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A B S T R A C T   

Although Productive Failure has shown to be effective (Kapur, 2016; Loibl, Roll, & Rummel, 2017), it is not clear 
if failure in problem-solving is necessary. Initial work in a quasi-experimental setting suggests that explicitly 
designing for experiences of failure leads to better learning outcomes than designing for success. We build on this 
to report on a controlled experimental study where students are exposed to failure-driven, success-driven, or no 
explicit scaffolding in problem-solving prior to instruction. For assessments of non-isomorphic conceptual un
derstanding, our results align with those from prior work. Despite the similarity in posttest scores, students 
exposed to failure-driven scaffolding demonstrate higher quality of constructive reasoning than those receiving 
success-driven scaffolding. Additionally, our study reveals learning benefits of failure-driven scaffolding (for both 
posttest scores and reasoning quality) on assessments of transfer. Several cognitive, affective and meta-cognitive 
mechanisms are investigated to explain robust learning benefits of failure-driven scaffolding in preparatory 
problem-solving.   

1. Introduction 

Problem-solving followed by instruction (PS-I) comprises an initial 
generative problem-solving phase requiring students to generate mul
tiple solutions to a problem. A formal instruction phase subsequently 
introduces targeted concepts and the canonical solution. PS-I learning 
designs activate students’ prior knowledge, raise awareness of knowl
edge gaps, and aid in recognition of deep problem features (Loibl et al., 
2017). These preparatory benefits have been posited to account for the 
relative efficacy of PS-I over instruction-first approaches, as evidenced 
by effect sizes favoring PS-I in a recent meta-analysis of the field 
(Hedge’s g 0.36 [95% CI 0.20, 0.51], N = 166 comparisons) by Sinha & 
Kapur (2021a). Given such a robust trend of the superiority of PS-I de
signs across diverse learning domains and student populations, research 
into improving its effectiveness has intensified. 

One such approach is to explicitly scaffold the initial problem-phase, 
typically towards success, by providing cognitive or metacognitive 
support (Holmes, Day, Park, Bonn, & Roll, 2014; Kapur, 2011; Loibl & 
Rummel, 2014a). However, meta-analytic evidence from Sinha & Kapur 
(2021b) suggests that relative to an unscaffolded PS-I design, such 
scaffolding attempts have largely been unsuccessful (Hedge’s g = − 0.08, 
95% CI [-0.20, 0.04], N = 60 comparisons). An alternative approach to 

improve the effectiveness of preparatory problem-solving is explicit 
failure-driven scaffolding. To our knowledge, only one recent study has 
shown that nudging students towards suboptimal solutions via explicit 
failure-driven scaffolds may lead to stronger conceptual understanding 
than nudging students towards optimal solutions via explicit 
success-driven scaffolds (Sinha et al., 2020). However, this was a 
classroom-based study and not a fully controlled experiment. 

Further, to the best of our knowledge, there is no research within PS-I 
comparing explicit failure-driven scaffolding to unscaffolded prepara
tory problem-solving. PS-I designs are usually aimed at introducing new 
concepts to novices in a domain. Therefore, they typically have high 
failure-rates even without any failure-scaffolding. This naturally leads to 
the question of whether there is an added efficacy of explicit scaffolding 
prior to instruction. Before emphasizing the design of explicit failure- 
driven experiences prior to formal instruction, thorough testing and 
replication in more controlled environments with similar student de
mographics and task domains is needed. That is precisely the aim of our 
study. 

2. Theoretical background 

We focus on differential preparatory effects of failure-driven and 
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success-driven scaffolding within PS-I. To better situate our experi
mental replication context, we start by describing the role of scaffolding 
in PS-I (cf. section 2.1), cognitive and affective mechanisms that can be 
posited to be triggered in scaffolded PS-I (cf. section 2.2), and finally 
individual differences in student characteristics that may affect learning 
from scaffolded PS-I (cf. section 2.3). At a theoretical level, we are 
interested in the extent to which learning mechanisms are differentially 
triggered in scaffolded PS-I. At a more practical level, we are interested 
in the generalizability of the impact of failure and success-driven scaf
folding to our study context (data science education) and targeted 
population (postgraduates). 

2.1. Preparatory problem-solving and scaffolding 

To combine strengths and mitigate drawbacks of engaging students 
in standalone problem-solving or lecture, prior research (Kapur & Bie
laczyc, 2012; Loibl et al., 2017; Schwartz & Martin, 2004) has proposed 
the PS-I design that implicates a temporal ordering between these two 
learning activities. Scaffolding, or administering just-in-time support to 
allow students to make meaningful progress in a problem-solving task 
(Wood, Bruner, & Ross, 1976), is one way to facilitate learning through 
preparatory problem-solving without shrinking the problem-space 
upfront (Hmelo-Silver, Duncan, & Chinn, 2007; Quintana et al., 
2004). There has been a longstanding debate on whether scaffolded 
problem-solving should lean towards being more success-driven or 
failure-driven (Kapur, 2016; Lee & Anderson, 2013). 

Scaffolding towards success is likely to result in high performance, as 
one might expect when working with the suggested correct procedure. A 
straightforward implication is that non-promising solution pathways 
can be curtailed early, as students focus on improvement and making 
things work. However, it is also plausible that students’ focus on high 
performance insufficiently challenges prior knowledge, bypasses inquiry 
points, and comes at the expense of depth of understanding of under
lying domain principles (Kapur, 2016; Soderstrom & Bjork, 2015). 
Hidslugh performance does not guarantee that students are aware of the 
inconsistency between what solution approach works in a given context 
and the extent to which it generalizes to future contexts (Schwartz, 
Chase, & Bransford, 2012). 

Scaffolding towards failure, on the other hand, is likely to result in an 
initial dip in performance, as one might expect when working with the 
suggested incorrect procedure. Repeated failures can also be penalizing, 
in that they can increase self-doubt and stability of future failure ex
pectancies leading to the absence of control (Mikulincer, 1994). Expe
riencing failures might make students more susceptible to negative 
affective reactions (Tulis & Ainley, 2011) and increase stickiness to 
self-generated suboptimal solutions (Johnson & Seifert, 1994). Howev
er, numerous theoretical lenses also speak to the importance of failure in 
problem-solving (see Kapur (2016) and Metcalfe (2017) for reviews). 
One common thread tying these frameworks is the predication that 
failures initiate explanation and reflection processes to make sense of 
something that is not immediately apparent. By maximizing information 
gained from each problem-solving failure, the route to discovery can be 
made tractable. Echoing this philosophy, Hammer (2000, p. 58) has 
remarked that “wrong thinking should be seen as productive if it helps 
develop resources for right thinking later on”. Negative knowledge 
(Gartmeier, Bauer, Gruber, & Heid, 2008), or the knowledge of what is 
not part of a concept and what procedure does not work and why, 
resulting from deliberately-designed failure experiences might enhance 
reflection quality. Even if students can activate partial knowledge of 
what does not work and why during preparatory problem-solving, it 
might still serve as a strong foundation to acquire robust knowledge 
when exposed to instruction later. 

The incommensurability between initial training performance (as 
assessed during the preparatory problem-solving phase of PS-I) and 
delayed testing performance (as assessed via posttest following the in
struction phase of PS-I), an argument advanced by Kapur (2016), is of 

prime interest for the current article. Although on one hand, “substantial 
learning could occur in the absence of any discernible changes in per
formance … more recent research … have demonstrated the converse to 
also be true – specifically, that changes in short-term performance often 
bear no relationship to long-term learning” (Soderstrom & Bjork, 2015, 
p. 193). By tapping into multiple performance measures throughout our 
PS-I design, we evaluate the differential impact of scaffolding towards 
success and failure on training and testing phases. 

2.2. Mechanisms underlying preparatory problem-solving 

To open possible explanatory bases for why certain PS-I designs work 
better than others, research syntheses by Kapur (2016) and Loibl et al. 
(2017) have consolidated a set of cognitive mechanisms. These mech
anisms include, but are not limited to.  

1. Intentionally activating relevant prior knowledge (prior knowledge 
activation)  

2. Enhancing students’ awareness of the problem situation and own 
knowledge gaps (knowledge gap awareness)  

3. Focusing attention on the search for deeper patterns rather than 
surface characteristics of the problem (deep feature recognition)  

4. Inducing germane processing of information (Leppink, Paas, Van 
Gog, van Der Vleuten, & Van Merrienboer, 2014) to resolve in
congruity and uncertainty that is inherent in the problem-solving 
process (cognitive load) 

There is an equally important affective and motivational aspect 
inherent in the design of PS-I. For instance, the initial problem-solving is 
expected to facilitate students’ curiosity (Naylor, 1981) to learn targeted 
concepts after spending time grappling with a novel problem. The 
overall perceived affect (a collective term for describing feeling states 
like emotions and moods) too plays an important role in regulating 
cognition and behavior (Watson, Clark, & Tellegen, 1988). PS-I, in 
particular, because of integrating variant-invariant features and con
trasting cases in the problem design to create an affective hook, can be 
expected to evoke positive affect in the form of surprise, interest and 
confusion. These knowledge emotions associated with thinking and 
comprehending (Silvia, 2009) motivate exploratory action that is 
needed to keep generating multiple solutions. 

On the other hand, moderate levels of negative affect in the form of 
anger, disgust and contempt can also be posited to be prevalent in 
preparatory problem-solving because of its deliberately designed ill- 
structured nature (Sinha, 2021). As a hostility triad of emotions often 
experienced together (Izard, 1977), appropriately appraising the 
resulting negative evaluation of the task may encourage active behav
iors to address problematic aspects and mollify the situation (Har
mon-Jones, Price, Gable, & Peterson, 2014). Finally, with high expected 
failure rates, students can also be expected to experience discomfort as 
they endure an unpleasant task situation with no specific accuracy 
feedback (cognitive dissonance) – this level of induced dissonance (Fes
tinger, 1962; Levin, Harriott, Paul, Zhang, & Adams, 2013) might in turn 
differentially affect problem-solving performance. 

Prior PS-I research has empirically assessed the impact of these 
mechanisms across different study contexts such as mathematics 
(Likourezos & Kalyuga, 2017; Loibl & Rummel, 2014b; Newman & 
DeCaro, 2019), physics (Glogger-Frey, Gaus, & Renkl, 2017; Lamnina & 
Chase, 2019), medicine (Marei, Donkers, Al-Eraky, & Van Merrienboer, 
2019) and data science (Sinha et al., 2020), primarily for high school 
students and undergraduates. However, their impact altogether thus far 
has not been examined within a single study context. We also do not 
know the extent to which these mechanisms are triggered in scaffolded 
PS-I contexts, in particular, in the presence of explicit scaffolding to
wards failure (cf. section 4.3.2). Additionally, novel mechanisms perti
nent to students’ metacognitive biases have not been explored within 
PS-I yet. 

