out a controlled experiment on the effects of explicit
failure-driven and success-driven scaffolding on conceptual under-
standing and transfer. For the design of scaffolding, we draw from the
seminal work on structuring and problematizing student production
(Reiser, 2004). Structuring scaffolds increase success-likelihood by
reducing degrees of freedom to lower task complexity, help students
maintain direction, and make problem-solving tractable. Problematizing
scaffolds increase failure likelihood by increasing degrees of freedom to
challenge students’ current understanding and highlight discrepancies
between what students generate and the canonical task features. To
contextualize our replication and extension, we first discuss the exper-
iment reported by Sinha et al., 2020 and then summarize our list of
major changes.

3.1. Classroom study by Sinha et al. (2020)

This study was conducted in data science education with N = 221
university students. The targeted learning concepts comprised intro-
ductory, but fundamental ideas in data science — Anscombe’s Quartet
(complementary importance of graphical + numerical representations
in reasoning with data) and Spurious Correlation (correlation # causa-
tion). The intervention comprised an initial problem-solving phase and a
follow-up instruction phase, resembling PS-I (Loibl et al., 2017).

The type of scaffolding during the problem-solving phase was
manipulated, resulting in four experimental conditions. Two variants of
problematizing were used, each of which offered single-step scaffolds to
nudge students towards reasoning with different suboptimal represen-
tations. These representations differed in their level of suboptimality
with respect to the canonical answer. Further, two variants of struc-
turing were used, each of which offered single-step scaffolds to nudge
students towards reasoning with different optimal representations.
These representations differed in their level of specificity with respect to
closeness to the canonical answer. Posttest assessments comprised an
isomorphic and a non-isomorphic conceptual understanding question.

Results demonstrated that failure-driven scaffolding was better than
success-driven scaffolding with high specificity, however similar to
success-driven scaffolding with low specificity. Further, students
exposed to failure-driven scaffolding demonstrated a higher quality of
constructive reasoning (meaningful elaborations (Chi, 2009) that went
beyond what was presented), relative to success-driven conditions with
both low and high specificity. These results were salient for the more
complex Anscombe’s Quartet topic.

3.2. Changes in the present study

We built on the quasi-experimental study by Sinha et al. (2020) to
design a controlled experimental study. First, we improved the assess-
ment of prior knowledge and posttest learning by administering a
domain-general math ability calculus pretest (Epstein, 2007), and add-
ing additional items assessing non-isomorphic conceptual understand-
ing and transfer. Second, we designed multi-step scaffolds that
progressively nudged students towards success or failure. In addition to
design-level changes, we added a third experimental condition that
provided no explicit scaffolding during the problem-solving phase
(resembling a pure Productive Failure (Kapur & Bielaczyc, 2012)
design). Finally, because previous results were salient for the
Anscombe’s Quartet topic, we focused on this topic.

3.3. Research questions and hypotheses

In light of prior work in PS-I and the discussed tradeoffs in scaf-
folding, the present study addresses the following research questions
and their associated hypotheses.
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1. RQla: How does scaffolding type during preparatory problem-
solving (success-driven, failure-driven, none) impact students’ pre-
paratory problem-solving performance, controlling for their incoming
characteristics and task experiences during the initial problem-
solving phase?

Hypothesis 1a. Due to lower failure likelihood owing to a focus on
revising and improving self-generated solutions and/or working with
explicitly offered optimal representations, we expected students in the
Success-driven and no scaffolding condition to have higher preparatory
problem-solving performance than Failure-driven condition.

2. RQ1b: How does scaffolding type during preparatory problem-
solving (success-driven, failure-driven, none) impact students’ post-
test performance, controlling for their incoming characteristics, task
experiences during the initial problem-solving phase, and perceived
lecture quality?

Hypothesis 1b. Due to the (a) differential overlap between the nature
of preparatory student work with high success-likelihood the nature of
work required to solve different posttests, and consequently (b) rela-
tively lower opportunities for relevant learning mechanisms (cf. section
2.2) to be triggered in the absence of suboptimal representation gener-
ation, we expected Success-driven condition students to have

o the highest performance for isomorphic assessments (with answers
corresponding precisely to the optimal representations offered dur-
ing the problem-solving phase)

similar performance as Failure-driven condition students for non-
isomorphic assessments (with answers requiring a relatively higher
depth of understanding and not depending exclusively on students’
work with scaffolds, a trend also found in Sinha et al. (2020))

the lowest performance for transfer assessments (with answers
involving flexible integration of representations not covered during
the intervention, and being more likely to be aided by failure-driven
problem-space exploration)

3. RQ2: How do underlying mechanisms (task experiences) triggered
because of engaging in preparatory problem-solving vary differen-
tially for students receiving success-driven, failure-driven, or no
scaffolding?

Hypothesis 2. Due to the relatively higher proportion of time on task
where students work with self-generated and/or explicitly offered sub-
optimal representations (and consequently, enhanced preparation for
learning from instruction), we expected students in the Failure-driven
and no scaffolding condition to have higher self-reported scores on
measurements tapping facilitatory underlying mechanisms, relative to
Success-driven condition students.

4. RQ3: What are the trends in metacognitive calibration across solutions
developed during the problem-solving phase and posttest, and how
do these vary for students receiving success-driven, failure-driven, or
no scaffolding during preparatory problem-solving?
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Hypothesis 3. Due to (a) greater opportunities for accurately self-
evaluating problem-solving performance amidst exposure to self-
generated and/or explicitly offered suboptimal representations, and
consequently, owing to such practice, (b) an increased likelihood of
awareness of representations that may not provide a clear canonical
solution pathway, we expected students in the Failure-driven condition
and no-scaffolding condition to be relatively better calibrated than
Success-driven condition students.

4. Method
4.1. Participants

We recruited N = 132 participants (59% male, n = 78; 41% female, n
= 54) from a large student volunteer pool (>10,000) from two highly-
ranked but open-admission universities in Europe. Apriori power anal-
ysis based on ANCOVA suggested sample size to be in the range of N =
128-206 to detect medium-size effects (d = 0.5) with 70%-90% power
(o error probability 0.05). To participate in the study, students had to
know high school math (basic algebra, calculus, statistics and proba-
bility) and be familiar with programming in Python (at least 1 semester
of Python programming experience).! 58.33% of participants in our
sample came from ten different European ethnicities (30.3% German,
being the majority), and 41.67% of participants came from a non-
European ethnicity (37.12% Asian, being the majority).

Post-study questionnaires revealed that the majority (83.3%) of
participants had not heard of Anscombe’s Quartet prior to the study
session, suggesting that they were novices in the targeted concept (no
task-specific knowledge). However, participants reported that they were
somewhat familiar with numerical representations (M = 4.15, SD =
1.77) and graphical representations (M = 4.48, SD = 1.68) before
coming into the study (on a 7-point Likert scale). This suggests that
students might have possessed some prerequisite domain-specific
knowledge for learning the targeted concept.

4.2. Task domain

Anscombe’s Quartet, where the aim was that students understand
the complementary importance of numerical and graphical representa-
tions when reasoning with data, was the targeted data science learning
concept. To work towards this goal, a set of datasets with similar
descriptive statistics but very different plots were presented to students,
giving them the opportunity to reflect on a concrete task that relied on
assessing the strength of evidence from both these data sources. Students
had to work individually in a dynamically executable online problem-
solving environment (Jupyter notebook), similar to the one used in
the classroom study by Sinha et al. (2020). Using form fields and
interactive sliders, this dynamically executable Python Jupyter note-
book allowed students to load relevant datasets for a problem, run basic
statistics, read information about the problem-solving task, record their
answers, reasoning and confidence (see Fig. 1). Similar to a program-
ming language compiler, the Python Jupyter notebook provided
syntax-level feedback when writing programming code. Posttest ques-
tions were also administered using separate Python Jupyter notebooks.

! The chosen high school math prerequisites were kept in mind when
designing the learning materials for the current study as well as in our previous
study (Sinha et al., 2020). Because of iterative piloting of these learning ma-
terials with university students prior to the actual study, we assume that the
criterion of knowing high school math should be fulfilled by all participants. To
maximize participation, we intentionally kept this statement in the recruitment
advert to reflect that the bar for signing up was low and that no special/-
advanced math skills were needed. Further, students were invited for partici-
pation if they scored >= 7/10 on a pre-screening quiz covering Python syntax.
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Instructions / Notes: Read these carefully

This is a Python Jupyter Notebook containing both code and rich text elements, such as figures, links, equations etc. The notebook is generally
spiitinto the following sections:
1. Initial set of pre-filled cells, that you should evaluate (run) just to load some Python modules (packages), the dataset required for your
task and its variables in memory.
2. Description of a concrete task associated with the dataset.
3. Final section (with one or more empty cells) where you can perform analyses with the loaded dataset (e.g., write a few lines of code if
needed), answer the question posed, and describe your reasoning in words.

Read and execute each cellin order, without skipping forward. To execute any cell place your cursor in the cell and either click the play button
on the top left cormer of that cell or press ShiftEnter on your keyboard. It might take a couple of seconds to receive an output

Have funt
#Run the following to inport necessary packages and lnport dataset. Do not use any additional plotting Libraries.
" pd
Lcoorginates
: port. Interactiveshell
InteractiveShell.ast_node_interactivity = “all"
port matplotlid
nport matplotlib.pyplot as plt
Amatplotlib inline
matplotlib. style.use("ggplot’)
df1 = pd. read_csv(d1) I. Load datasets

csv(d2)

df2 = pd. read,

43 = pd. read_csv(d3)
df4 = pd. read_csv(dd)
4f1_copy=dt1. copy()
df2_copy=df2. copy()
3 copy=df3. copy()
df4_copy=dfa,

1 copy(
42 copyl
df3_copy(
df4_copy [ Input

TASK

Design as many measures to rank order the datasets from the most successful to the least successful car company. Your measures should be
based on consideration of every data point in the datasets. We expect you to generate multiple measures.

