Tools
Simple
Jupyter Notebooks with R kernel

« http://noto.epfl.ch
« Docs not require any installation on your machine

More involved

@nd Rstudiq IDE

o https://rstudio.com/products/rstudio/download /#download
e Requires installation of the R language and Rstudio editor.
\_,

Alternatively, you can do the analyses in Python in NOTO or in your favourite computing environment, but I
provide examples in R
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Mediation

e explains how or why an intervention works

o mediator explains all or part of the treatment’s impact on an intended outcome

¢ is an intermediate outcome that is measured or observed after the onset of the intervention. E.g. fidelity
of application, how many questions were asked 7

Moderation

¢ explains who the intervention benefits or what conditions must exist for the intervention to be effective.

o a factor that reflects who is most affected by the treatment

« a factor that exists prior to the introduction of an intervention Eg. student characteristics, such as special
education status, gender, ...



Experiment (IPS vs PSI)

In this imaginary experiment, we are studying the effect of the order of instruction and problem-solving
(independent variable) on learning (dependent variable) how the position of the earth relative to the sun
influences seasons.

Participants used a simulation (https://astro.unl.edu/classaction/animations/coordsmotion/eclipticsimulator.
html) during the problem-solving phase and watched a video during the instruction phase.

Seasons and Ecliptic Simulator reset help about

\ ?g y %?WQ%K;/\,

l ! WMW \ﬁo{»/a-/

Jan | Feb | Mar | Apr Sep | Oct | Nov | Dec
start animation
show subsolar point




Participants /10 — o
8 FmL h,

The sample consisted of N=200 participants. /T

Independent variable 8 T"’)(

Order of instruction The independent variable has two modalities (also called conditions):

| { A
.F—PS : instruction followed by problem-solving | / lo Twa I

o/ PS-1: problem-solving followed by instruction |

Participants wer assigned to one of the experimental conditions. |
\

Dependent variable 0

Learning gain. Participants completed a 10 question pre-test before starting the experiment. The pre-test
was a series of questions about their understanding of the sun-earth relative positions. After the experiment,
particpants completed a 10 question post-test with similar questions as the pre-test. The learning gain was

computed as :
/learning.gain = post.test — pre.test

another possibilty would be the relative learning gain

- __ post.test—pre.test
/ rel.gam ~ max—pre.test



Control variables

Age group. Participants were recruited among highschool students who are interested in following studies at

EPFL (kids), students doing their bachelor as well as alumni who are active professionally (professionals).
2 Sk

Young learners (e.g., second to fifth graders) may have insufficient prior knowledge about cognitive and metacog-
nitive learning strategies to generate multiple solutions during initial problem solving

Gender. Experimenters also asked for the gender of the participants, either Male (M) or Female (M).

Self-regulation skills. Participants also filled in a questionnaire about their self.regulation skills by using the
Learning Companion (https://companion.epfl.ch)

Intermediate / Process variables

Solutions. The simulation system logged every simulation run and counted how often students used the simu-

lation to generate a potential solution.

10



Dataset

This dataset was generated to illustrate basic statistical techniques like ANOVA and regression as well lightly
more advanced techniques like mediation and moderation. However, we tried as much as possible to implement
variations compatible with insights found in the literature about Productive Failure:

Sinha, T., & Kapur, M. (2021). When Problem Solving Followed by Instruction Works: Evidence for Productive
Failure. Review of Educational Research, 91(5), 761-798. https://doi.org/10.3102/00346543211019105

11



“Mediation”

Intermediate / Process
Exploration

Independent
IPS / PSI

Solions

A A 4

Figure 5: Overview

12

Dependent
Learning Gain




A2 7

)

<,—

Loading data

library(tidyverse) # Give ggplot, read_delim, tidyr, etc.

daf (:) read_delim( "dataset.csv", ”,”)(222)
mutate ( factor(condition, c("IPS","PSI")),
factor(gender, c("M","F")),
factor(age.group,
c("kids","students","professionals")))

” head (df)

## # A tibble: 6 x 9

## condition gender age.group age.group_0 age.group_1l age.group_2 solutions
##  <fct> fet> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 PSI F kids 1 0 0 20
## 2 PSI F students 0 1 0 20
## 3 PSI F professionals 0 0 1 24
## 4 PSI M kids 1 0 0 12
## 5 PSI M kids 1 0 0 9
## 6 IPS M kids 1 0 0 5
## # . with 2 more variables: self.regulation <dbl>, learning <dbl>

14



Descriptives

summary (df)

## condition gender age.group age.group_O age.group_1
## 1IPS:102 M: 95 kids 162 Min. :0.00  Min. :0.000
## PSI: 98 F:105 students 173 1st Qu.:0.00 1st Qu.:0.000
#it professionals:65 Median :0.00 Median :0.000
#it Mean :0.31  Mean :0.365
## 3rd Qu.:1.00 3rd Qu.:1.000
## Max. :1.00 Max. :1.000
##  age.group_2 solutions self.regulation learning