T. Sinha and M. Kapur                                                                                                                                                                                                                        
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We posit that the highly generative nature of tasks within the initial 
problem-solving phase calls on students’ metacognitive monitoring and 
regulation (Ackerman & Thompson, 2017) to think about progress. 
Students use this knowledge to adapt and make changes to their 
problem-solving strategies. These metacognitive judgments, often based 
on heuristic cues due to non-readily verifiable outcomes of solution 
revision, may not always reliably reflect actual knowledge. Such biases 
have been previously emphasized in the metacognitive literature (see 
Bjork, Dunlosky, and Kornell (2013) and Roebers (2017) for reviews). 
We are therefore also interested in investigating whether students’ 
calibration bias (Kruger & Dunning, 1999), that is, the gap between 
performance evaluation and actual performance, could offer new in
sights into the impact of metacognitive awareness on learning within 
PS-I designs. Prior PS-I research (e.g., Loibl and Rummel (2014b) and 
follow-up work) has often used questionnaires tapping into the over
arching construct of global awareness of knowledge gaps (that is, 
awareness without being able to identify which specific component is 
lacking) as an explanatory basis for the efficacy of PS-I designs. How
ever, no prior work has directly measured metacognitive biases in close 
relation to problems solved during the preparatory phase and/or 
posttest. 

The interplay between the aforementioned cognitive, affective, and 
meta-cognitive learning mechanisms can be posited to contribute to the 
pedagogical usefulness of PS-I, in particular in preparing students to 
learn, or facilitating their readiness to learn a targeted concept in follow 
up instruction (Schwartz & Martin, 2004). Capturing information about 
these mechanisms (via pre-planned measurements) is therefore critical 
to making claims about the explanatory basis of PS-I. Here, we use 
several such probes (cf. section 4.6.3) to explain why some scaffolded 
problem-solving experiences work better or worse than others. 

2.3. Individual differences in learning from success and failure 

Factoring individual differences in learning from failure and success 
(Clifford, 1984) is imperative in view of examining the spectrum of 
students who might differentially respond to scaffolding opportunities 
during problem-solving. Because a key preparatory goal in PS-I is to 
activate relevant prior knowledge (Kapur & Bielaczyc, 2012; Loibl et al., 
2017), it is natural to account for domain-specific and task-specific prior 
knowledge that students use to generate and revise solutions. When a 
concept is not formally learned yet (e.g., in preparatory 
problem-solving), the associated cognitive demands are higher 
compared to problem-solving that is focused solely on the practice of 
already learned materials (Kapur, 2014; Likourezos & Kalyuga, 2017; 
Newman & DeCaro, 2019). This calls on students’ effort regulation to 
steer through the task by exercising self-control and remaining focused 
(Pintrich, 1991). 

Further, two motivational characteristics, self-esteem (Harter, 2012; 
von Soest, Wichstrom, & Kvalem, 2016) and goal orientation (Button, 
Mathieu, & Zajac, 1996), shape whether students view failures as op
portunities to learn (Dweck, 1992), and more generally, affect their 
attributional style (Fielstein et al., 1985) towards failure and success 
(positive events to stable, global and internal causes, and negative 
events to temporary, specific or external causes). Finally, students’ 
attitude toward mistakes (Leighton, Tang, & Guo, 2015) affects how they 
appraise the value of making mistakes, behaviors and affective re
actions, all of which can enhance or impede receptivity to failures. 

Better incoming characteristics, as evidenced by the aforementioned 
individual differences we measure in the current study (cf. section 
4.6.1), can be assumed to positively influence responses to failure and 
success. For example, students with high self-esteem and a learning goal 
orientation disposition are likely to engage in deeper processing of in
formation presented in the scaffold (Sinha et al., 2020). With sustained 
efforts toward meaning-making with the scaffold (high effort regula
tion), failure likelihood can be reduced. 

3. The replication context 

We aim to carry out a controlled experiment on the effects of explicit 
failure-driven and success-driven scaffolding on conceptual under
standing and transfer. For the design of scaffolding, we draw from the 
seminal work on structuring and problematizing student production 
(Reiser, 2004). Structuring scaffolds increase success-likelihood by 
reducing degrees of freedom to lower task complexity, help students 
maintain direction, and make problem-solving tractable. Problematizing 
scaffolds increase failure likelihood by increasing degrees of freedom to 
challenge students’ current understanding and highlight discrepancies 
between what students generate and the canonical task features. To 
contextualize our replication and extension, we first discuss the exper
iment reported by Sinha et al., 2020 and then summarize our list of 
major changes. 

3.1. Classroom study by Sinha et al. (2020) 

This study was conducted in data science education with N = 221 
university students. The targeted learning concepts comprised intro
ductory, but fundamental ideas in data science – Anscombe’s Quartet 
(complementary importance of graphical + numerical representations 
in reasoning with data) and Spurious Correlation (correlation ∕= causa
tion). The intervention comprised an initial problem-solving phase and a 
follow-up instruction phase, resembling PS-I (Loibl et al., 2017). 

The type of scaffolding during the problem-solving phase was 
manipulated, resulting in four experimental conditions. Two variants of 
problematizing were used, each of which offered single-step scaffolds to 
nudge students towards reasoning with different suboptimal represen
tations. These representations differed in their level of suboptimality 
with respect to the canonical answer. Further, two variants of struc
turing were used, each of which offered single-step scaffolds to nudge 
students towards reasoning with different optimal representations. 
These representations differed in their level of specificity with respect to 
closeness to the canonical answer. Posttest assessments comprised an 
isomorphic and a non-isomorphic conceptual understanding question. 

Results demonstrated that failure-driven scaffolding was better than 
success-driven scaffolding with high specificity, however similar to 
success-driven scaffolding with low specificity. Further, students 
exposed to failure-driven scaffolding demonstrated a higher quality of 
constructive reasoning (meaningful elaborations (Chi, 2009) that went 
beyond what was presented), relative to success-driven conditions with 
both low and high specificity. These results were salient for the more 
complex Anscombe’s Quartet topic. 

3.2. Changes in the present study 

We built on the quasi-experimental study by Sinha et al. (2020) to 
design a controlled experimental study. First, we improved the assess
ment of prior knowledge and posttest learning by administering a 
domain-general math ability calculus pretest (Epstein, 2007), and add
ing additional items assessing non-isomorphic conceptual understand
ing and transfer. Second, we designed multi-step scaffolds that 
progressively nudged students towards success or failure. In addition to 
design-level changes, we added a third experimental condition that 
provided no explicit scaffolding during the problem-solving phase 
(resembling a pure Productive Failure (Kapur & Bielaczyc, 2012) 
design). Finally, because previous results were salient for the 
Anscombe’s Quartet topic, we focused on this topic. 

3.3. Research questions and hypotheses 

In light of prior work in PS-I and the discussed tradeoffs in scaf
folding, the present study addresses the following research questions 
and their associated hypotheses. 

T. Sinha and M. Kapur                                                                                                                                                                                                                        
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1. RQ1a: How does scaffolding type during preparatory problem- 
solving (success-driven, failure-driven, none) impact students’ pre
paratory problem-solving performance, controlling for their incoming 
characteristics and task experiences during the initial problem- 
solving phase?  

Hypothesis 1a. Due to lower failure likelihood owing to a focus on 
revising and improving self-generated solutions and/or working with 
explicitly offered optimal representations, we expected students in the 
Success-driven and no scaffolding condition to have higher preparatory 
problem-solving performance than Failure-driven condition.  

2. RQ1b: How does scaffolding type during preparatory problem- 
solving (success-driven, failure-driven, none) impact students’ post
test performance, controlling for their incoming characteristics, task 
experiences during the initial problem-solving phase, and perceived 
lecture quality?  

Hypothesis 1b. Due to the (a) differential overlap between the nature 
of preparatory student work with high success-likelihood the nature of 
work required to solve different posttests, and consequently (b) rela
tively lower opportunities for relevant learning mechanisms (cf. section 
2.2) to be triggered in the absence of suboptimal representation gener
ation, we expected Success-driven condition students to have  

• the highest performance for isomorphic assessments (with answers 
corresponding precisely to the optimal representations offered dur
ing the problem-solving phase)  

• similar performance as Failure-driven condition students for non- 
isomorphic assessments (with answers requiring a relatively higher 
depth of understanding and not depending exclusively on students’ 
work with scaffolds, a trend also found in Sinha et al. (2020))  

• the lowest performance for transfer assessments (with answers 
involving flexible integration of representations not covered during 
the intervention, and being more likely to be aided by failure-driven 
problem-space exploration)  

3. RQ2: How do underlying mechanisms (task experiences) triggered 
because of engaging in preparatory problem-solving vary differen
tially for students receiving success-driven, failure-driven, or no 
scaffolding?  

Hypothesis 2. Due to the relatively higher proportion of time on task 
where students work with self-generated and/or explicitly offered sub
optimal representations (and consequently, enhanced preparation for 
learning from instruction), we expected students in the Failure-driven 
and no scaffolding condition to have higher self-reported scores on 
measurements tapping facilitatory underlying mechanisms, relative to 
Success-driven condition students.  

4. RQ3: What are the trends in metacognitive calibration across solutions 
developed during the problem-solving phase and posttest, and how 
do these vary for students receiving success-driven, failure-driven, or 
no scaffolding during preparatory problem-solving?  

Hypothesis 3. Due to (a) greater opportunities for accurately self- 
evaluating problem-solving performance amidst exposure to self- 
generated and/or explicitly offered suboptimal representations, and 
consequently, owing to such practice, (b) an increased likelihood of 
awareness of representations that may not provide a clear canonical 
solution pathway, we expected students in the Failure-driven condition 
and no-scaffolding condition to be relatively better calibrated than 
Success-driven condition students. 

4. Method 

4.1. Participants 

We recruited N = 132 participants (59% male, n = 78; 41% female, n 
= 54) from a large student volunteer pool (>10,000) from two highly- 
ranked but open-admission universities in Europe. Apriori power anal
ysis based on ANCOVA suggested sample size to be in the range of N =
128–206 to detect medium-size effects (d = 0.5) with 70%–90% power 
(α error probability 0.05). To participate in the study, students had to 
know high school math (basic algebra, calculus, statistics and proba
bility) and be familiar with programming in Python (at least 1 semester 
of Python programming experience).1 58.33% of participants in our 
sample came from ten different European ethnicities (30.3% German, 
being the majority), and 41.67% of participants came from a non- 
European ethnicity (37.12% Asian, being the majority). 