For each measure that you design

Using the form field on the right, select the resulting dataset ordering (e.g., 1234, 2134 etc)
Using the form field on the right, provide a reasoning behind your answer selection (an explanation of why you took certain steps or

~

performed certain calculations to get to the solution)
Using the form field on the right, select how you used information about the descriptive statistics (obtained by running the cells above) in

reasoning about your answer
Using the form field on the right, tell us your confidence in the designed measure

IS

MAKE SURE to fill all four options in the form field for each measure.

Important note about designing your measures

Below is a template for a cell where you can design a measure. To create a new measure

1. Add a new code cell below the template cell (Click on + CODE option at the top left comer of the screen)
2. Copy all contents of the template cell to this newly added code cell.
3. Use this newly added code cell to change your answers corresponding to the created measure.

Follow a similar process to add new cells for creating as many measures as you are able to (within the allotted time)
3. Read task description & generate solutions
[Attempt | (pre-scaffold)]

carcospany_ordering_seasure: 1432
carcompany_ordering_reasoning_measure: 'i think the answer.
used_descriptive_statistics_in_reasoning_measure: b)Ifound the descriptive statistcs HELPFUL in designing the measure (my measure is NOT BASED ON them,

confidence_measure:

IDEA:

hitps:/matplotlib.org/api/_as. gen/matplotib, pyplot.hist htmi

~ DATASET DESCRIPTION

Each of the 4 dataframes loaded above represents the total number of units sold (in 100's) and employee satisfaction (0n a scale of 110 100)
from 182 sites all over the world for car companies 1,2, 3 and 4.
Run the cells below to obtain some descriptive (numerical) statistics and a parallel coordinates visualization for these datasets.

1. Median s a measure of central tendency that separates the higher half from the lower half of a data sample.

2. Interquartile range (1QR) is a measure of variability (statistical dispersion), based on dividing a data set nto quartiles. Quartiles divide a
ranik-ordered data setinto four equal parts. IQR is equal to the difference between 75th and 25th percentiles, or between upper and lower
quartles.

3. Spearman's correlation measures the strength and direction of monotonic association between two variables. A monotonic relationship is
arelationship that does one of the following: (1) as the value of one variable increases, 5o does the vake of the other variable; or (2) as
the value of one variable increases, the other variable value decreases.

Parallel coordinates is a plotting technique for multivariate data (allows one to estimate some descriptive statistics visually). Here, data
points are represented as connected line segments. Each vertical line represents one data attribute. One complete set of connected line
segments across all the attributes represents one data point,

print (
print (

print (
round( (df
print (* ")

2.25)),2)

print (etut)
rounaat corr(aethose s 2. Read dataset description &
s

G =) run basic statistics

Porallet. coordinates (@i conys t_nome’)

plt.showl)

function to generate

Based on this idea, design as many revised measures to rank order the datasets from the most successful to the least successful car
company. Your measures should be based on consideration of every data point in the datasets. We expect you 1o generate multiple revised
[measures. Some of them can be simple modifications to the measures you designed earlier, while other measures can be entirely new ones.
For each revised measure that you design

1. Using the form fiekd on the right, select the resulting dataset ordering (€., 1234, 2134 etc)

2. Using the form field on the right, provide a reasoning behind your answer selection (an explanation of why you took certain steps o

performed certain calculations to get to the solution)

3. Using the form fiekd on the right, tell us your confidence in the revised measure you designed

Using the form field on the right, tell us how many ideas did you request 5o far

[MAKE SURE 1o fill all four options in the form field for each measure.

Important note about designing your revised measures

Below is a template for a cell where you can design a revised measure. To create a revised measure:

1. Add a new code cell below the template cell (Click on + CODE option at the top left comer of the screen)
2. Copy all contents of the template cell to this newly added code cell
3. Use this newly added code cell to change your answers corresponding to the created measure.

Follow a similar process to add new celis for creating as many measures as you are able 1o (within the allotted time),
Important note about the idea

In case the idea information is not helpful and you are not sure if/how you might revise measures you designed earlier, you can ask for a
different idea by typing different_idea (AQ", "FD1") in the code cell below the template cell

carconpany_ordering_seasure._revised: 2341 4. Generate new solutions and/or revise
carcospany_ordering_reasoning_seasure_revised: ok e wises e SOlUtiONS after receiving scaffolds
[Attempt 2 (post-scaffold)]

contidence_measure_revised:

ideas_asked_so_far_seasure_revised: Asked one sddiionsl ides

Fig. 1. Problem-solving environment used in the study.

4.3. Scaffolding design

4.3.1. Success-driven scaffolding

Our preparatory problem-solving task involved reasoning with a
bivariate dataset. Therefore, the structuring scaffold hierarchy included
a prompt (a Wikipedia page suggesting students to read more about
exploratory data analysis), hint (description of data science phenomena
under consideration), and finally a bottom-out hint or the last hint in the
sequence precisely conveying the answer (syntax for scatterplot gener-
ation, an optimal graphical representation for reasoning with bivariate
datasets). Prompts divulged very little solution-relevant information and
can be conceived as the weakest or least-specific structuring scaffold
(smallest nudge towards success). Prompts pointed students to problem
conditions that should likely remind students of the knowledge com-
ponents’ relevance. Hints, on the other hand, incorporated the idea of
teaching students the knowledge component that is actually relevant in
the current problem-solving context. This means that hints told students
what to do but not how. Finally, bottom-out hints represented the
strongest or most-specific structuring scaffold (biggest nudge towards
success) and told precise and potentially optimal ways of proceeding.

Presentation-wise, students first received a prompt in their problem-
solving workbooks. Further scaffolds such as the hint and bottom-out
hint were only revealed if students indicated that the information
from a previous scaffold was not helpful in solution revision, and
explicitly asked for the next scaffold. The underlying design rationale
was to give students the least-specific structuring that could nudge
problem-solving towards success first. This was based on empirical
effectiveness of such a scaffold hierarchy (Aleven, McLaughlin, Glenn, &

Koedinger, 2016) based on the behavior of expert human tutors (Van-
Lehn, 2011), and used in prominent educational applications (e.g., Khan
Academy, Carnegie Learning, ASSISTments).>

4.3.2. Failure-driven scaffolding

Our problematizing scaffold hierarchy started with the presentation
of a moderately high suboptimal representation (one-dimensional his-
togram), subsequently an extremely high suboptimal representation
(bar chart), and finally ended with the least suboptimal representation
among the three (two-dimensional histogram). A bar chart is suboptimal
because it is only informative when variables in the data comprise a mix
of continuous and categorical variables. Moreover, even if one makes a
bar chart with only numeric variables, there is high noise in a bar chart
visualization in absence of natural ordering of the dataset categories —
consequently, it is difficult to discover clear patterns when comparing
arbitrary data segments. With histograms, information is lost because of
binning and/or the lack of directly perceivable information about
covariation in the data. Such effects are more pronounced for one-
dimensional histograms compared with two-dimensional histograms.

As with success-driven scaffolds, students could request these scaf-
folds one at a time, if they were not certain about revising their answers.
Our design rationale behind the failure-driven scaffold hierarchy, where
initially presented scaffolds were more suboptimal than the ones

2 Khan Academy (https://www.khanacademy.org/), Carnegie Learning Inc.
(https://www.carnegielearning.com/products/software-platform/mathia-lea
rning-software/), ASSISTments (https://new.assistments.org/).


https://www.khanacademy.org/
https://www.carnegielearning.com/products/software-platform/mathia-learning-software/
https://www.carnegielearning.com/products/software-platform/mathia-learning-software/
https://new.assistments.org/
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presented later, was to increase the likelihood that students use all
scaffolds and explore the problem-space maximally, instead of following
an isolated solution path.> We intended to lead students towards ques-
tionable decision-making by asking them to consider a subset of con-
ceptual domain factors that did not lead to the canonical solution and
challenge them to reason with such partially-gained insights. To keep
scaffold presentation style consistent with the Success-driven condition
and avoid any bias before students interacted with the scaffolds, we kept
a relatively neutral tone and introduced each failure-driven scaffold as
an idea.

4.3.3. No explicit scaffolding

We also compared explicit success-driven and failure-driven scaf-
folding to a PS-I learning design without any explicit scaffolding during
the problem-solving phase. This resembles a pure Productive Failure
condition (Kapur, 2014; Kapur & Bielaczyc, 2012), and affords a direct
evaluation of the efficacy of initial scaffolding and its preparatory ben-
efits in learning from instruction.

4.4. Learning materials

All learning materials underwent iterative design and testing with
participants having similar demographic as the study (N = 20), and can
be found under supplementary materials.

4.4.1. Problem-solving phase

In the problem-solving phase, students had to create as many mea-
sures as they could, in order to rank-order datasets of four car companies
from the most successful to least successful. Information about the
number of car units sold and employee satisfaction was given to them.
Consistent with the design principles of Productive Failure (Kapur &
Bielaczyc, 2012), we designed the datasets such that they had exact
same non-parametric statistics (median, interquartile range, Spearman’s
correlation), but different parametric statistics (mean, standard devia-
tion, Pearson’s correlation) and very different visualizations. For the
second attempt workbook, students in the Success-driven and
Failure-driven conditions received multi-step structuring or problemat-
izing scaffolds. They could use information from these scaffolds to create
as many revised solutions as they could. In the no scaffold (Productive
Failure) condition, students did not receive any explicit scaffolds in the
second attempt. They were asked to keep generating more solutions.