Post-study questionnaires revealed that the majority (83.3%) of 
participants had not heard of Anscombe’s Quartet prior to the study 
session, suggesting that they were novices in the targeted concept (no 
task-specific knowledge). However, participants reported that they were 
somewhat familiar with numerical representations (M = 4.15, SD =
1.77) and graphical representations (M = 4.48, SD = 1.68) before 
coming into the study (on a 7-point Likert scale). This suggests that 
students might have possessed some prerequisite domain-specific 
knowledge for learning the targeted concept. 

4.2. Task domain 

Anscombe’s Quartet, where the aim was that students understand 
the complementary importance of numerical and graphical representa
tions when reasoning with data, was the targeted data science learning 
concept. To work towards this goal, a set of datasets with similar 
descriptive statistics but very different plots were presented to students, 
giving them the opportunity to reflect on a concrete task that relied on 
assessing the strength of evidence from both these data sources. Students 
had to work individually in a dynamically executable online problem- 
solving environment (Jupyter notebook), similar to the one used in 
the classroom study by Sinha et al. (2020). Using form fields and 
interactive sliders, this dynamically executable Python Jupyter note
book allowed students to load relevant datasets for a problem, run basic 
statistics, read information about the problem-solving task, record their 
answers, reasoning and confidence (see Fig. 1). Similar to a program
ming language compiler, the Python Jupyter notebook provided 
syntax-level feedback when writing programming code. Posttest ques
tions were also administered using separate Python Jupyter notebooks. 

1 The chosen high school math prerequisites were kept in mind when 
designing the learning materials for the current study as well as in our previous 
study (Sinha et al., 2020). Because of iterative piloting of these learning ma
terials with university students prior to the actual study, we assume that the 
criterion of knowing high school math should be fulfilled by all participants. To 
maximize participation, we intentionally kept this statement in the recruitment 
advert to reflect that the bar for signing up was low and that no special/
advanced math skills were needed. Further, students were invited for partici
pation if they scored >= 7/10 on a pre-screening quiz covering Python syntax. 

T. Sinha and M. Kapur                                                                                                                                                                                                                        
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4.3. Scaffolding design 

4.3.1. Success-driven scaffolding 
Our preparatory problem-solving task involved reasoning with a 

bivariate dataset. Therefore, the structuring scaffold hierarchy included 
a prompt (a Wikipedia page suggesting students to read more about 
exploratory data analysis), hint (description of data science phenomena 
under consideration), and finally a bottom-out hint or the last hint in the 
sequence precisely conveying the answer (syntax for scatterplot gener
ation, an optimal graphical representation for reasoning with bivariate 
datasets). Prompts divulged very little solution-relevant information and 
can be conceived as the weakest or least-specific structuring scaffold 
(smallest nudge towards success). Prompts pointed students to problem 
conditions that should likely remind students of the knowledge com
ponents’ relevance. Hints, on the other hand, incorporated the idea of 
teaching students the knowledge component that is actually relevant in 
the current problem-solving context. This means that hints told students 
what to do but not how. Finally, bottom-out hints represented the 
strongest or most-specific structuring scaffold (biggest nudge towards 
success) and told precise and potentially optimal ways of proceeding. 

Presentation-wise, students first received a prompt in their problem- 
solving workbooks. Further scaffolds such as the hint and bottom-out 
hint were only revealed if students indicated that the information 
from a previous scaffold was not helpful in solution revision, and 
explicitly asked for the next scaffold. The underlying design rationale 
was to give students the least-specific structuring that could nudge 
problem-solving towards success first. This was based on empirical 
effectiveness of such a scaffold hierarchy (Aleven, McLaughlin, Glenn, & 

Koedinger, 2016) based on the behavior of expert human tutors (Van
Lehn, 2011), and used in prominent educational applications (e.g., Khan 
Academy, Carnegie Learning, ASSISTments).2 

4.3.2. Failure-driven scaffolding 
Our problematizing scaffold hierarchy started with the presentation 

of a moderately high suboptimal representation (one-dimensional his
togram), subsequently an extremely high suboptimal representation 
(bar chart), and finally ended with the least suboptimal representation 
among the three (two-dimensional histogram). A bar chart is suboptimal 
because it is only informative when variables in the data comprise a mix 
of continuous and categorical variables. Moreover, even if one makes a 
bar chart with only numeric variables, there is high noise in a bar chart 
visualization in absence of natural ordering of the dataset categories – 
consequently, it is difficult to discover clear patterns when comparing 
arbitrary data segments. With histograms, information is lost because of 
binning and/or the lack of directly perceivable information about 
covariation in the data. Such effects are more pronounced for one- 
dimensional histograms compared with two-dimensional histograms. 

As with success-driven scaffolds, students could request these scaf
folds one at a time, if they were not certain about revising their answers. 
Our design rationale behind the failure-driven scaffold hierarchy, where 
initially presented scaffolds were more suboptimal than the ones 

Fig. 1. Problem-solving environment used in the study.  

2 Khan Academy (https://www.khanacademy.org/), Carnegie Learning Inc. 
(https://www.carnegielearning.com/products/software-platform/mathia-lea 
rning-software/), ASSISTments (https://new.assistments.org/). 
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presented later, was to increase the likelihood that students use all 
scaffolds and explore the problem-space maximally, instead of following 
an isolated solution path.3 We intended to lead students towards ques
tionable decision-making by asking them to consider a subset of con
ceptual domain factors that did not lead to the canonical solution and 
challenge them to reason with such partially-gained insights. To keep 
scaffold presentation style consistent with the Success-driven condition 
and avoid any bias before students interacted with the scaffolds, we kept 
a relatively neutral tone and introduced each failure-driven scaffold as 
an idea. 

4.3.3. No explicit scaffolding 
We also compared explicit success-driven and failure-driven scaf

folding to a PS-I learning design without any explicit scaffolding during 
the problem-solving phase. This resembles a pure Productive Failure 
condition (Kapur, 2014; Kapur & Bielaczyc, 2012), and affords a direct 
evaluation of the efficacy of initial scaffolding and its preparatory ben
efits in learning from instruction. 

4.4. Learning materials 

All learning materials underwent iterative design and testing with 
participants having similar demographic as the study (N = 20), and can 
be found under supplementary materials. 

4.4.1. Problem-solving phase 
In the problem-solving phase, students had to create as many mea

sures as they could, in order to rank-order datasets of four car companies 
from the most successful to least successful. Information about the 
number of car units sold and employee satisfaction was given to them. 
Consistent with the design principles of Productive Failure (Kapur & 
Bielaczyc, 2012), we designed the datasets such that they had exact 
same non-parametric statistics (median, interquartile range, Spearman’s 
correlation), but different parametric statistics (mean, standard devia
tion, Pearson’s correlation) and very different visualizations. For the 
second attempt workbook, students in the Success-driven and 
Failure-driven conditions received multi-step structuring or problemat
izing scaffolds. They could use information from these scaffolds to create 
as many revised solutions as they could. In the no scaffold (Productive 
Failure) condition, students did not receive any explicit scaffolds in the 
second attempt. They were asked to keep generating more solutions. 

4.4.2. Instruction phase 
The instruction phase was presented as a three-part video that stu

dents could watch at their own pace (e.g., by pausing, re-watching). The 
first part introduced the concept of Anscombe’s Quartet (5 min), the 

second part compared and contrasted different student solutions with 
the canonical one (10 min), and the third part presented and justified 
one possible canonical answer to the task (5 min). The lecture content 
was developed by the first author with more than 5 years of data science 
experience, and further independently verified by two instructors with 
backgrounds in data science and statistics. 

4.4.3. Posttest 
Our posttest included one isomorphic item testing for conceptual un

derstanding, two non-isomorphic items testing for conceptual under
standing, and one item testing for transfer (item 4). Final scoring was 
binary (0/1) for all items. The isomorphic conceptual understanding ques
tion (item 1) involved reasoning with both graphical and numerical rep
resentations in a task that had a two-dimensional data distribution (similar 
to the problem-solving phase, however, with an entirely different cover 
story). The first non-isomorphic conceptual understanding question (item 2) 
involved reasoning with one-dimensional data distribution, as opposed to a 
two-dimensional data distribution used in the initial problem-solving task. 
The second non-isomorphic conceptual understanding question (item 3) 
involved reasoning with a tri-variate dataset and making inferences based 
on the descriptive technique of linear regression. The transfer question 
(item 4) involved reasoning with not only descriptive statistics but also 
inferential statistics that were not covered during the problem-solving task. 
Details can be found in supplementary materials. 

4.5. Experimental design 

The complete intervention took 150 min (see Fig. 2). Prior to the 
problem-solving phase, students’ incoming characteristics were assessed 
using a combination of questionnaires and a short calculus pretest (20 
min, cf. section 4.6.1). Participants were randomly assigned to experi
mental conditions. During the initial problem-solving phase, students in 
every condition made an identical first attempt at the task in the absence 
of any external scaffolds (20 min). For problem-solving in the second 
attempt, three experimental manipulations were instantiated (20 min). 
We call these Failure-driven (N = 45, explicit problematizing scaffolds 
nudging students towards failure), Productive Failure (N = 43, no 
explicit scaffolds), and Success-driven (N = 44, explicit structuring 
scaffolds nudging students towards success). After the problem-solving 
phase, we collected students’ task experiences using questionnaires (5 
min, cf. section 4.6.3). 

After reporting their problem-solving task experiences, students in 
all conditions went through an identical instruction phase (20 min), 
delivered in the form of a pre-recorded video lecture using the Go-Lab 
infrastructure (De Jong, Sotiriou, & Gillet, 2014). Finally, students 
solved four posttest questions tapping different dimensions of under
standing of the targeted concept (60 min). After completion of the 
posttest, students’ perceived lecture quality was captured using ques
tionnaires. In addition, students also self-reported their demographic 
information (gender, ethnicity), high school math score, and familiarity 
with numerical/graphical representations (5 min, cf. section 4.6.6). 

4.6. Measures 

4.6.1. Before the problem-solving phase 
Students’ incoming characteristics were collected via questionnaires 

(randomly ordered during presentation), which previous work (Sinha 
et al., 2020) has validated. These characteristics reflect individual dif
ferences in learning from success and failure (Clifford, 1984). We included 
measurements of effort regulation (4 items, α = 0.74, e.g., “I work hard to 
do well even if I don’t like what we are doing in classes”), goal orientation 
(learning (8 items, α = 0.84, e.g., “The opportunity to do challenging work is 
important to me”) and performance (8 items, α = 0.71, e.g., “I prefer to do 
things that I can do well rather than things that I do poorly”) sub-scales), 
attitude towards mistakes (affect (4 items, α = 0.67, e.g., “When I make 
mistakes answering classroom questions, I am overwhelmed with 

3 We chose not to have a failure-scaffold hierarchy based on the principle of 
smallest to biggest nudge towards failure (two-dimensional to one-dimensional 
histogram to bar chart), because the presentation of a scaffold with relatively 
low suboptimality at the beginning may already start pushing students towards 
a reasonable answer (inferences about the relationship between two numeric 
variables). This, in turn, may reduce the likelihood that students move onto the 
exploration of more suboptimal scaffolds. We also chose not to present failure- 
scaffolds following the principle biggest to smallest nudge towards failure (bar 
chart to one-dimensional histogram to two-dimensional histogram), because it 
can in fact be perceived to resemble a structuring/success-driven sequence that 
makes critical task features for solving the problem increasingly more relevant. 
Additionally, based on the help-seeking literature in intelligent tutoring systems 
(Aleven, Stahl, Schworm, Fischer, & Wallace, 2003), this sequencing posed a 
risk of help-abuse, that is, students just clicking through to the last scaffold that 
they would probably perceive to be the most useful (here, a two-dimensional 
histogram, which is comparatively the least suboptimal representation) – in 
such a case, the likelihood of meaningful engagement with all scaffolds would 
be reduced. The failure-driven scaffold hierarchy implemented in our study 
served as a middle ground between these two options. 
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embarrassment”), cognition (4 items, α = 0.66, e.g., “I believe it is smart to 
avoid making mistakes during learning”) and behavior (6 items, α = 0.73, e. 
g., “When I make mistakes on an exam, I feel motivated to study harder”) 
sub-scales), self-esteem (general (5 items, α = 0.77, e.g., “Some university 
students are often disappointed with themselves BUT Other university students 
are pretty pleased with themselves (reversed)”) and domain-specific (5 items, 
α = 0.66, e.g., “Some university students do very well at their classwork BUT 
Other university students don’t do very well at their classwork”) sub-scales), 
and prior knowledge (calculus pretest4 (8 questions, α = 0.71)). Prior 
knowledge assessment also included post-study measurements of high 
school math scores and familiarity with numerical and graphical repre
sentations. Table 1 provides operational definitions. Complete scales are 
present in supplementary materials. 

4.6.2. Problem-solving phase 
For each problem-solving attempt, solution quantity was computed by 

simply counting the number of unique solutions students developed in 
the problem-solving phase. The computation for solution quality 
accounted for how many rank-ordered pairs were correctly identified 
(scores ranged from 1 to 6). We focused on the best solution that each 
student generated, that is, the solution with the highest score.5 For each 
attempt, students also reported their confidence for the solutions 
developed using a 5-point slider. Empirical assessments of students’ 
monitoring processes were captured by looking at the gap between so
lution quality and reported confidence. 

4.6.3. After the problem-solving phase 
Students’ task experiences were collected via questionnaires 

(randomly ordered during presentation). These experiences tap onto 
different cognitive and affective mechanisms (Kapur, 2016; Loibl et al., 
2017) posited to attribute to the preparatory benefits of PS-I. Previous 
empirical work in PS-I has validated self-reported measurements for 
these task experiences, including knowledge gap awareness (Sinha et al., 
2020; Glogger-Frey et al., 2017; Loibl & Rummel, 2014b; Newman & 
DeCaro, 2019), state curiosity (Sinha et al., 2020; Lamnina & Chase, 
2019; Loibl & Rummel, 2014b), cognitive load (Sinha et al., 2020; 
Glogger-Frey et al., 2017; Likourezos & Kalyuga, 2017; Marei et al., 

2019; Newman & DeCaro, 2019), affect (Lamnina & Chase, 2019) and 
cognitive dissonance (Sinha et al., 2020), which lends credibility to their 
use in the current study. 

Accordingly, we draw on this established PS-I work and include 
measurements of knowledge gap awareness (5 items, α = 0.81, e.g., “My 
knowledge was insufficient to carry out these tasks”), cognitive dissonance 
(6 items, α = 0.53, e.g., “Some of the answers I gave in these tasks were 
inconsistent with my previous beliefs about the topics”), state curiosity (9 
items, α = 0.86, e.g., “I feel like asking questions about what is happening”), 
germane cognitive load (6 items, α = 0.83, e.g., “This activity improved 
my understanding of the content that was covered”), extraneous cognitive 
load (4 items, α = 0.7, e.g., “The explanations, instructions and clues in this 
activity were full of unclear language”), positive affect (10 items, α = 0.91, 
e.g., determined, enthusiastic), and negative affect (10 items, α = 0.89, 
e.g., upset, distressed). Table 1 provides operational definitions. Com
plete scales are present in supplementary materials. 

4.6.4. Instruction phase 
We recorded the time that students spent on watching each of the 

three parts of the video lecture (in seconds). 

4.6.5. Posttest 
Varimax-rotated principal component analysis was used to reduce 

the correlated (binary) posttest scores to a smaller set of important in
dependent composite scores. Further, a coding scheme, based on prior 
work (Chi, 2009; Kapur & Kinzer, 2009) and validated in Sinha et al. 
(2020), was applied to quantify reasoning quality, or more specifically, 
the average percentage of complete mathematical and 
non-mathematical elaborations comprising graphical and/or numerical 
representations. Coding was conducted blind to the experimental con
dition. Details of the coding scheme for computing this percentage score 
can be found in supplementary materials. Students also reported confi
dence in their answers using a 5-point slider. Empirical assessments of 
students’ monitoring processes were captured by looking at the gap 
between posttest scores and reported confidence. 

4.6.6. After the posttest 
We used an instructional skills questionnaire (randomly ordered dur

ing presentation) to capture students’ perceived lecture quality along six 
dimensions. The questionnaire, adapted from Knol, Dolan, Mellenbergh, 
and van der Maas (2016), assessed structure (4 items, α = 0.81, e.g., “The 
instructor gives clear summaries”), explication (4 items, α = 0.82, e.g., “The 
instructor’s explanations are hard to follow (reversed)”), stimulation (4 
items, α = 0.77, e.g., “The instructor enlivens the subject matter”), validation 
(4 items, α = 0.73, e.g., “The utility of the subject matter is hardly discussed 
(reversed)”), instruction (4 items, α = 0.74, e.g., “The instructor indicates 

Fig. 2. Experimental design of the study. For students who were selected to participate in the study, depicted measures were administered at three time points 
(before problem-solving phase, after problem-solving phase, after instruction) during the study. 

4 The original German version of the calculus pretest (Epstein, 2007) 
comprised 11 items and was translated to English for our study. Based on initial 
piloting with N = 20 students, we dropped two items that were negatively 
correlated with the total scale. An additional item was removed from all ana
lyses due to a translation error in wording. 

5 As students generate more solutions, their average solution quality is ex
pected to decrease. Taking solution quality to be representative of the best 
solution prevents this confound of solution quality and quantity. 
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which parts of the subject matter are essential”), and activation (2 items, 
Spearman-Brown coefficient = 0.64, e.g., “Students are encouraged to think 
along during the lecture”).6 Table 1 provides operational definitions. 
Complete scales are present in supplementary materials. 

4.7. Analysis plan 

Before carrying out the analysis for our stated research questions, we 
performed a manipulation check for the fidelity of scaffolding imple
mented during problem-solving, and for the fidelity of the delivered 
lecture. 

4.7.1. RQ1 and RQ2 
To account for the multivariate nature of our dependent variables for 

research questions 1 and 2, MANCOVAs were run first to examine 
omnibus effects across the Failure-driven, Productive Failure, and 
Success-driven experimental conditions. Subsequently, we ran univari
ate ANCOVAs, along with Bonferroni-corrected posthoc t-tests (pairwise 
comparisons adjusted for a family of 3) between the experimental con
ditions. Running these follow-up pairwise t-tests also allowed us to 
obtain the effect size (Cohen’s d) estimates for each dependent variable. 

To assess how the conditions differentially impacted performance 
during the preparatory problem-solving phase (RQ1a), solution quantity 

(attempt 1 and attempt 2) and solution quality (attempt 1 and attempt 2) 
were used as dependent variables. We controlled for students’ incoming 
characteristics7 and task experiences during the problem-solving phase. An 
analogous analysis of the posttest (RQ1b) included the score (isomorphic, 
non-isomorphic, transfer) and reasoning quality (isomorphic, non- 
isomorphic, transfer) as dependent variables. We controlled for students’ 
incoming characteristics, task experiences during the problem-solving 
phase, and perceived lecture quality. Finally, the analysis for RQ2 
focused on differences in the underlying mechanisms (cf. section 4.6.3) 
across conditions and controlled for students’ incoming characteristics. 
Because the dependent variables for RQ1a, RQ1b and RQ2 were measured 
at different time points during the design, not all sets of covariates were 
relevant for each RQ – they are represented accordingly with tick marks in 
Table 2. 

The relatively small sample sizes also led us to focus attention on 
Cohen’s d measure of effect size (along with 95% confidence intervals) 
to evaluate the effectiveness of our scaffolded PS-I intervention. For 
judging the practical importance of standardized effect size estimates, 
Hill, Bloom, Black, and Lipsey (2008) recommend the use of empirical 
benchmarks of comparison that reflect the nature of the intervention 
being evaluated, its target population, and the outcome measure or 
measures being used. Our recent meta-analytic work comparing PS-I 
with scaffolded PS-I designs (Sinha & Kapur, 2021b) has found the 
average effect size disfavoring PS-I to be Hedge’s g − 0.08 [95% CI -0.34, 
0.28], for a similar student population (undergraduate level) and 

Table 1 
Operational definitions of measures used in the study.  