4.4.2. Instruction phase

The instruction phase was presented as a three-part video that stu-
dents could watch at their own pace (e.g., by pausing, re-watching). The
first part introduced the concept of Anscombe’s Quartet (5 min), the

3 We chose not to have a failure-scaffold hierarchy based on the principle of
smallest to biggest nudge towards failure (two-dimensional to one-dimensional
histogram to bar chart), because the presentation of a scaffold with relatively
low suboptimality at the beginning may already start pushing students towards
a reasonable answer (inferences about the relationship between two numeric
variables). This, in turn, may reduce the likelihood that students move onto the
exploration of more suboptimal scaffolds. We also chose not to present failure-
scaffolds following the principle biggest to smallest nudge towards failure (bar
chart to one-dimensional histogram to two-dimensional histogram), because it
can in fact be perceived to resemble a structuring/success-driven sequence that
makes critical task features for solving the problem increasingly more relevant.
Additionally, based on the help-seeking literature in intelligent tutoring systems
(Aleven, Stahl, Schworm, Fischer, & Wallace, 2003), this sequencing posed a
risk of help-abuse, that is, students just clicking through to the last scaffold that
they would probably perceive to be the most useful (here, a two-dimensional
histogram, which is comparatively the least suboptimal representation) — in
such a case, the likelihood of meaningful engagement with all scaffolds would
be reduced. The failure-driven scaffold hierarchy implemented in our study
served as a middle ground between these two options.
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second part compared and contrasted different student solutions with
the canonical one (10 min), and the third part presented and justified
one possible canonical answer to the task (5 min). The lecture content
was developed by the first author with more than 5 years of data science
experience, and further independently verified by two instructors with
backgrounds in data science and statistics.

4.4.3. Posttest

Our posttest included one isomorphic item testing for conceptual un-
derstanding, two non-isomorphic items testing for conceptual under-
standing, and one item testing for transfer (item 4). Final scoring was
binary (0/1) for all items. The isomorphic conceptual understanding ques-
tion (item 1) involved reasoning with both graphical and numerical rep-
resentations in a task that had a two-dimensional data distribution (similar
to the problem-solving phase, however, with an entirely different cover
story). The first non-isomorphic conceptual understanding question (item 2)
involved reasoning with one-dimensional data distribution, as opposed to a
two-dimensional data distribution used in the initial problem-solving task.
The second non-isomorphic conceptual understanding question (item 3)
involved reasoning with a tri-variate dataset and making inferences based
on the descriptive technique of linear regression. The transfer question
(item 4) involved reasoning with not only descriptive statistics but also
inferential statistics that were not covered during the problem-solving task.
Details can be found in supplementary materials.

4.5. Experimental design

The complete intervention took 150 min (see Fig. 2). Prior to the
problem-solving phase, students’ incoming characteristics were assessed
using a combination of questionnaires and a short calculus pretest (20
min, cf. section 4.6.1). Participants were randomly assigned to experi-
mental conditions. During the initial problem-solving phase, students in
every condition made an identical first attempt at the task in the absence
of any external scaffolds (20 min). For problem-solving in the second
attempt, three experimental manipulations were instantiated (20 min).
We call these Failure-driven (N = 45, explicit problematizing scaffolds
nudging students towards failure), Productive Failure (N = 43, no
explicit scaffolds), and Success-driven (N = 44, explicit structuring
scaffolds nudging students towards success). After the problem-solving
phase, we collected students’ task experiences using questionnaires (5
min, cf. section 4.6.3).

After reporting their problem-solving task experiences, students in
all conditions went through an identical instruction phase (20 min),
delivered in the form of a pre-recorded video lecture using the Go-Lab
infrastructure (De Jong, Sotiriou, & Gillet, 2014). Finally, students
solved four posttest questions tapping different dimensions of under-
standing of the targeted concept (60 min). After completion of the
posttest, students’ perceived lecture quality was captured using ques-
tionnaires. In addition, students also self-reported their demographic
information (gender, ethnicity), high school math score, and familiarity
with numerical/graphical representations (5 min, cf. section 4.6.6).

4.6. Measures

4.6.1. Before the problem-solving phase

Students’ incoming characteristics were collected via questionnaires
(randomly ordered during presentation), which previous work (Sinha
et al., 2020) has validated. These characteristics reflect individual dif-
ferences in learning from success and failure (Clifford, 1984). We included
measurements of effort regulation (4 items, a = 0.74, e.g., “I work hard to
do well even if I don’t like what we are doing in classes”), goal orientation
(learning (8 items, a = 0.84, e.g., “The opportunity to do challenging work is
important to me”) and performance (8 items, « = 0.71, e.g., “I prefer to do
things that I can do well rather than things that I do poorly”) sub-scales),
attitude towards mistakes (affect (4 items, a = 0.67, e.g., “When I make
mistakes answering classroom questions, I am overwhelmed with
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Incoming Characteristics re lem-solvin, Task Experiences (after problem-solvin; Posttest (after instruction)
——Prior knowledge (calculus pretest) Knowledge gap awareness —— | X Conceptual understanding (isomorphic) ——
[— Effort regulation State curiosity — 2 X Conceptual understanding (non-isomorphic)

[~ Self-esteem (general, domain-specific) Cognitive dissonance —— | X Transfer —
[— Goal orientation (learning, performance) Germane cognitive load —— (problem-solving in Python Jupyter notebooks)
[—Attitude towards mistakes (affect, cognition, behavior) Extraneous cognitive load —
(all questionnaires, except for prior knowledge) Positive affect —— Other information (after instruction)
Negative affect — Perceived lecture quality (questionnaire) —
(all questionnaires) Demographics (gender, ethnicity, coding experience) ——
High school math score & familiarity with targeted concept ——

Learning concept Anscombe’s Quartet (Attempt |, Attempt 2)
(problem-solving in Python Jupyter notebooks)
Condition | — Failure-driven
Condition 2 — Productive Failure

Condition 3 — Success-driven

e—  PROBLEM-SOLVING PHASE

Instruction building on student solutions
(video lecture)

All experimental conditions

> < INSTRUCTION PHASE sl

Fig. 2. Experimental design of the study. For students who were selected to participate in the study, depicted measures were administered at three time points
(before problem-solving phase, after problem-solving phase, after instruction) during the study.

embarrassment”), cognition (4 items, a = 0.66, e.g., “I believe it is smart to
avoid making mistakes during learning”) and behavior (6 items, a = 0.73, e.
g., “When I make mistakes on an exam, I feel motivated to study harder™)
sub-scales), self-esteem (general (5 items, a = 0.77, e.g., “Some university
students are often disappointed with themselves BUT Other university students
are pretty pleased with themselves (reversed) ) and domain-specific (5 items,
a = 0.66, e.g., “Some university students do very well at their classwork BUT
Other university students don’t do very well at their classwork”) sub-scales),
and prior knowledge (calculus pretest’ (8 questions, & = 0.71)). Prior
knowledge assessment also included post-study measurements of high
school math scores and familiarity with numerical and graphical repre-
sentations. Table 1 provides operational definitions. Complete scales are
present in supplementary materials.

4.6.2. Problem-solving phase

For each problem-solving attempt, solution quantity was computed by
simply counting the number of unique solutions students developed in
the problem-solving phase. The computation for solution quality
accounted for how many rank-ordered pairs were correctly identified
(scores ranged from 1 to 6). We focused on the best solution that each
student generated, that is, the solution with the highest score.” For each
attempt, students also reported their confidence for the solutions
developed using a 5-point slider. Empirical assessments of students’
monitoring processes were captured by looking at the gap between so-
lution quality and reported confidence.

4.6.3. After the problem-solving phase

Students’ task experiences were collected via questionnaires
(randomly ordered during presentation). These experiences tap onto
different cognitive and affective mechanisms (Kapur, 2016; Loibl et al.,
2017) posited to attribute to the preparatory benefits of PS-1. Previous
empirical work in PS-I has validated self-reported measurements for
these task experiences, including knowledge gap awareness (Sinha et al.,
2020; Glogger-Frey et al., 2017; Loibl & Rummel, 2014b; Newman &
DeCaro, 2019), state curiosity (Sinha et al., 2020; Lamnina & Chase,
2019; Loibl & Rummel, 2014b), cognitive load (Sinha et al., 2020;
Glogger-Frey et al., 2017; Likourezos & Kalyuga, 2017; Marei et al.,

4 The original German version of the calculus pretest (Epstein, 2007)
comprised 11 items and was translated to English for our study. Based on initial
piloting with N = 20 students, we dropped two items that were negatively
correlated with the total scale. An additional item was removed from all ana-
lyses due to a translation error in wording.

5 As students generate more solutions, their average solution quality is ex-
pected to decrease. Taking solution quality to be representative of the best
solution prevents this confound of solution quality and quantity.

2019; Newman & DeCaro, 2019), affect (Lamnina & Chase, 2019) and
cognitive dissonance (Sinha et al., 2020), which lends credibility to their
use in the current study.

Accordingly, we draw on this established PS-I work and include
measurements of knowledge gap awareness (5 items, « = 0.81, e.g., “My
knowledge was insufficient to carry out these tasks”), cognitive dissonance
(6 items, a = 0.53, e.g., “Some of the answers I gave in these tasks were
inconsistent with my previous beliefs about the topics™), state curiosity (9
items, @ = 0.86, e.g., “I feel like asking questions about what is happening”),
germane cognitive load (6 items, « = 0.83, e.g., “This activity improved
my understanding of the content that was covered”), extraneous cognitive
load (4 items, a = 0.7, e.g., “The explanations, instructions and clues in this
activity were full of unclear language ™), positive affect (10 items, a = 0.91,
e.g., determined, enthusiastic), and negative affect (10 items, « = 0.89,
e.g., upset, distressed). Table 1 provides operational definitions. Com-
plete scales are present in supplementary materials.

4.6.4. Instruction phase
We recorded the time that students spent on watching each of the
three parts of the video lecture (in seconds).

4.6.5. Posttest

Varimax-rotated principal component analysis was used to reduce
the correlated (binary) posttest scores to a smaller set of important in-
dependent composite scores. Further, a coding scheme, based on prior
work (Chi, 2009; Kapur & Kinzer, 2009) and validated in Sinha et al.
(2020), was applied to quantify reasoning quality, or more specifically,
the average percentage of complete mathematical and
non-mathematical elaborations comprising graphical and/or numerical
representations. Coding was conducted blind to the experimental con-
dition. Details of the coding scheme for computing this percentage score
can be found in supplementary materials. Students also reported confi-
dence in their answers using a 5-point slider. Empirical assessments of
students’ monitoring processes were captured by looking at the gap
between posttest scores and reported confidence.

4.6.6. After the posttest

We used an instructional skills questionnaire (randomly ordered dur-
ing presentation) to capture students’ perceived lecture quality along six
dimensions. The questionnaire, adapted from Knol, Dolan, Mellenbergh,
and van der Maas (2016), assessed structure (4 items, o« = 0.81, e.g., “The
instructor gives clear summaries”), explication (4 items, o = 0.82, e.g., “The
instructor’s explanations are hard to follow (reversed)”), stimulation (4
items, a = 0.77, e.g., “The instructor enlivens the subject matter™), validation
(4 items, a = 0.73, e.g., “The utility of the subject matter is hardly discussed
(reversed)”), instruction (4 items, a = 0.74, e.g., “The instructor indicates
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Table 1
Operational definitions of measures used in the study.
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Measure Definition

Incoming characteristics (administered before the problem-solving phase)

Effort regulation

Goal orientation
Learning goal orientation
Performance goal
orientation

Attitude towards mistakes

the ability to control effort and attention when tasks are difficult (Pintrich, 1991)

a dispositional trait, which makes one more likely to focus (or lack, thereof) on viewing failures as opportunities to learn (Button et al., 1996)
desire to perform challenging work, learn new skills, develop alternative strategies when working on difficult task

desire to avoid negative judgments of one’s competence

a relatively enduring organization of beliefs, feelings, and behavioral tendencies towards mistakes (Leighton et al., 2015)

Affect affective reactions (emotional, physiological experiences) when making mistakes

Cognition
Behavior
Self-esteem
General self-esteem
Domain-specific self-esteem

a general perception of the self

Task experiences (administered after the problem-solving phase)
Knowledge gap awareness
Cognitive dissonance
State curiosity
Germane cognitive load
Extraneous cognitive load
Positive affect
Negative affect

1988)

Perceived lecture quality (administered after the posttest)

the perceived utility of making mistakes (beliefs reflecting a positive or negative evaluation of mistakes)
observable actions undertaken to avoid or embrace mistakes
perceived competence, which positively affects attributional style towards success and failure (Harter, 2012)

perceived scholastic cognitive competence, as applied to university work

the extent to which students realize what they do not know (Glogger-Frey et al., 2017)

a state of discomfort associated with detection of conflicting concepts (Levin et al., 2013)

desire to know more to fill the perceived knowledge gaps (Naylor, 1981)

load from relating relevant information from long-term memory to new information elements (Leppink et al., 2014)

load from engaging in processes that may not contribute directly to construction of cognitive schemata (Leppink et al., 2014)

the extent to which an individual subjectively experiences positive moods such as joy, interest, and alertness (Watson et al., 1988)

feelings of emotional distress, defined by the common variance between anxiety, sadness, fear, anger, and other unpleasant emotions (Watson et al.,

Structure extent to which the instructor handled the subject matter systematically and in an orderly way

Explication extent to which the instructor explained the subject matter, especially the more complex topics

Simulation extent to which the instructor raised interest in the subject matter

Validation extent to which the instructor stressed benefits and the relevance of the subject matter for educational goals
Instruction extent to which the instructor provided instructions about how to study the subject matter

Activation

extent to which the instructor encouraged actively thinking about the subject matter

which parts of the subject matter are essential”), and activation (2 items,
Spearman-Brown coefficient = 0.64, e.g., “Students are encouraged to think
along during the lecture”).° Table 1 provides operational definitions.
Complete scales are present in supplementary materials.

4.7. Analysis plan

Before carrying out the analysis for our stated research questions, we
performed a manipulation check for the fidelity of scaffolding imple-
mented during problem-solving, and for the fidelity of the delivered
lecture.

4.7.1. RQI and RQ2

To account for the multivariate nature of our dependent variables for
research questions 1 and 2, MANCOVAs were run first to examine
omnibus effects across the Failure-driven, Productive Failure, and
Success-driven experimental conditions. Subsequently, we ran univari-
ate ANCOVAs, along with Bonferroni-corrected posthoc t-tests (pairwise
comparisons adjusted for a family of 3) between the experimental con-
ditions. Running these follow-up pairwise t-tests also allowed us to
obtain the effect size (Cohen’s d) estimates for each dependent variable.

To assess how the conditions differentially impacted performance
during the preparatory problem-solving phase (RQ1a), solution quantity

6 The original version of the activation subscale for the perceived lecture
quality questionnaire had 4 items (Knol et al., 2016). In the current study,
however, we did not use 2 of the items that focused on providing discussion
opportunities during the lecture (“The instructor provides little opportunity for
discussions” and “During this lecture there is hardly any occasion to discuss the
subject matter”). This was due to the video-based (rather than in-person) nature
of the lecture. We therefore also used the Spearman-Brown prophecy formula
(Spearman, 1910) to calculate the predicted reliability of the activation sub-
scale, given the original reliability and an expansion of the scale to 4 items. The
predicted reliability value was 0.78.

(attempt 1 and attempt 2) and solution quality (attempt 1 and attempt 2)
were used as dependent variables. We controlled for students’ incoming
characteristics” and task experiences during the problem-solving phase. An
analogous analysis of the posttest (RQ1b) included the score (isomorphic,
non-isomorphic, transfer) and reasoning quality (isomorphic, non-
isomorphic, transfer) as dependent variables. We controlled for students’
incoming characteristics, task experiences during the problem-solving
phase, and perceived lecture quality. Finally, the analysis for RQ2
focused on differences in the underlying mechanisms (cf. section 4.6.3)
across conditions and controlled for students’ incoming characteristics.
Because the dependent variables for RQ1a, RQ1b and RQ2 were measured
at different time points during the design, not all sets of covariates were
relevant for each RQ - they are represented accordingly with tick marks in
Table 2.

The relatively small sample sizes also led us to focus attention on
Cohen’s d measure of effect size (along with 95% confidence intervals)
to evaluate the effectiveness of our scaffolded PS-I intervention. For
judging the practical importance of standardized effect size estimates,
Hill, Bloom, Black, and Lipsey (2008) recommend the use of empirical
benchmarks of comparison that reflect the nature of the intervention
being evaluated, its target population, and the outcome measure or
measures being used. Our recent meta-analytic work comparing PS-I
with scaffolded PS-I designs (Sinha & Kapur, 2021b) has found the
average effect size disfavoring PS-I to be Hedge’s g —0.08 [95% CI -0.34,
0.28], for a similar student population (undergraduate level) and

7 Despite 16.7% of participants having heard about the targeted learning
concept prior to the intervention, we did not include this binary variable as a
covariate in our primary analyses for RQ1 and RQ2. This was because of con-
cerns regarding the validity of this variable as a representative for prior
knowledge, exemplified in its low correlations with self-reported familiarity
with numerical representations (r,, = 0.26, p = 0.003) and graphical repre-
sentations (r,, = 0.19, p = 0.031). Inclusion of this additional covariate,
however, did not change the trends in reported results.
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Table 2
Summary of the analysis plan for the study.
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Dependent Variables

Covariates

Incoming characteristics Task experiences Lecture quality

RQla Solution quantity (Attempt 1, Attempt 2)
Solution quality (Attempt 1, Attempt 2)
RQ1b Score (Isomorphic, Non-isomorphic, Transfer)

Reasoning (Isomorphic, Non-isomorphic, Transfer)
RQ2 Knowledge gap awareness
Cognitive dissonance
State Curiosity
Germane/Extraneous cognitive load
Positive/Negative affect
RQ3 Calibration: A(Confidence, Attempt 1 Solution Quality)
Calibration: A(Confidence, Attempt 2 Solution Quality)
Calibration: A(Confidence, Isomorphic Score)
Calibration: A(Confidence, Non-isomorphic Score)
Calibration: A(Confidence, Transfer Score)

SNSSS

SSNSSNSASANSNS

not applicable
not applicable
not applicable
not applicable
not applicable

Note. For RQs 1 and 2, MANCOVA (univariate ANCOVAs) and post-hoc Bonferroni-corrected pairwise comparisons (t-tests) were used. For RQ 3, a one-sample t-test

was used to assess differences from 0.

learning outcomes (conceptual understanding, transfer) such as ours.
These meta-analytic effect size results led us to consider all effect sizes >
|0.2] as a benchmark for improvement of scaffolded PS-I (that is, the
Success-driven and Failure-driven conditions) over unscaffolded PS-I
(that is, the Productive Failure condition) in the current study.