Measure Definition 

Incoming characteristics (administered before the problem-solving phase) 
Effort regulation the ability to control effort and attention when tasks are difficult (Pintrich, 1991) 
Goal orientation a dispositional trait, which makes one more likely to focus (or lack, thereof) on viewing failures as opportunities to learn (Button et al., 1996) 

Learning goal orientation desire to perform challenging work, learn new skills, develop alternative strategies when working on difficult task 
Performance goal 
orientation 

desire to avoid negative judgments of one’s competence 

Attitude towards mistakes a relatively enduring organization of beliefs, feelings, and behavioral tendencies towards mistakes (Leighton et al., 2015) 
Affect affective reactions (emotional, physiological experiences) when making mistakes 
Cognition the perceived utility of making mistakes (beliefs reflecting a positive or negative evaluation of mistakes) 
Behavior observable actions undertaken to avoid or embrace mistakes 

Self-esteem perceived competence, which positively affects attributional style towards success and failure (Harter, 2012) 
General self-esteem a general perception of the self 
Domain-specific self-esteem perceived scholastic cognitive competence, as applied to university work  

Task experiences (administered after the problem-solving phase) 
Knowledge gap awareness the extent to which students realize what they do not know (Glogger-Frey et al., 2017) 
Cognitive dissonance a state of discomfort associated with detection of conflicting concepts (Levin et al., 2013) 
State curiosity desire to know more to fill the perceived knowledge gaps (Naylor, 1981) 
Germane cognitive load load from relating relevant information from long-term memory to new information elements (Leppink et al., 2014) 
Extraneous cognitive load load from engaging in processes that may not contribute directly to construction of cognitive schemata (Leppink et al., 2014) 
Positive affect the extent to which an individual subjectively experiences positive moods such as joy, interest, and alertness (Watson et al., 1988) 
Negative affect feelings of emotional distress, defined by the common variance between anxiety, sadness, fear, anger, and other unpleasant emotions (Watson et al., 

1988)  

Perceived lecture quality (administered after the posttest) 
Structure extent to which the instructor handled the subject matter systematically and in an orderly way 
Explication extent to which the instructor explained the subject matter, especially the more complex topics 
Simulation extent to which the instructor raised interest in the subject matter 
Validation extent to which the instructor stressed benefits and the relevance of the subject matter for educational goals 
Instruction extent to which the instructor provided instructions about how to study the subject matter 
Activation extent to which the instructor encouraged actively thinking about the subject matter   

6 The original version of the activation subscale for the perceived lecture 
quality questionnaire had 4 items (Knol et al., 2016). In the current study, 
however, we did not use 2 of the items that focused on providing discussion 
opportunities during the lecture (“The instructor provides little opportunity for 
discussions” and “During this lecture there is hardly any occasion to discuss the 
subject matter”). This was due to the video-based (rather than in-person) nature 
of the lecture. We therefore also used the Spearman-Brown prophecy formula 
(Spearman, 1910) to calculate the predicted reliability of the activation sub
scale, given the original reliability and an expansion of the scale to 4 items. The 
predicted reliability value was 0.78. 

7 Despite 16.7% of participants having heard about the targeted learning 
concept prior to the intervention, we did not include this binary variable as a 
covariate in our primary analyses for RQ1 and RQ2. This was because of con
cerns regarding the validity of this variable as a representative for prior 
knowledge, exemplified in its low correlations with self-reported familiarity 
with numerical representations (rpb = 0.26, p = 0.003) and graphical repre
sentations (rpb = 0.19, p = 0.031). Inclusion of this additional covariate, 
however, did not change the trends in reported results. 
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learning outcomes (conceptual understanding, transfer) such as ours. 
These meta-analytic effect size results led us to consider all effect sizes >
|0.2| as a benchmark for improvement of scaffolded PS-I (that is, the 
Success-driven and Failure-driven conditions) over unscaffolded PS-I 
(that is, the Productive Failure condition) in the current study. 

As alternative complementary analyses for null Hypothesis signifi
cance testing (NHST),8 we also used a Bayesian informative hypotheses 
evaluation ANCOVA (Hoijtink, Mulder, van Lissa, & Gu, 2019) for RQ1 
and RQ2. This allowed direct evaluation of the Bayes factor of a specific 
hypothesis at hand versus its complement (BFc).9 For any particular 
dependent variable, these hypotheses were based on the actual 
descriptive trends in marginal means that we observed across the 
experimental conditions – marginal means, which we obtained after 
running the regular frequentist ANCOVA. As an example, the comple
ment of a hypothesis H (μ1 > μ2 > μ3 for the Failure-driven, Productive 
Failure and Success-driven conditions) would comprise any set of re
strictions between the means that is not H. 

4.7.2. RQ3 
To assess calibration (RQ3), we used a one-sample t-test to compare 

the difference (Δ) between scaled values of confidence judgments and 
performance (that is, solution quality of the best solution developed for 
the problem-solving phase, and scores for the posttest). We assessed 
whether this difference was significantly different from 0, indicating 
under-confidence (Δ < 0) or over-confidence (Δ > 0) bias. A non- 
significant difference (with low effect sizes) would indicate students to 
be metacognitively well-calibrated. 

5. Results 

Results from our implementation fidelity check during the problem- 
solving phase provided empirical evidence that Productive Failure and 
the two scaffolding conditions worked as intended, both in terms of (a) 
how they affected solution generation in attempt 2 (quantity and qual
ity), and (b) how responses to presented scaffolds were related to solu
tion quality improvements in attempt 2. Further, results from the 
implementation fidelity check also provide empirical evidence that the 
instruction phase, which was kept the same for all conditions as part of 
the experimental design, was judged to be equally good (average scores 
across most dimensions of perceived lecture quality were > 4 on a 7- 
point Likert scale). We provide an extensive elaboration of imple
mentation fidelity in the supplementary materials. 

5.1. Performance (RQ1) 

5.1.1. Problem-solving phase (RQ1a) 
The MANCOVA for solution quantity was significant, Wilks’ λ = 0.8, F 

(4, 162) = 4.86, p = 0.001. Univariate ANCOVAs showed significant 
differences in solution quantity for attempt 2, F(2, 105) = 5.06, p = 0.008, 
ηp

2 = 0.11. Solution quantity in attempt 2 was higher for students in the 
Productive Failure condition compared to the Success-driven (d = 0.61) 
and Failure-driven (d = 0.90) conditions. Further, we also found students 
in the Success-driven condition to have a higher solution quantity (d =
0.30), relative to the Failure-driven condition. BFc corresponding to this 
overall observed trend in attempt 2 solution quantity was 18.47. 

Neither the MANCOVA nor univariate ANCOVAs (and Bonferroni- 
corrected follow-up t-tests) were significant for solution quality. Howev
er, the solution quality was descriptively higher in the Productive Failure 
(d = 0.54) and Success-driven condition (d = 0.35) for the first problem- 
solving attempt, relative to the Failure-driven condition. This was despite 
the initial randomization to experimental conditions and identical task 
instructions. BFc corresponding to this overall observed trend in attempt 1 
solution quality was 8.87. Similar trends existed in solution quality during 
attempt 2 with weaker odds, but still lying within the same positive/ 
substantial Bayes Factor range of 3–10 (BFc = 3.86)10. 

Table 2 
Summary of the analysis plan for the study.   

Dependent Variables Covariates 

Incoming characteristics Task experiences Lecture quality 

RQ1a Solution quantity (Attempt 1, Attempt 2) ✓ ✓  
Solution quality (Attempt 1, Attempt 2) ✓ ✓ 

RQ1b Score (Isomorphic, Non-isomorphic, Transfer) ✓ ✓ ✓ 
Reasoning (Isomorphic, Non-isomorphic, Transfer) ✓ ✓ ✓ 

RQ2 Knowledge gap awareness ✓   
Cognitive dissonance ✓ 
State Curiosity ✓ 
Germane/Extraneous cognitive load ✓ 
Positive/Negative affect ✓ 

RQ3 Calibration: Δ(Confidence, Attempt 1 Solution Quality) not applicable 
Calibration: Δ(Confidence, Attempt 2 Solution Quality) not applicable 
Calibration: Δ(Confidence, Isomorphic Score) not applicable 
Calibration: Δ(Confidence, Non-isomorphic Score) not applicable 
Calibration: Δ(Confidence, Transfer Score) not applicable 

Note. For RQs 1 and 2, MANCOVA (univariate ANCOVAs) and post-hoc Bonferroni-corrected pairwise comparisons (t-tests) were used. For RQ 3, a one-sample t-test 
was used to assess differences from 0. 

8 We used non-Bayesian analyses (NHST) because it is a dominant tool in 
psychological research, easily understood by the majority of the readers, and 
allows the computation of effect size (Cohen’s d) estimates that can be 
compared with previous studies. However, given the criticisms regarding NHST 
in the past decade (Cumming, 2014), we further used a Bayesian alternative to 
NHST that allowed us to quantify the strength of evidence (uncertainty) in favor 
of a particular Hypothesis using the observed data (as opposed to a dichoto
mous reject/fail-to-reject decision that comes with null hypothesis significance 
testing, where Type I and Type II errors are determined independently of the 
observed data). We conceive of Bayesian informative hypotheses evaluation 
ANCOVA (Hoijtink et al., 2019) as a valuable alternative in the context of 
comparing experimental designs, and believe that with greater reporting of 
(and consequently, familiarity with) these more advanced Bayesian methods, 
their exclusive reporting might be more warranted.  

9 BFc can be interpreted as odds in favor of an informative Hypothesis being 
tested relative to its complement. BFc values can be interpreted as follows: 1–3 
(weak/anecdotal), 3–10 (positive/substantial), 10–20 (positive/strong), 20–30 
(strong), 30–100 (strong/very strong), 100–150 (strong/decisive), > 150 (very 
strong/decisive). 

10 After additionally controlling for differences in the first problem-solving 
attempt, the overall trends in the pattern of results (marginal means and 
standard errors) for solution quality in the second problem-solving attempt did 
not change. Similarly, posthoc pairwise t-tests between the experimental con
ditions revealed no major differences in the overall trends of effect size 
(Cohen’s d) estimates. Taken together, this suggests that even after controlling 
for differences in the initial generation, the impact of scaffolding on immediate 
problem-solving performance still aligned with Hypothesis 1a. 
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Taken together, the aforementioned results for solution quantity and 
solution quality support Hypothesis 1a regarding students in the 
Success-driven and Productive Failure conditions having higher prepa
ratory problem-solving performance than students in the Failure-driven 
condition. Tables 3 and 4 summarize these results. 

5.1.2. Posttest (RQ1b) 
The rotated factor loadings of a 3-component principal component 

analysis (eigenvalues 1.44, 1.04, and 0.85), which accounted for 83% of 
the total variance, were in line with our intended differentiation be
tween non-isomorphic conceptual understanding (items 2 and 3), transfer 

Table 3 
Problem-solving phase performance (RQ1a), posttest performance (RQ1b) and underlying mechanisms (RQ2) across experimental conditions.   