As alternative complementary analyses for null Hypothesis signifi-
cance testing (NHST),8 we also used a Bayesian informative hypotheses
evaluation ANCOVA (Hoijtink, Mulder, van Lissa, & Gu, 2019) for RQ1
and RQ2. This allowed direct evaluation of the Bayes factor of a specific
hypothesis at hand versus its complement (BF.).” For any particular
dependent variable, these hypotheses were based on the actual
descriptive trends in marginal means that we observed across the
experimental conditions — marginal means, which we obtained after
running the regular frequentist ANCOVA. As an example, the comple-
ment of a hypothesis H (u1 > p2 > p3 for the Failure-driven, Productive
Failure and Success-driven conditions) would comprise any set of re-
strictions between the means that is not H.

4.7.2. RQ3

To assess calibration (RQ3), we used a one-sample t-test to compare
the difference (A) between scaled values of confidence judgments and
performance (that is, solution quality of the best solution developed for
the problem-solving phase, and scores for the posttest). We assessed
whether this difference was significantly different from 0, indicating
under-confidence (A < 0) or over-confidence (A > 0) bias. A non-
significant difference (with low effect sizes) would indicate students to
be metacognitively well-calibrated.

& We used non-Bayesian analyses (NHST) because it is a dominant tool in
psychological research, easily understood by the majority of the readers, and
allows the computation of effect size (Cohen’s d) estimates that can be
compared with previous studies. However, given the criticisms regarding NHST
in the past decade (Cumming, 2014), we further used a Bayesian alternative to
NHST that allowed us to quantify the strength of evidence (uncertainty) in favor
of a particular Hypothesis using the observed data (as opposed to a dichoto-
mous reject/fail-to-reject decision that comes with null hypothesis significance
testing, where Type I and Type II errors are determined independently of the
observed data). We conceive of Bayesian informative hypotheses evaluation
ANCOVA (Hoijtink et al., 2019) as a valuable alternative in the context of
comparing experimental designs, and believe that with greater reporting of
(and consequently, familiarity with) these more advanced Bayesian methods,
their exclusive reporting might be more warranted.

9 BF, can be interpreted as odds in favor of an informative Hypothesis being
tested relative to its complement. BF, values can be interpreted as follows: 1-3
(weak/anecdotal), 3-10 (positive/substantial), 10-20 (positive/strong), 20-30
(strong), 30-100 (strong/very strong), 100-150 (strong/decisive), > 150 (very
strong/decisive).

5. Results

Results from our implementation fidelity check during the problem-
solving phase provided empirical evidence that Productive Failure and
the two scaffolding conditions worked as intended, both in terms of (a)
how they affected solution generation in attempt 2 (quantity and qual-
ity), and (b) how responses to presented scaffolds were related to solu-
tion quality improvements in attempt 2. Further, results from the
implementation fidelity check also provide empirical evidence that the
instruction phase, which was kept the same for all conditions as part of
the experimental design, was judged to be equally good (average scores
across most dimensions of perceived lecture quality were > 4 on a 7-
point Likert scale). We provide an extensive elaboration of imple-
mentation fidelity in the supplementary materials.

5.1. Performance (RQ1)

5.1.1. Problem-solving phase (RQ1a)

The MANCOVA for solution quantity was significant, Wilks’ A = 0.8, F
(4, 162) = 4.86, p = 0.001. Univariate ANCOVAs showed significant
differences in solution quantity for attempt 2, F(2, 105) = 5.06, p = 0.008,
qf) = 0.11. Solution quantity in attempt 2 was higher for students in the
Productive Failure condition compared to the Success-driven (d = 0.61)
and Failure-driven (d = 0.90) conditions. Further, we also found students
in the Success-driven condition to have a higher solution quantity (d =
0.30), relative to the Failure-driven condition. BF. corresponding to this
overall observed trend in attempt 2 solution quantity was 18.47.

Neither the MANCOVA nor univariate ANCOVAs (and Bonferroni-
corrected follow-up t-tests) were significant for solution quality. Howev-
er, the solution quality was descriptively higher in the Productive Failure
(d = 0.54) and Success-driven condition (d = 0.35) for the first problem-
solving attempt, relative to the Failure-driven condition. This was despite
the initial randomization to experimental conditions and identical task
instructions. BF. corresponding to this overall observed trend in attempt 1
solution quality was 8.87. Similar trends existed in solution quality during
attempt 2 with weaker odds, but still lying within the same positive/
substantial Bayes Factor range of 3-10 (BF, = 3.86)'°.

10 After additionally controlling for differences in the first problem-solving
attempt, the overall trends in the pattern of results (marginal means and
standard errors) for solution quality in the second problem-solving attempt did
not change. Similarly, posthoc pairwise t-tests between the experimental con-
ditions revealed no major differences in the overall trends of effect size
(Cohen’s d) estimates. Taken together, this suggests that even after controlling
for differences in the initial generation, the impact of scaffolding on immediate
problem-solving performance still aligned with Hypothesis 1a.
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Table 3
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Problem-solving phase performance (RQ1a), posttest performance (RQ1b) and underlying mechanisms (RQ2) across experimental conditions.

Marginal Mean (SE) BF,

Failure-driven

Productive Failure Success-driven

Problem-solving phase [Attempt 1] [Pre-scaffold]

Quantity 2.02 (0.23)

Quality (Max 6) 3.85(0.18)
Problem-solving phase [Attempt 2] [Post-scaffold]

Quantity 1.75 (0.27)

Quality (Max 6) 3.96 (0.23)
Posttest (Isomorphic conceptual understanding)

Score (Max 1) 0.60 (0.08)

Reasoning (Max 100) 44.79 (5.51)
Posttest (Non-isomorphic conceptual understanding)

Score (Max 1) 0.49 (0.08)

Reasoning (Max 100) 20.97 (3.86)
Posttest (Transfer)

Score (Max 1) 0.60 (0.08)

Reasoning (Max 100) 22.91 (5.53)
Problem-solving Task Experiences

Knowledge gap awareness (Max 5) 3.98 (0.13)

Cognitive dissonance (Max 5) 3.13 (0.09)

State curiosity (Max 5) 3.82(0.12)

Germane cognitive load (Max 5) 2.60 (0.13)

Extraneous cognitive load (Max 5) 3.54 (0.12)

Positive affect (Max 5) 2.57 (0.12)

Negative affect (Max 5) 2.30 (0.13)

2.12(0.25) 2.28 (0.24) 2.77
4.43(0.2) 4.27 (0.19) 8.87
3.16 (0.31) 2.11 (0.28) 18.47
4.36 (0.26) 4.19 (0.24) 3.86
0.73 (0.08) 0.78 (0.07) 6.08
40.61 (5.95) 31.57 (5.37) 7.12
0.43 (0.08) 0.55 (0.07) 3.74
15.56 (4.09) 17.5 (4.09) 3.09
0.39 (0.07) 0.47 (0.07) 8.38
17.54 (5.78) 19.75 (4.99) 2.32
3.5(0.14) 3.96 (0.13) 5.82
3.19 (0.09) 2.98 (0.09) 5.90
3.49 (0.13) 3.61 (0.12) 8.38
2.52(0.14) 2.35(0.13) 5.03
3.39(0.13) 3.61 (0.13) 4.37
2.52(0.13) 2.30 (0.13) 5.12
1.88 (0.14) 2.12(0.13) 13.79

Note. For each row, marginal means and standard errors are depicted. Also depicted is the BF, or the Bayes factor of the informative hypotheses (based on the marginal

mean trends) versus its complement.

Taken together, the aforementioned results for solution quantity and
solution quality support Hypothesis la regarding students in the
Success-driven and Productive Failure conditions having higher prepa-
ratory problem-solving performance than students in the Failure-driven
condition. Tables 3 and 4 summarize these results.

Table 4

5.1.2. Posttest (RQ1b)

The rotated factor loadings of a 3-component principal component
analysis (eigenvalues 1.44, 1.04, and 0.85), which accounted for 83% of
the total variance, were in line with our intended differentiation be-
tween non-isomorphic conceptual understanding (items 2 and 3), transfer

Effect size estimates for post-hoc pairwise comparisons (RQ1la, RQ1b, RQ2) between experimental conditions.