Marginal Mean (SE) BFc 

Failure-driven Productive Failure Success-driven 

Problem-solving phase [Attempt 1] [Pre-scaffold] 
Quantity 2.02 (0.23) 2.12 (0.25) 2.28 (0.24) 2.77 
Quality (Max 6) 3.85 (0.18) 4.43 (0.2) 4.27 (0.19) 8.87 

Problem-solving phase [Attempt 2] [Post-scaffold] 
Quantity 1.75 (0.27) 3.16 (0.31) 2.11 (0.28) 18.47 
Quality (Max 6) 3.96 (0.23) 4.36 (0.26) 4.19 (0.24) 3.86 

Posttest (Isomorphic conceptual understanding) 
Score (Max 1) 0.60 (0.08) 0.73 (0.08) 0.78 (0.07) 6.08 
Reasoning (Max 100) 44.79 (5.51) 40.61 (5.95) 31.57 (5.37) 7.12 

Posttest (Non-isomorphic conceptual understanding) 
Score (Max 1) 0.49 (0.08) 0.43 (0.08) 0.55 (0.07) 3.74 
Reasoning (Max 100) 20.97 (3.86) 15.56 (4.09) 17.5 (4.09) 3.09 

Posttest (Transfer) 
Score (Max 1) 0.60 (0.08) 0.39 (0.07) 0.47 (0.07) 8.38 
Reasoning (Max 100) 22.91 (5.53) 17.54 (5.78) 19.75 (4.99) 2.32 

Problem-solving Task Experiences 
Knowledge gap awareness (Max 5) 3.98 (0.13) 3.5 (0.14) 3.96 (0.13) 5.82 
Cognitive dissonance (Max 5) 3.13 (0.09) 3.19 (0.09) 2.98 (0.09) 5.90 
State curiosity (Max 5) 3.82 (0.12) 3.49 (0.13) 3.61 (0.12) 8.38 
Germane cognitive load (Max 5) 2.60 (0.13) 2.52 (0.14) 2.35 (0.13) 5.03 
Extraneous cognitive load (Max 5) 3.54 (0.12) 3.39 (0.13) 3.61 (0.13) 4.37 
Positive affect (Max 5) 2.57 (0.12) 2.52 (0.13) 2.30 (0.13) 5.12 
Negative affect (Max 5) 2.30 (0.13) 1.88 (0.14) 2.12 (0.13) 13.79 

Note. For each row, marginal means and standard errors are depicted. Also depicted is the BFc or the Bayes factor of the informative hypotheses (based on the marginal 
mean trends) versus its complement. 

Table 4 
Effect size estimates for post-hoc pairwise comparisons (RQ1a, RQ1b, RQ2) between experimental conditions.   

Cohen’s d [95% CI] 

Failure-driven 
& 
Productive Failure 

Failure-driven 
& 
Success-driven 

Productive Failure 
& 
Success-driven 

Problem-solving phase [Attempt 1] [Pre-scaffold] 
Quantity − 0.08 [-0.50, 0.34] − 0.18 [-0.62, 0.25] − 0.10 [-0.54, 0.33] 
Quality ¡0.54 [-0.97, -0.11] ¡0.35 [-0.78, 0.08] 0.14 [-0.29, 0.57] 

Problem-solving phase [Attempt 2] [Post-scaffold] 
Quantity ¡0.90 [-1.38, -0.41] ¡0.30 [-0.76, 0.16] 0.61 [0.11, 1.10] 
Quality ¡0.31 [-0.77, 0.16] − 0.17 [-0.62, 0.29] 0.12 [-0.36, 0.60] 

Posttest (Isomorphic conceptual understanding) 
Score ¡0.31 [-0.83, 0.21] ¡0.50 [-1.07, 0.09] − 0.14 [-0.62, 0.34] 
Reasoning 0.12 [-0.33, 0.58] 0.40 [-0.06, 0.86] 0.30 [-0.15, 0.75] 

Posttest (Non-isomorphic conceptual understanding) 
Score 0.16 [-0.35, 0.68] − 0.16 [-0.66, 0.34] ¡0.34 [-0.82, 0.15] 
Reasoning 0.24 [-0.21, 0.70] 0.15 [-0.31, 0.62] − 0.10 [-0.57, 0.37] 

Posttest (Transfer) 
Score 0.56 [0.03, 1.08] 0.35 [-0.15, 0.85] ¡0.21 [-0.69, 0.27] 
Reasoning 0.21 [-0.31, 0.74] 0.11 [-0.40, 0.63] − 0.09 [-0.60, 0.43] 

Problem-solving Task Experiences 
Knowledge gap awareness 0.53 [0.10, 0.95] 0.03 [-0.38, 0.45] ¡0.52 [-0.94, -0.09] 
Cognitive dissonance − 0.09 [-0.50, 0.33] 0.27 [-0.14, 0.69] 0.36 [-0.06, 0.79] 
State curiosity 0.41 [-0.01, 0.83] 0.27 [-0.15, 0.69] − 0.14 [-0.56, 0.28] 
Germane cognitive load 0.09 [-0.33, 0.51] 0.31 [-0.11, 0.73] 0.20 [-0.22, 0.62] 
Extraneous cognitive load 0.19 [-0.23, 0.61] − 0.08 [-0.50, 0.33] ¡0.30 [-0.72, 0.12] 
Positive affect 0.06 [-0.36, 0.48] 0.32 [-0.09, 0.74] 0.25 [-0.17, 0.67] 
Negative affect 0.51 [0.09, 0.94] 0.22 [-0.20, 0.63] ¡0.32 [-0.74, 0.10] 

Note. For each row, effect size estimates are calculated based on follow-up pairwise t-tests (after running univariate ANCOVAs). Cohen’s d > |0.2| are depicted in bold. 
For a pairwise experimental comparison (X & Y), positive effect sizes denote evidence in favor of condition X and negative effect sizes denote evidence in favor of 
condition Y. 
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(item 4) and isomorphic conceptual understanding (item 1). Subse
quently, we used estimates of the derived component scores as repre
sentative of these three posttest dimensions. Table 5 shows rotated 
loadings (eigenvectors) of the posttest items. Neither the MANCOVA nor 
univariate ANCOVAs (and Bonferroni-corrected follow-up t-tests) were 
significant for the posttest score and reasoning quality. Tables 3 and 4 
summarize these results. 

For the isomorphic posttest, students in the Failure-driven condition 
descriptively scored lower than students in the Productive Failure (d =
0.31) and Success-driven (d = 0.50) conditions. Effect size was low (d < | 
0.2|) when comparing the Productive Failure and Success-driven con
dition, suggesting similar posttest scores. BFc corresponding to this 
overall observed trend was 6.08. However, when looking at reasoning 
across experimental conditions for the isomorphic posttest, we found a 
reversal in trend. Students in both the Failure-driven (d = 0.40) and 
Productive Failure (d = 0.30) conditions had a descriptively better 
quality of reasoning, relative to the Success-driven condition. There 
were no differences in reasoning quality between the Failure-driven and 
Productive Failure condition (d < |0.2|). BFc corresponding to this 
overall observed trend in reasoning quality was 7.12. 

For the non-isomorphic posttest, students in the Failure-driven con
dition scored similar to students in the Productive Failure and Success- 
driven conditions (d < |0.2|). The only posthoc pairwise comparison 
that showed d > |0.2| was that between the Productive Failure and 
Success-driven condition, where the Success-driven condition students 
descriptively scored higher (d = 0.34). BFc corresponding to this overall 
observed trend in posttest scores was 3.74. These odds were, however, 
1.62 times weaker compared to trends in the isomorphic posttest scores. 
When looking at the non-isomorphic posttest reasoning, the only posthoc 
pairwise comparison that showed d > |0.2| was that between the 
Failure-driven and Productive Failure condition. This comparison sug
gested that students in Failure-driven condition descriptively showed 
higher quality of reasoning (d = 0.24). Other pairwise differences be
tween conditions suggested similar quality of reasoning (d < |0.2|). BFc 
corresponding to this overall observed trend in reasoning quality was 
3.09. These odds were, however, 2.3 times weaker compared to trends in 
the isomorphic posttest reasoning quality. 

For the transfer posttest, we saw a reversal in trend for posttest scores 
(compared to isomorphic problem-solving). Here, students in the 
Failure-driven condition scored descriptively higher than students in 
both the Productive Failure (d = 0.56) and Success-driven (d = 0.35) 
conditions. Further, students in the Success-driven condition also scored 
descriptively higher than students in the Productive Failure (d = 0.21) 
condition, although the effect size was low. BFc corresponding to this 
overall observed trend in posttest scores was 8.38. These odds were 1.38 
and 2.24 times stronger compared to trends in the isomorphic and non- 

isomorphic posttest scores respectively. Similar to non-isomorphic 
problem-solving, the only pairwise comparison of reasoning quality for 
the transfer posttest that showed d > |0.2| was that between the Failure- 
driven and Productive Failure condition – students in the Failure-driven 
condition descriptively showed higher quality of reasoning (d = 0.21). 
Other pairwise differences between conditions suggested similar quality 
of reasoning (d < |0.2|). BFc corresponding to this overall observed trend 
in reasoning quality was 2.32. These odds were 3.06 and 1.33 times 
weaker compared to trends in the isomorphic and non-isomorphic 
posttest reasoning quality respectively. 

Overall, these results partially support Hypothesis 1b regarding stu
dents in the Success-driven condition having the highest posttest per
formance (in terms of scores) for the isomorphic assessment (supported), 
lowest performance for the transfer assessment (not supported), and 
similar performance as the Failure-driven condition students on the non- 
isomorphic assessment (supported). When focusing on reasoning quality 
as an index of posttest performance, these results do not support hy
pothesis 1b. 

5.2. Underlying mechanisms (RQ2) 

The MANCOVA revealed significant differences in task experiences 
(assessed after the problem-solving phase) across conditions, Wilks’ λ =
0.78, F(14, 222) = 2.05, p = 0.015. Univariate ANCOVAs showed sig
nificant differences in knowledge gap awareness, F(2, 130) = 3.68, p =
0.028, ηp

2 = 0.06 and marginally significant differences in negative 
affect, F(2, 130) = 2.43, p = 0.093, ηp

2 = 0.04. Tables 3 and 4 summarize 
these results. 

Students in the Failure-driven condition reported descriptively 
higher knowledge gap awareness (d = 0.53), state curiosity (d = 0.41), 
and negative affect (d = 0.51), relative to the Productive Failure con
dition students. Other task experiences were similar between the two 
conditions (d < |0.2|). Failure-driven condition students also reported 
descriptively higher state curiosity (d = 0.27), affect (negative: d = 0.22, 
positive: d = 0.32), germane cognitive load (d = 0.31), and cognitive 
dissonance (d = 0.27), relative to the Success-driven condition. Extra
neous cognitive load and knowledge gap awareness were similar be
tween the Failure-driven and Success-driven conditions (d < |0.2|). 
Finally, we found that students in the Productive Failure condition re
ported descriptively higher cognitive dissonance (d = 0.36) and positive 
affect (d = 0.25), and lower knowledge gap awareness (d = 0.52), 
extraneous cognitive load (d = 0.30), and negative affect (d = 0.32), 
relative to the Success-driven condition. State curiosity and germane 
cognitive load were however similar between the two conditions (d < | 
0.2|). 