Cohen’s d [95% CI]

Failure-driven
&
Productive Failure

Failure-driven
&
Success-driven

Productive Failure
&
Success-driven

Problem-solving phase [Attempt 1] [Pre-scaffold]
Quantity
Quality
Problem-solving phase [Attempt 2] [Post-scaffold]
Quantity
Quality
Posttest (Isomorphic conceptual understanding)
Score
Reasoning
Posttest (Non-isomorphic conceptual understanding)
Score
Reasoning
Posttest (Transfer)
Score
Reasoning
Problem-solving Task Experiences
Knowledge gap awareness
Cognitive dissonance
State curiosity
Germane cognitive load
Extraneous cognitive load
Positive affect
Negative affect

—0.08 [-0.50, 0.34]
—0.54 [-0.97, -0.11]

—0.90 [-1.38, -0.41]
—0.31 [-0.77, 0.16]

—0.31 [-0.83, 0.21]
0.12 [-0.33, 0.58]

0.16 [-0.35, 0.68]
0.24 [-0.21, 0.70]

0.56 [0.03, 1.08]
0.21 [-0.31, 0.74]

0.53 [0.10, 0.95]
—0.09 [-0.50, 0.33]
0.41 [-0.01, 0.83]
0.09 [-0.33, 0.51]
0.19 [-0.23, 0.61]
0.06 [-0.36, 0.48]
0.51 [0.09, 0.94]

—0.18 [-0.62, 0.25]
—0.35 [-0.78, 0.08]

—0.30 [-0.76, 0.16]
—0.17 [-0.62, 0.29]

—0.50 [-1.07, 0.09]
0.40 [-0.06, 0.86]

—0.16 [-0.66, 0.34]
0.15 [-0.31, 0.62]

0.35 [-0.15, 0.85]
0.11 [-0.40, 0.63]

0.03 [-0.38, 0.45]

0.27 [-0.14, 0.69]
0.27 [-0.15, 0.69]
0.31 [-0.11, 0.73]
—0.08 [-0.50, 0.33]
0.32 [-0.09, 0.74]
0.22 [-0.20, 0.63]

—0.10 [-0.54, 0.33]
0.14 [-0.29, 0.57]

0.61 [0.11, 1.10]
0.12 [-0.36, 0.60]

—0.14 [-0.62, 0.34]
0.30 [-0.15, 0.75]

—0.34 [-0.82, 0.15]
—0.10 [-0.57, 0.37]

—0.21 [-0.69, 0.27]
—0.09 [-0.60, 0.43]

—0.52 [-0.94, -0.09]
0.36 [-0.06, 0.79]
—0.14 [-0.56, 0.28]
0.20 [-0.22, 0.62]
—0.30 [-0.72, 0.12]
0.25 [-0.17, 0.67]
—0.32 [-0.74, 0.10]

Note. For each row, effect size estimates are calculated based on follow-up pairwise t-tests (after running univariate ANCOVAs). Cohen’s d > |0.2| are depicted in bold.
For a pairwise experimental comparison (X & Y), positive effect sizes denote evidence in favor of condition X and negative effect sizes denote evidence in favor of

condition Y.
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Table 5
Varimax-rotated components from principal component analysis.

RC1 (Non- RC2 RC3 (Isomorphic
isomorphic (Transfer) conceptual
conceptual understanding)
understanding)
Posttest Item 1 0.11 0.03 0.99
(financially wiser
canton)
Posttest Item 2 0.82 0.12 0.08
(socialist
ideology)
Posttest Item 3 0.79 —0.18 0.07
(dataset
anonymization)
Posttest Item 4 —0.03 0.98 0.03
(dataset
normality)

Note. For each dimension, loadings for representative posttest items are depicted
in bold.

(item 4) and isomorphic conceptual understanding (item 1). Subse-
quently, we used estimates of the derived component scores as repre-
sentative of these three posttest dimensions. Table 5 shows rotated
loadings (eigenvectors) of the posttest items. Neither the MANCOVA nor
univariate ANCOVAs (and Bonferroni-corrected follow-up t-tests) were
significant for the posttest score and reasoning quality. Tables 3 and 4
summarize these results.

For the isomorphic posttest, students in the Failure-driven condition
descriptively scored lower than students in the Productive Failure (d =
0.31) and Success-driven (d = 0.50) conditions. Effect size was low (d < |
0.2]) when comparing the Productive Failure and Success-driven con-
dition, suggesting similar posttest scores. BF. corresponding to this
overall observed trend was 6.08. However, when looking at reasoning
across experimental conditions for the isomorphic posttest, we found a
reversal in trend. Students in both the Failure-driven (d = 0.40) and
Productive Failure (d = 0.30) conditions had a descriptively better
quality of reasoning, relative to the Success-driven condition. There
were no differences in reasoning quality between the Failure-driven and
Productive Failure condition (d < |0.2]). BF, corresponding to this
overall observed trend in reasoning quality was 7.12.

For the non-isomorphic posttest, students in the Failure-driven con-
dition scored similar to students in the Productive Failure and Success-
driven conditions (d < |0.2]). The only posthoc pairwise comparison
that showed d > |0.2| was that between the Productive Failure and
Success-driven condition, where the Success-driven condition students
descriptively scored higher (d = 0.34). BE, corresponding to this overall
observed trend in posttest scores was 3.74. These odds were, however,
1.62 times weaker compared to trends in the isomorphic posttest scores.
When looking at the non-isomorphic posttest reasoning, the only posthoc
pairwise comparison that showed d > |0.2] was that between the
Failure-driven and Productive Failure condition. This comparison sug-
gested that students in Failure-driven condition descriptively showed
higher quality of reasoning (d = 0.24). Other pairwise differences be-
tween conditions suggested similar quality of reasoning (d < |0.2|). BF,
corresponding to this overall observed trend in reasoning quality was
3.09. These odds were, however, 2.3 times weaker compared to trends in
the isomorphic posttest reasoning quality.

For the transfer posttest, we saw a reversal in trend for posttest scores
(compared to isomorphic problem-solving). Here, students in the
Failure-driven condition scored descriptively higher than students in
both the Productive Failure (d = 0.56) and Success-driven (d = 0.35)
conditions. Further, students in the Success-driven condition also scored
descriptively higher than students in the Productive Failure (d = 0.21)
condition, although the effect size was low. BF. corresponding to this
overall observed trend in posttest scores was 8.38. These odds were 1.38
and 2.24 times stronger compared to trends in the isomorphic and non-
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isomorphic posttest scores respectively. Similar to non-isomorphic
problem-solving, the only pairwise comparison of reasoning quality for
the transfer posttest that showed d > |0.2| was that between the Failure-
driven and Productive Failure condition - students in the Failure-driven
condition descriptively showed higher quality of reasoning (d = 0.21).
Other pairwise differences between conditions suggested similar quality
of reasoning (d < |0.2|). BF, corresponding to this overall observed trend
in reasoning quality was 2.32. These odds were 3.06 and 1.33 times
weaker compared to trends in the isomorphic and non-isomorphic
posttest reasoning quality respectively.

Overall, these results partially support Hypothesis 1b regarding stu-
dents in the Success-driven condition having the highest posttest per-
formance (in terms of scores) for the isomorphic assessment (supported),
lowest performance for the transfer assessment (not supported), and
similar performance as the Failure-driven condition students on the non-
isomorphic assessment (supported). When focusing on reasoning quality
as an index of posttest performance, these results do not support hy-
pothesis 1b.

5.2. Underlying mechanisms (RQ2)

The MANCOVA revealed significant differences in task experiences
(assessed after the problem-solving phase) across conditions, Wilks’ A =
0.78, F(14, 222) = 2.05, p = 0.015. Univariate ANCOVAs showed sig-
nificant differences in knowledge gap awareness, F(2, 130) = 3.68, p =
0.028, ng = 0.06 and marginally significant differences in negative
affect, F(2,130) = 2.43,p = 0.093, nf, = 0.04. Tables 3 and 4 summarize
these results.

Students in the Failure-driven condition reported descriptively
higher knowledge gap awareness (d = 0.53), state curiosity (d = 0.41),
and negative affect (d = 0.51), relative to the Productive Failure con-
dition students. Other task experiences were similar between the two
conditions (d < |0.2|). Failure-driven condition students also reported
descriptively higher state curiosity (d = 0.27), affect (negative: d = 0.22,
positive: d = 0.32), germane cognitive load (d = 0.31), and cognitive
dissonance (d = 0.27), relative to the Success-driven condition. Extra-
neous cognitive load and knowledge gap awareness were similar be-
tween the Failure-driven and Success-driven conditions (d < [0.2|).
Finally, we found that students in the Productive Failure condition re-
ported descriptively higher cognitive dissonance (d = 0.36) and positive
affect (d = 0.25), and lower knowledge gap awareness (d = 0.52),
extraneous cognitive load (d = 0.30), and negative affect (d = 0.32),
relative to the Success-driven condition. State curiosity and germane
cognitive load were however similar between the two conditions (d < |
0.2)).

Taken together, for cognitive dissonance and positive affect, these
results support Hypothesis 2 regarding the higher intensity of triggered
mechanisms in the Failure-driven and Productive Failure conditions,
relative to students in the Success-driven condition. For state curiosity,
negative affect and germane cognitive load, results only partially support
Hypothesis 2, with only the Failure-driven condition students self-
reporting higher scores than the Success-driven condition. Finally, for
the remaining two underlying mechanisms of knowledge gap awareness
and extraneous cognitive load, results do not support Hypothesis 2. The
BF. corresponding to the overall observed trends in students’ task ex-
periences for the problem-solving phase was usually in the similar
positive/substantial range of 3-10 (5.82, 5.90, 8.38, 5.03, 4.37 and 5.12
for knowledge gap awareness, cognitive dissonance, state curiosity,
germane cognitive load, extraneous cognitive load, and positive affect).
Only the overall observed trend in negative affect had a relatively higher
BF, of 13.79.

Based on prior work (Loibl et al., 2017), we would expect these
underlying preparatory mechanisms to differentially affect how students
perceive follow-up instruction and consequently learn from it. On
checking whether these differences manifested in the instruction expo-
sure time, we found that Failure-driven condition students took
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significantly longer time (M = 316.37, SE = 17.32) in part three of the
lecture that discussed the canonical solution for the problem-solving
task, F(2, 130) = 5.2, p = 0.007, ng = 0.07, relative to students in
both the Productive Failure, M = 245.51, SE = 17.72, d = 0.57 and
Success-driven, M = 249.8, SE = 17.51, d = 0.57 conditions.

5.3. Metacognitive calibration (RQ3)

The one-sample t-test showed that students in the Failure-driven
condition were not well-calibrated in their initial problem-solving at-
tempts, as reflected in the A (confidence, performance) being signifi-
cantly different from 0 — they were under-confident for both attempt 1, ¢
(43) = —4, p < 0.001, d = —0.60 and attempt 2, t(39) = —2.94, p =
0.005, d = —0.46. However, these students were well-calibrated during
posttest, as reflected in A (confidence, performance) being not signifi-
cantly different from 0 - isomorphic, t(26) = 0.03, p = 0.975, d = 0.07,
non-isomorphic, t(26) = —0.92, p = 0.364, d = —0.18, and transfer, t
(26) = —0.84, p = 0.406, d = —0.16 assessments.

Productive Failure condition students, on the other hand, showed an
under-confidence bias for attempt 1 during the problem-solving phase, t
(42) = —4.14, p < 0.001, d = —0.63. However, as these students kept
generating more solutions during the second problem-solving attempt,
they became well-calibrated, t(42) = —1.17, p = 0.252, d = —0.20. This
effect was also seen during the isomorphic, t(30) = —2.92, p = 0.772, d
= —0.05 and non-isomorphic, #(30) = 0.93, p = 0.359, d = 0.17 post-
tests. However, the major difference relative to the Failure-driven con-
dition was seen during the transfer posttest, where these students
expressed an over-confidence bias, t(30) = 1.85, p = 0.075, d = 0.33.

Finally, we found that students in the Success-driven condition were
well-calibrated only for the transfer posttest, t{(35) = —0.31, p = 0.760, d
= —0.05. These students expressed an under-confidence bias during the
initial problem-solving phase, both for attempt 1, t(38) = —5.77, p <
0.001, d = —0.92 and attempt 2, t(32) = —2.35,p = 0.025,d = —0.41. A
similar under-confidence bias was also observed when these students
solved the isomorphic, t(35) = —2.28, p = 0.029, d = —0.38 and the non-
isomorphic, t(35) = —1.76, p = 0.087, d = —0.29 posttest. Table 6
summarizes these results.

Taken together, for the problem-solving phase, these results do not
support Hypothesis 3 regarding better metacognitive calibration for
students in the Failure-driven and Productive Failure conditions (rela-
tive to students in the Success-driven condition). For the posttest,
however, the results partially support Hypothesis 3.

Table 6
Metacognitive calibration (RQ3) across experimental conditions.
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6. Discussion
6.1. Performance (RQ1)

During the second problem-solving attempt, students generated the
maximum number of solutions in the Productive Failure condition and
the least number of solutions in the Failure-driven condition. Not sur-
prisingly, for the Productive Failure condition, this can be seen as a
direct consequence of the task instructions that emphasized continuing
solution generation in attempt 2 (similar to what students did in attempt
1). Note, however, that across both attempts, only one student in the
Productive Failure condition generated a one-dimensional histogram
(one of the three suboptimal scaffolds explicitly offered to the Failure-
driven condition students). This means that despite a high number of
generated solutions, students in the Productive Failure condition were
not likely to naturally come up with suboptimal representations offered
to the Failure-driven condition students. Further, the decreasing trend in
solution quantity between the two scaffolding conditions can be
attributed to the fact that in contrast to problematizing scaffolds,
structuring scaffolds increase the certainty of action as they nudge stu-
dents towards the canonical solution. This results in the generation of
relatively more new solutions by incorporating information from these
success-driven scaffolds.

For the isomorphic posttest, high(est) scores for students in the
Success-driven condition might stem from them being exactly told the
right way to proceed during the problem-solving phase (this was also
subsequently asserted during the instruction phase). Not surprisingly,
the initial relative dip in performance for the Failure-driven condition
makes sense, because unlike other conditions, students exposed to
problematizing scaffolds were focused on exploring the problem-space
with suboptimal representations, instead of following an isolated (cor-
rect) solution pathway. However, the reversal in trend for reasoning
quality demonstrates that higher performance (evidenced by highest
posttest scores in the Success-driven condition) may not always be
reflective of a high depth of understanding of the underlying domain
principle (evidenced by lowest posttest reasoning quality).

For the non-isomorphic posttest, the Failure-driven condition was as
powerful as the remaining experimental conditions, at least when
looking at posttest scores. In contrast to trends for the isomorphic
problem-solving posttest scores, this suggests that differences between
experimental conditions start to disappear as a greater depth of under-
standing is required to tackle a problem situation. This understanding
was empirically reflected in the highest reasoning quality demonstrated

Calibration bias: A (Confidence, Performance)

Cohen’s d [95% CI]

Under-confident

Over-confident

Well-calibrated

Failure-driven
Problem-solving phase attempt 1 v
Problem-solving phase attempt 2 v
Isomorphic posttest
Non-isomorphic posttest
Transfer posttest

Productive Failure
Problem-solving phase attempt 1 v
Problem-solving phase attempt 2
Isomorphic posttest
Non-isomorphic posttest
Transfer posttest

Success-driven
Problem-solving phase attempt 1
Problem-solving phase attempt 2
Isomorphic posttest
Non-isomorphic posttest
Transfer posttest

AN N NN

—0.60 [-0.92, —0.28]
—0.46 [-0.79, —0.14]
0.07 [-0.37, 0.38]
—0.18 [-0.56, 0.20]
—0.16 [-0.54, 0.22]

AN

—0.63 [-0.96, —0.30]
—0.20 [-0.55, 0.14]
—0.05 [-0.40, 0.30]
0.17 [-0.19, 0.52]

v 0.33 [-0.03, 0.69]

AN

—0.92 [-1.93, —0.54]
—0.41 [-0.76, —0.05]
—0.38 [-0.72, —0.04]
—0.29 [-0.62, 0.04]
v —0.05 [-0.38, 0.28]

Note. Checkmarks are based on significant results from the one-sample t-test (p < 0.05). For each row, positive effect sizes denote over-confidence bias, negative effect
sizes denote under-confidence bias and effect sizes close to 0 denote well-calibrated judgment of performance.
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by students in the Failure-driven condition. Further, we also found the
Success-driven condition to be relatively more efficacious compared to
the Productive Failure condition in terms of posttest scores. What might
explain this advantage? Because students have opportunities to fail
during the first problem-solving attempt and receive scaffolding towards
the canonical solution during the second attempt, the Success-driven
condition can alternatively be perceived as exposing students to a
smaller iteration (cycle) of Productive Failure even before formal in-
struction happens. Support during the second problem-solving attempt
and follow-up instruction present redundant scaffolding opportunities
(Tabak, 2004) for understanding different conceptual task elements.
This might, in turn, have resulted in better learning for students in the
Success-driven condition (relative to the Productive Failure condition).

For the transfer posttest, a reversal in trend for posttest scores
compared to isomorphic problem-solving suggests that the preparatory
benefits of explicit problematizing start becoming salient when posttest
problem situations require flexible adaptation of what is learned from
instruction and/or the ability to re-learn. For students in the Success-
driven condition, high accessibility of correct information from the
scaffolds presented in the problem-solving phase (that can be posited to
help in isomorphic problem-solving) does not reliably reflect their
ability to transfer. We further found that students in the Failure-driven
condition showed the highest reasoning quality for the transfer post-
test (similar to the trends for non-isomorphic problem-solving). This
indicates that not only did these students perform better compared to the
other conditions, but they were also relatively more fluent in explaining
their solution rationale.

6.2. Underlying mechanisms (RQ2)

Comparison of students in the Failure-driven and Productive Failure
conditions suggests that explicit problematizing in the Failure-driven
condition facilitates (to a greater extent) the realization of what is
known and not known about the targeted concept, as well as students’
desire to know more about the canonical solution to fill these knowledge
gaps. Further, a higher lecture viewing time for the part of the follow-up
instruction discussing the canonical solution might afford additional
reflection and comparison opportunities for students in the Failure-
driven condition, in turn allowing them to revise their understanding
of the targeted concept. Students learn more deeply when they are able
to explain and think about the inter-connections between new and
existing knowledge, than when they do not (Chi, 2009).

The relatively higher negative affect in the Failure-driven condition
might be attributed to the explicitly induced opportunities for failure in
the problem-solving process. However, counter to studies that have
found negative emotions during learning to result in narrowed atten-
tional focus (Kaspar & Konig, 2012), longer times required to reach
mastery levels and lower performance on transfer tasks (Brand, Reimer,
& Opwis, 2007; Pekrun & Linnenbrink-Garcia, 2012), we found that
students in the Failure-driven condition consistently exhibited the
highest reasoning quality. In fact, these students even outperformed
students in the Productive Failure (as well as the Success-driven) con-
dition on the transfer posttest. The relatively more careful and analyt-
ical, detailed, and rigid manners of processing information (Knorzer,
Briinken, & Park, 2016) might have attributed to the facilitating effect of
negative emotional experiences during the problem-solving phase. Thus,
explicit failure-driven problem-solving experiences that evoke negative
affect may not always be undesirable for learning (Sinha, 2021).