Taken together, for cognitive dissonance and positive affect, these 
results support Hypothesis 2 regarding the higher intensity of triggered 
mechanisms in the Failure-driven and Productive Failure conditions, 
relative to students in the Success-driven condition. For state curiosity, 
negative affect and germane cognitive load, results only partially support 
Hypothesis 2, with only the Failure-driven condition students self- 
reporting higher scores than the Success-driven condition. Finally, for 
the remaining two underlying mechanisms of knowledge gap awareness 
and extraneous cognitive load, results do not support Hypothesis 2. The 
BFc corresponding to the overall observed trends in students’ task ex
periences for the problem-solving phase was usually in the similar 
positive/substantial range of 3–10 (5.82, 5.90, 8.38, 5.03, 4.37 and 5.12 
for knowledge gap awareness, cognitive dissonance, state curiosity, 
germane cognitive load, extraneous cognitive load, and positive affect). 
Only the overall observed trend in negative affect had a relatively higher 
BFc of 13.79. 

Based on prior work (Loibl et al., 2017), we would expect these 
underlying preparatory mechanisms to differentially affect how students 
perceive follow-up instruction and consequently learn from it. On 
checking whether these differences manifested in the instruction expo
sure time, we found that Failure-driven condition students took 

Table 5 
Varimax-rotated components from principal component analysis.   

RC1 (Non- 
isomorphic 
conceptual 
understanding) 

RC2 
(Transfer) 

RC3 (Isomorphic 
conceptual 
understanding) 

Posttest Item 1 
(financially wiser 
canton) 

0.11 0.03 0.99 

Posttest Item 2 
(socialist 
ideology) 

0.82 0.12 0.08 

Posttest Item 3 
(dataset 
anonymization) 

0.79 − 0.18 0.07 

Posttest Item 4 
(dataset 
normality) 

− 0.03 0.98 0.03 

Note. For each dimension, loadings for representative posttest items are depicted 
in bold. 
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significantly longer time (M = 316.37, SE = 17.32) in part three of the 
lecture that discussed the canonical solution for the problem-solving 
task, F(2, 130) = 5.2, p = 0.007, ηp

2 = 0.07, relative to students in 
both the Productive Failure, M = 245.51, SE = 17.72, d = 0.57 and 
Success-driven, M = 249.8, SE = 17.51, d = 0.57 conditions. 

5.3. Metacognitive calibration (RQ3) 

The one-sample t-test showed that students in the Failure-driven 
condition were not well-calibrated in their initial problem-solving at
tempts, as reflected in the Δ (confidence, performance) being signifi
cantly different from 0 – they were under-confident for both attempt 1, t 
(43) = − 4, p < 0.001, d = − 0.60 and attempt 2, t(39) = − 2.94, p =
0.005, d = − 0.46. However, these students were well-calibrated during 
posttest, as reflected in Δ (confidence, performance) being not signifi
cantly different from 0 – isomorphic, t(26) = 0.03, p = 0.975, d = 0.07, 
non-isomorphic, t(26) = − 0.92, p = 0.364, d = − 0.18, and transfer, t 
(26) = − 0.84, p = 0.406, d = − 0.16 assessments. 

Productive Failure condition students, on the other hand, showed an 
under-confidence bias for attempt 1 during the problem-solving phase, t 
(42) = − 4.14, p < 0.001, d = − 0.63. However, as these students kept 
generating more solutions during the second problem-solving attempt, 
they became well-calibrated, t(42) = − 1.17, p = 0.252, d = − 0.20. This 
effect was also seen during the isomorphic, t(30) = − 2.92, p = 0.772, d 
= − 0.05 and non-isomorphic, t(30) = 0.93, p = 0.359, d = 0.17 post
tests. However, the major difference relative to the Failure-driven con
dition was seen during the transfer posttest, where these students 
expressed an over-confidence bias, t(30) = 1.85, p = 0.075, d = 0.33. 

Finally, we found that students in the Success-driven condition were 
well-calibrated only for the transfer posttest, t(35) = − 0.31, p = 0.760, d 
= − 0.05. These students expressed an under-confidence bias during the 
initial problem-solving phase, both for attempt 1, t(38) = − 5.77, p <
0.001, d = − 0.92 and attempt 2, t(32) = − 2.35, p = 0.025, d = − 0.41. A 
similar under-confidence bias was also observed when these students 
solved the isomorphic, t(35) = − 2.28, p = 0.029, d = − 0.38 and the non- 
isomorphic, t(35) = − 1.76, p = 0.087, d = − 0.29 posttest. Table 6 
summarizes these results. 

Taken together, for the problem-solving phase, these results do not 
support Hypothesis 3 regarding better metacognitive calibration for 
students in the Failure-driven and Productive Failure conditions (rela
tive to students in the Success-driven condition). For the posttest, 
however, the results partially support Hypothesis 3. 

6. Discussion 

6.1. Performance (RQ1) 

During the second problem-solving attempt, students generated the 
maximum number of solutions in the Productive Failure condition and 
the least number of solutions in the Failure-driven condition. Not sur
prisingly, for the Productive Failure condition, this can be seen as a 
direct consequence of the task instructions that emphasized continuing 
solution generation in attempt 2 (similar to what students did in attempt 
1). Note, however, that across both attempts, only one student in the 
Productive Failure condition generated a one-dimensional histogram 
(one of the three suboptimal scaffolds explicitly offered to the Failure- 
driven condition students). This means that despite a high number of 
generated solutions, students in the Productive Failure condition were 
not likely to naturally come up with suboptimal representations offered 
to the Failure-driven condition students. Further, the decreasing trend in 
solution quantity between the two scaffolding conditions can be 
attributed to the fact that in contrast to problematizing scaffolds, 
structuring scaffolds increase the certainty of action as they nudge stu
dents towards the canonical solution. This results in the generation of 
relatively more new solutions by incorporating information from these 
success-driven scaffolds. 

For the isomorphic posttest, high(est) scores for students in the 
Success-driven condition might stem from them being exactly told the 
right way to proceed during the problem-solving phase (this was also 
subsequently asserted during the instruction phase). Not surprisingly, 
the initial relative dip in performance for the Failure-driven condition 
makes sense, because unlike other conditions, students exposed to 
problematizing scaffolds were focused on exploring the problem-space 
with suboptimal representations, instead of following an isolated (cor
rect) solution pathway. However, the reversal in trend for reasoning 
quality demonstrates that higher performance (evidenced by highest 
posttest scores in the Success-driven condition) may not always be 
reflective of a high depth of understanding of the underlying domain 
principle (evidenced by lowest posttest reasoning quality). 

For the non-isomorphic posttest, the Failure-driven condition was as 
powerful as the remaining experimental conditions, at least when 
looking at posttest scores. In contrast to trends for the isomorphic 
problem-solving posttest scores, this suggests that differences between 
experimental conditions start to disappear as a greater depth of under
standing is required to tackle a problem situation. This understanding 
was empirically reflected in the highest reasoning quality demonstrated 

Table 6 
Metacognitive calibration (RQ3) across experimental conditions.   

Calibration bias: Δ (Confidence, Performance) Cohen’s d [95% CI] 

Under-confident Over-confident Well-calibrated 

Failure-driven 
Problem-solving phase attempt 1 ✓   − 0.60 [-0.92, − 0.28] 
Problem-solving phase attempt 2 ✓   − 0.46 [-0.79, − 0.14] 
Isomorphic posttest   ✓ 0.07 [-0.37, 0.38] 
Non-isomorphic posttest   ✓ − 0.18 [-0.56, 0.20] 
Transfer posttest   ✓ − 0.16 [-0.54, 0.22] 

Productive Failure 
Problem-solving phase attempt 1 ✓   − 0.63 [-0.96, − 0.30] 
Problem-solving phase attempt 2   ✓ − 0.20 [-0.55, 0.14] 
Isomorphic posttest   ✓ − 0.05 [-0.40, 0.30] 
Non-isomorphic posttest   ✓ 0.17 [-0.19, 0.52] 
Transfer posttest  ✓  0.33 [-0.03, 0.69] 

Success-driven 
Problem-solving phase attempt 1 ✓   − 0.92 [-1.93, − 0.54] 
Problem-solving phase attempt 2 ✓   − 0.41 [-0.76, − 0.05] 
Isomorphic posttest ✓   − 0.38 [-0.72, − 0.04] 
Non-isomorphic posttest ✓   − 0.29 [-0.62, 0.04] 
Transfer posttest   ✓ − 0.05 [-0.38, 0.28] 

Note. Checkmarks are based on significant results from the one-sample t-test (p < 0.05). For each row, positive effect sizes denote over-confidence bias, negative effect 
sizes denote under-confidence bias and effect sizes close to 0 denote well-calibrated judgment of performance. 

T. Sinha and M. Kapur                                                                                                                                                                                                                        



Learning and Instruction 75 (2021) 101488

13

by students in the Failure-driven condition. Further, we also found the 
Success-driven condition to be relatively more efficacious compared to 
the Productive Failure condition in terms of posttest scores. What might 
explain this advantage? Because students have opportunities to fail 
during the first problem-solving attempt and receive scaffolding towards 
the canonical solution during the second attempt, the Success-driven 
condition can alternatively be perceived as exposing students to a 
smaller iteration (cycle) of Productive Failure even before formal in
struction happens. Support during the second problem-solving attempt 
and follow-up instruction present redundant scaffolding opportunities 
(Tabak, 2004) for understanding different conceptual task elements. 
This might, in turn, have resulted in better learning for students in the 
Success-driven condition (relative to the Productive Failure condition). 

For the transfer posttest, a reversal in trend for posttest scores 
compared to isomorphic problem-solving suggests that the preparatory 
benefits of explicit problematizing start becoming salient when posttest 
problem situations require flexible adaptation of what is learned from 
instruction and/or the ability to re-learn. For students in the Success- 
driven condition, high accessibility of correct information from the 
scaffolds presented in the problem-solving phase (that can be posited to 
help in isomorphic problem-solving) does not reliably reflect their 
ability to transfer. We further found that students in the Failure-driven 
condition showed the highest reasoning quality for the transfer post
test (similar to the trends for non-isomorphic problem-solving). This 
indicates that not only did these students perform better compared to the 
other conditions, but they were also relatively more fluent in explaining 
their solution rationale. 

6.2. Underlying mechanisms (RQ2) 

Comparison of students in the Failure-driven and Productive Failure 
conditions suggests that explicit problematizing in the Failure-driven 
condition facilitates (to a greater extent) the realization of what is 
known and not known about the targeted concept, as well as students’ 
desire to know more about the canonical solution to fill these knowledge 
gaps. Further, a higher lecture viewing time for the part of the follow-up 
instruction discussing the canonical solution might afford additional 
reflection and comparison opportunities for students in the Failure- 
driven condition, in turn allowing them to revise their understanding 
of the targeted concept. Students learn more deeply when they are able 
to explain and think about the inter-connections between new and 
existing knowledge, than when they do not (Chi, 2009). 

The relatively higher negative affect in the Failure-driven condition 
might be attributed to the explicitly induced opportunities for failure in 
the problem-solving process. However, counter to studies that have 
found negative emotions during learning to result in narrowed atten
tional focus (Kaspar & König, 2012), longer times required to reach 
mastery levels and lower performance on transfer tasks (Brand, Reimer, 
& Opwis, 2007; Pekrun & Linnenbrink-Garcia, 2012), we found that 
students in the Failure-driven condition consistently exhibited the 
highest reasoning quality. In fact, these students even outperformed 
students in the Productive Failure (as well as the Success-driven) con
dition on the transfer posttest. The relatively more careful and analyt
ical, detailed, and rigid manners of processing information (Knörzer, 
Brünken, & Park, 2016) might have attributed to the facilitating effect of 
negative emotional experiences during the problem-solving phase. Thus, 
explicit failure-driven problem-solving experiences that evoke negative 
affect may not always be undesirable for learning (Sinha, 2021). 

A comparison of the Failure-driven and Success-driven conditions 
suggests that the relatively higher levels of experienced dissonance in 
the Failure-driven condition might be attributed to students spending 
effort in enduring an uncomfortable task situation whose outcome is not 
readily verifiable. Problematizing scaffolds challenge students’ current 
understanding, force reasoning with suboptimal representations, and 
provide no straightforward way to move towards the canonical solution. 
In contrast to the Success-driven condition, this is likely to result in 

problem-solving behaviors featuring relatively greater trial and error 
characteristics that build on situational feedback from the problem- 
solving environment, in order to reduce dissonance. In other words, 
the Failure-driven condition creates a legitimate need for additional 
sensemaking activities compared to the Success-driven condition. 
Despite the potential for high discrepancy with the canonical solution, 
we posit that this additional learning stemming from sensemaking op
portunities with the problematizing scaffolds holds high preparatory 
benefits. Although we did not find direct evidence for this conjecture in 
the immediate problem-solving performance (both Failure-driven and 
Success-driven conditions had similar solution quality during attempt 
2), we saw delayed benefits in posttest reasoning quality and transfer 
outcomes. This clearly reflects the incommensurability between per
formance and learning (Kapur, 2016; Soderstrom & Bjork, 2015). 

Finally, we also found that getting exposed to new learning materials 
via the multi-step scaffold presentation (irrespective of their type and 
whether the presented ideas are optimal or suboptimal) induces similar 
levels of knowledge gap awareness. In contrast to the Productive Failure 
condition where students work with their own ideas (what they know), 
the scaffolding conditions provide relatively greater opportunities for 
raising awareness of what is not known. 

6.3. Metacognitive calibration (RQ3) 

The bias towards under-confidence during the problem-solving 
phase for all conditions is plausible. Our study design exposes students 
to novel problem solutions and asks them to generate and explain the 
rationale for multiple representations and solutions. Indeed, this is not a 
common norm in problem-solving practice. However, as students got 
more conscious about their acquired knowledge after follow-up in
struction, unexpectedly, they did not estimate their performance in 
posttests more accurately. We observed salient differences in meta
cognitive calibration as students worked on the posttests. 

The fact that students in the Failure-driven condition were meta
cognitively well-calibrated in the posttest might explain why their 
relative efficacy increased as they moved on from the isomorphic to the 
non-isomorphic to the transfer questions. On the other hand, surpris
ingly, students in the Productive Failure condition who were meta
cognitively well-calibrated for the isomorphic and non-isomorphic 
posttests, exhibited an over-confidence bias in the transfer posttest. 
Relying on biased evaluations can harm performance by misleading 
effort regulation (Ackerman & Thompson, 2017), for example by pre
maturely stopping consideration of other (more relevant) 
problem-solving strategies. This might have worsened the performance 
of students exposed to the Productive Failure condition on the transfer 
posttest. Finally, for students in the Success-driven condition, being 
mostly under-confident suggests that although they followed the pre
sented scaffolds to move closer to the canonical solution, they may not 
have necessarily understood the underlying concept/idea. 

7. General discussion and conclusion 

In the current study, we compared three variants of the PS-I design 
where students received explicit problem-solving scaffolds that either 
nudged them towards optimal solutions (Success-driven), suboptimal 
solutions (Failure-driven) or received no explicit scaffolds in the 
problem-solving phase (Productive Failure). Overall, our results are 
consistent with results reported in Sinha et al. (2020) and hold up under 
a controlled study as well. We found an overall efficacy of failure-driven 
preparatory activities over success-driven activities on (a) 
non-isomorphic conceptual understanding (similar posttest scores, but 
higher reasoning quality in the Failure-driven condition) and addition
ally, (b) transfer outcomes (higher posttest scores, higher reasoning 
quality). We further found that students in the Productive Failure con
dition had relatively worse scores and reasoning quality for 
non-isomorphic conceptual understanding and transfer outcomes, 
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compared to students exposed to failure-driven scaffolding. The only 
posttest dimension for which students in the Success-driven and Pro
ductive Failure conditions outperformed the Failure-driven condition 
was that of isomorphic conceptual understanding. 

One relevant design-level difference with respect to prior experi
mental studies comparing scaffolding (typically, success-driven) and an 
unscaffolded (pure Productive Failure) condition, for example, Kapur 
(2011) and Loibl and Rummel (2014a), is that we had a two-phase 
problem-solving design. In contrast to earlier single-phase imple
mentations in the literature with scaffolding integrated throughout the 
problem-solving phase, students in the Failure-driven and 
Success-driven conditions here went through an initial attempt at 
generating representation and solution methods in the absence of any 
scaffolds. Differential scaffolds were only subsequently introduced in a 
second phase, affording students opportunities to generate more repre
sentations and/or revise representations from the first phase. Thus, our 
learning design struck a balance between first giving students complete 
agency and allowing them to freely invent their own representations for 
learning, and only then, externally providing plausible/intelligible 
representations to construct. This might explain the efficacy of 
failure-driven and success-driven scaffolding in learning from instruc
tion, relative to the unscaffolded condition (that only emphasized 
invention). 

When compared to the average effect size disfavoring PS-I (Hedge’s g 
− 0.08 [95% CI -0.34, 0.28]) relative to scaffolded PS-I learning designs 
for a similar postgraduate student population and learning outcomes 
such as ours (Sinha & Kapur, 2021b), effect sizes for the current study 
exceed or fall closer to the lower end of the confidence interval, at least 
when it comes the impact of explicit failure-driven scaffolding on 
non-isomorphic conceptual understanding and transfer. In that light, 
our results bear tremendous practical significance (Hill et al., 2008). Our 
results also expand the explanatory basis for why the reported trends 
might hold, in particular, illuminating not just cognitive mechanisms 
such as knowledge gap awareness and cognitive load, but also students’ 
perceived positive and negative affect, and metacognitive mechanisms 
like calibration bias. The inclusion of such a wide range of underlying 
mechanisms for comparative evaluation of different preparatory 
problem-solving approaches makes a strong case for wide-scale adoption 
of the developed materials. 

It is important to highlight, however, that the reported results are 
correlational. We could not test directly for causality (and/or tempo
rality) because of lacking a large enough sample size and a longitudinal 
design with repeated measurement of mediators (learning mecha
nisms).11 Also, methodologically, because the specific hypotheses we 
tested using Bayesian informative hypotheses evaluation ANCOVA 
corresponded to the observed trends in marginal means for the depen
dent variables across experimental conditions (for which we obtained 
moderate effect sizes, despite non-significance), it was plausible that the 
BFc revealed moderate evidence for several comparisons.12 One caveat 
in using Bayesian informative hypotheses evaluation ANCOVA, how
ever, is that there might exist other unconsidered hypotheses for which 
the support in the data might be larger. 

For the design of scaffolding in learning through problem-solving, 
our results regarding the pedagogical benefits of explicit failure-driven 
scaffolding imply their inclusion to serve as an effective preparatory 
activity in classroom teaching practices. Taken together, the findings 
from the quasi-experimental study (Sinha et al., 2020) and our 
controlled study support the deliberate design of failure-driven experi
ences before formal instruction, if educators wish to foster students’ 
ability to take knowledge learned in one context and apply it in novel 
contexts. More generally, educators might consider ways in which stu
dents, via explicit and deliberately-designed failures in preparatory 
problem-solving, can become aware of the limitations of their prior 
knowledge. Inviting initial failure-driven participation by creating 
in-situ opportunities for suboptimal representation generation might 
provide a strong foundation for reorganization of existing knowledge 
when students are exposed to instruction. In contrast to the 
uncertainty-reducing nature of success-driven scaffolding, 
failure-driven scaffolding can be conceived as a route to harnessing the 
potential benefits of immersing students in uncertainty (Metz, 2004). 
Uncertain situations demand “searching, hunting, inquiring, to find 
material that will resolve the doubt, settle and dispose of the perplexity” 
(Dewey, 1933, p. 121). The scope of learning with failure-driven scaf
folding is therefore high. 

Research that delves more deeply into other forms of failure-driven 
scaffolding could also be a promising future direction. For example, 
explicitly presenting students with datasets or situations where their 
current solution does not apply, might signal a need to gather more 
evidence to integrate with prior evidence. The selection of such con
trasting cases as scaffolds on-the-fly, in order to question the optimality 
of an already developed solution approach, is an exciting research di
rection. More broadly, this ties into the idea of adaptive scaffold pre
sentation (Aleven et al., 2017; Roll, 2009). Such personalization, which 
can iteratively and naturally gauge students’ understanding (e.g., by 
holding casual conversations) and deliver scaffolds out of order (as and 
when necessary), is likely to improve students’ metacognition about 
what they know and what they do not know, and in turn, lead to 
improved learning from instruction. 

We would like to emphasize, however, that the adoption of deliberate, 
guided failure as a scaffolding strategy during preparatory problem- 
solving should go hand-in-hand with fostering positive teacher-student 
relationships (Jennings & Greenberg, 2009). For instance, students are 
more likely to trust the pedagogical value of classroom activities, if they 
have a good interpersonal rapport with the teacher, and trust the teacher 
to show genuine interest in (and meet) their developmental, emotional, 
and academic needs. For teachers, therefore, it is equally critical to 
cultivate positive relationships in the classroom as well as adopt a 
pedagogical value-style framing of failure-driven scaffolding activities 
(that clearly emphasizes the utility of engaging in such activities), in 
order to make students increasingly more comfortable with the 
uncomfortable. 
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