A comparison of the Failure-driven and Success-driven conditions
suggests that the relatively higher levels of experienced dissonance in
the Failure-driven condition might be attributed to students spending
effort in enduring an uncomfortable task situation whose outcome is not
readily verifiable. Problematizing scaffolds challenge students’ current
understanding, force reasoning with suboptimal representations, and
provide no straightforward way to move towards the canonical solution.
In contrast to the Success-driven condition, this is likely to result in
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problem-solving behaviors featuring relatively greater trial and error
characteristics that build on situational feedback from the problem-
solving environment, in order to reduce dissonance. In other words,
the Failure-driven condition creates a legitimate need for additional
sensemaking activities compared to the Success-driven condition.
Despite the potential for high discrepancy with the canonical solution,
we posit that this additional learning stemming from sensemaking op-
portunities with the problematizing scaffolds holds high preparatory
benefits. Although we did not find direct evidence for this conjecture in
the immediate problem-solving performance (both Failure-driven and
Success-driven conditions had similar solution quality during attempt
2), we saw delayed benefits in posttest reasoning quality and transfer
outcomes. This clearly reflects the incommensurability between per-
formance and learning (Kapur, 2016; Soderstrom & Bjork, 2015).

Finally, we also found that getting exposed to new learning materials
via the multi-step scaffold presentation (irrespective of their type and
whether the presented ideas are optimal or suboptimal) induces similar
levels of knowledge gap awareness. In contrast to the Productive Failure
condition where students work with their own ideas (what they know),
the scaffolding conditions provide relatively greater opportunities for
raising awareness of what is not known.

6.3. Metacognitive calibration (RQ3)

The bias towards under-confidence during the problem-solving
phase for all conditions is plausible. Our study design exposes students
to novel problem solutions and asks them to generate and explain the
rationale for multiple representations and solutions. Indeed, this is not a
common norm in problem-solving practice. However, as students got
more conscious about their acquired knowledge after follow-up in-
struction, unexpectedly, they did not estimate their performance in
posttests more accurately. We observed salient differences in meta-
cognitive calibration as students worked on the posttests.

The fact that students in the Failure-driven condition were meta-
cognitively well-calibrated in the posttest might explain why their
relative efficacy increased as they moved on from the isomorphic to the
non-isomorphic to the transfer questions. On the other hand, surpris-
ingly, students in the Productive Failure condition who were meta-
cognitively well-calibrated for the isomorphic and non-isomorphic
posttests, exhibited an over-confidence bias in the transfer posttest.
Relying on biased evaluations can harm performance by misleading
effort regulation (Ackerman & Thompson, 2017), for example by pre-
maturely stopping consideration of other (more relevant)
problem-solving strategies. This might have worsened the performance
of students exposed to the Productive Failure condition on the transfer
posttest. Finally, for students in the Success-driven condition, being
mostly under-confident suggests that although they followed the pre-
sented scaffolds to move closer to the canonical solution, they may not
have necessarily understood the underlying concept/idea.

7. General discussion and conclusion

In the current study, we compared three variants of the PS-I design
where students received explicit problem-solving scaffolds that either
nudged them towards optimal solutions (Success-driven), suboptimal
solutions (Failure-driven) or received no explicit scaffolds in the
problem-solving phase (Productive Failure). Overall, our results are
consistent with results reported in Sinha et al. (2020) and hold up under
a controlled study as well. We found an overall efficacy of failure-driven
preparatory activities over success-driven activities on (a)
non-isomorphic conceptual understanding (similar posttest scores, but
higher reasoning quality in the Failure-driven condition) and addition-
ally, (b) transfer outcomes (higher posttest scores, higher reasoning
quality). We further found that students in the Productive Failure con-
dition had relatively worse scores and reasoning quality for
non-isomorphic conceptual understanding and transfer outcomes,
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compared to students exposed to failure-driven scaffolding. The only
posttest dimension for which students in the Success-driven and Pro-
ductive Failure conditions outperformed the Failure-driven condition
was that of isomorphic conceptual understanding.

One relevant design-level difference with respect to prior experi-
mental studies comparing scaffolding (typically, success-driven) and an
unscaffolded (pure Productive Failure) condition, for example, Kapur
(2011) and Loibl and Rummel (2014a), is that we had a two-phase
problem-solving design. In contrast to earlier single-phase imple-
mentations in the literature with scaffolding integrated throughout the
problem-solving phase, students in the Failure-driven and
Success-driven conditions here went through an initial attempt at
generating representation and solution methods in the absence of any
scaffolds. Differential scaffolds were only subsequently introduced in a
second phase, affording students opportunities to generate more repre-
sentations and/or revise representations from the first phase. Thus, our
learning design struck a balance between first giving students complete
agency and allowing them to freely invent their own representations for
learning, and only then, externally providing plausible/intelligible
representations to construct. This might explain the efficacy of
failure-driven and success-driven scaffolding in learning from instruc-
tion, relative to the unscaffolded condition (that only emphasized
invention).

When compared to the average effect size disfavoring PS-I (Hedge’s g
—0.08 [95% CI -0.34, 0.28]) relative to scaffolded PS-I learning designs
for a similar postgraduate student population and learning outcomes
such as ours (Sinha & Kapur, 2021b), effect sizes for the current study
exceed or fall closer to the lower end of the confidence interval, at least
when it comes the impact of explicit failure-driven scaffolding on
non-isomorphic conceptual understanding and transfer. In that light,
our results bear tremendous practical significance (Hill et al., 2008). Our
results also expand the explanatory basis for why the reported trends
might hold, in particular, illuminating not just cognitive mechanisms
such as knowledge gap awareness and cognitive load, but also students’
perceived positive and negative affect, and metacognitive mechanisms
like calibration bias. The inclusion of such a wide range of underlying
mechanisms for comparative evaluation of different preparatory
problem-solving approaches makes a strong case for wide-scale adoption
of the developed materials.

It is important to highlight, however, that the reported results are
correlational. We could not test directly for causality (and/or tempo-
rality) because of lacking a large enough sample size and a longitudinal
design with repeated measurement of mediators (learning mecha-
nisms).'! Also, methodologically, because the specific hypotheses we
tested using Bayesian informative hypotheses evaluation ANCOVA
corresponded to the observed trends in marginal means for the depen-
dent variables across experimental conditions (for which we obtained
moderate effect sizes, despite non-significance), it was plausible that the
BF, revealed moderate evidence for several comparisons.'? One caveat
in using Bayesian informative hypotheses evaluation ANCOVA, how-
ever, is that there might exist other unconsidered hypotheses for which
the support in the data might be larger.

11 Concurrent mediation analysis comparing the Failure-driven and Produc-
tive Failure conditions, however, showed knowledge gap awareness to signifi-
cantly mediate the impact on the transfer posttest, f = 0.18 (SE = 0.11), 95%
bias-corrected percentile bootstrap CI [0.01, 0.46] (see supplementary mate-
rials for details).

12 Bayesian error probabilities (uncertainty about a Hypothesis H) are
computed conditional on the information in the observed data. The Bayesian
error associated with a preference of that hypothesis will therefore be smaller
(or, P (H | data) will be higher) for a data set with a high Cohen’s d (e.g., 0.4)
than for a data set with a low Cohen’s d (e.g., 0.1). In other words, if a null
hypothesis specifying the equality of experimental conditions is true, it is much
less likely to observe a Cohen’s d of 0.4 than a Cohen’s d of 0.1 (and vice-versa).
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For the design of scaffolding in learning through problem-solving,
our results regarding the pedagogical benefits of explicit failure-driven
scaffolding imply their inclusion to serve as an effective preparatory
activity in classroom teaching practices. Taken together, the findings
from the quasi-experimental study (Sinha et al., 2020) and our
controlled study support the deliberate design of failure-driven experi-
ences before formal instruction, if educators wish to foster students’
ability to take knowledge learned in one context and apply it in novel
contexts. More generally, educators might consider ways in which stu-
dents, via explicit and deliberately-designed failures in preparatory
problem-solving, can become aware of the limitations of their prior
knowledge. Inviting initial failure-driven participation by creating
in-situ opportunities for suboptimal representation generation might
provide a strong foundation for reorganization of existing knowledge
when students are exposed to instruction. In contrast to the
uncertainty-reducing  nature  of  success-driven  scaffolding,
failure-driven scaffolding can be conceived as a route to harnessing the
potential benefits of immersing students in uncertainty (Metz, 2004).
Uncertain situations demand “searching, hunting, inquiring, to find
material that will resolve the doubt, settle and dispose of the perplexity”
(Dewey, 1933, p. 121). The scope of learning with failure-driven scaf-
folding is therefore high.

Research that delves more deeply into other forms of failure-driven
scaffolding could also be a promising future direction. For example,
explicitly presenting students with datasets or situations where their
current solution does not apply, might signal a need to gather more
evidence to integrate with prior evidence. The selection of such con-
trasting cases as scaffolds on-the-fly, in order to question the optimality
of an already developed solution approach, is an exciting research di-
rection. More broadly, this ties into the idea of adaptive scaffold pre-
sentation (Aleven et al., 2017; Roll, 2009). Such personalization, which
can iteratively and naturally gauge students’ understanding (e.g., by
holding casual conversations) and deliver scaffolds out of order (as and
when necessary), is likely to improve students’ metacognition about
what they know and what they do not know, and in turn, lead to
improved learning from instruction.

We would like to emphasize, however, that the adoption of deliberate,
guided failure as a scaffolding strategy during preparatory problem-
solving should go hand-in-hand with fostering positive teacher-student
relationships (Jennings & Greenberg, 2009). For instance, students are
more likely to trust the pedagogical value of classroom activities, if they
have a good interpersonal rapport with the teacher, and trust the teacher
to show genuine interest in (and meet) their developmental, emotional,
and academic needs. For teachers, therefore, it is equally critical to
cultivate positive relationships in the classroom as well as adopt a
pedagogical value-style framing of failure-driven scaffolding activities
(that clearly emphasizes the utility of engaging in such activities), in
order to make students increasingly more comfortable with the
uncomfortable.
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