## Min. :0.000  Min. :-1.0 Min. :=5.984 | Min. :=3.0182
## 1st Qu.:0.000 1st Qu.:10.0 1st Qu.: 4.301 1st Qu.:-0.6820
## Median :0.000 Median :15.0 Median : 8.151 | Median : 0.3764
## Mean :0.325 Mean :14.9  Mean : 8.392 | Mean : 0.3159
## 3rd Qu.:1.000 3rd Qu.:19.0 3rd Qu.:12.184 | 3rd Qu.: 1.1734
## Max. :1.000 Max. :31.0 Max. :30.920 | Max. 3

#summary(d(?learning)

- df § gder
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Dependent variable: learning gain

df %>%
ggplot (aes(x=learning)) +
“geom_histogram() +
theme_bw ()

16
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Intermediate variable: solutions

atf %>%
ggplot (aes(x=solutions)) +
geom_histogram() +
theme_bw ()

18
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Control variables

Gender and Condition

library(janitor) # Gives tabyl

df %>% tabyl(condition, gender)

## condition M F

#i#t IPS 51 51
#it P3I 44 54

df %>% tabyl(condition, gendex) %>% chisqg.test()

##
## Pearson’s Chi-squared test with\Yates’ continuity correction
##

## data:
## X-squared = 0.33718, df = 1, p-value = 0.5615

fmf

20



Age Group and Condition

df %> tabyl(condition, age.group)

## condition kids students professionals
## IPS 35 35 32
## PSI 27 38 33

df %>% tabyl(condition, age.group) %>% chisq.test()

##

## Pearson’s Chi-squared test

##

## data:

## X-squared = 1.0914, df = 2, p-value = 0.5794

21



Age Group and Gender

df %>% tabyl(gender, age.group)

## gender kids students professionals
## M 30 37 28
## F 32 36 37

df %>% tabyl(gender, age.group) %>% chisq.test()

##

## Pearson’s Chi-squared test

##

## data:

## X-squared = 0.82643, df = 2, p-value = 0.6615

22



Question 1: Does the experimental treatment affect learning ?

In other terms, does the manipulation of the IV affect the DV ?

Plotting

A straightforward was to look at the ifference in learning gains given the experimental condition consists of
looking at the means and confidence intervals of the dependent variable given the condition. This is done using
plotmeans.

A visual way to “see” if there is a statistically significant difference consists of comparing the confidence intervals.
If they overlap, there is no statistically significant difference.

library(gplots) # Gives plotmeans
plotmeans(learning ~ condition,
"Average learning gain given condition",
"Average learning gain",
"Condition",
df)

23
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ANOVA with one factor

ANOVA compares the variation “between” the groups and “within” the groups based on their ratio. It assumes
that the measured variable is normally distributed in each group and that the variance is the same in each
group.

= MeanSquarespetween
MeanSqaresyithin

The sample variance (Mean Sum of Squares) is computed as the Sums of Squares divided by the Degrees of
freedom.

F — SSbetween/dfbetween

— SSwithin/dfwithin
If F is larger than 1, the differences between the groups are more important than the differences inside the
groups.

A -
f Vol bebtsei [

el
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Total Variance: between and within groups

Variance is a measure of “spread” based on the average squared deviation from the mean.

SStotal = 27 joa (Yig = ¥)?

i=1,j=1

Mean Sums of Square between groups

SSbetween = Z;C:l n; (}72 - Y)Q

Where k is the number of groups Y; is the mean for group i and Y is the grand mean. We multiply by n;
because we account for the difference between the group mean and the global mean for each observation.

Finally, we divide by the degrees of freedom: M Spetween = SSbetween/Af within Where the dfyithin is k — 1.

Mean Sums of Square within groups

Mg Ve

For each group i we have 55; =377, (Yj; — Y;)? which is essentially the difference between each observation j
of the group and the mean for that group.

To obtain the Mean sums of squares, we add up the S'S; for each group: SSyithin = Zle SS;, we divide by the
degrees of freedom : M Sy ithin = SSuwithin/dfwithin Where the degrees of freedom are is the sum of the degrees
of freedom for each subgroup. dfwithin = Zle df; = Zle(m -1H)=N-k

28
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Computing Variances by hand in R

Y _bar = mean(df$learning) # The mean of learning for all subjects
Y_s = sd(df$learning) # The standard deviation of the learning for all subjects

Computing SStotal

ss_total = sum((df$learning - Y_bar) 2)
ss_total

## [1] 310.5642

29



Computing SSB

between_ss = function(x) {
sum(length(x)*(mean(x) - Y_bar)"2)
}

ss_between = sum(tapply(df$learning, df$condition, between_ss))
ss_between

## [1] 69.66193
-_—

mss_between = ss_between / 1 # (k groups - 1)
mss_between

## [1] 69.66193

30



Computing SSW

within_ss = function(x) {
sum((x - mean(x))"2)

b
ss_within = sum(tapply(df$learning, df$condition, within_ss))
ss_within

## [1] 240.9023

—

mss_within = ss_within / (length(df$learning) - 2) #Ggi> k _groups

mss_within
290 -2 =/33

## [1] 1.216678
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The F-Ratio

[ — MeanSquaresperween . 69.66193
~  MeanSqaresyithin  1.216678\

F = mss_between / mss_within
F

## [1] 57.25584

This F-ratio (computed from our experimental groups) is to be compared with a F distribution parametrised
with df=1 (2 groups - 1) and df= 198 (200 subjects - 2 groups).

The theoretical F distribution corresponds to the F-ratios that would be obtained when:

e two samples are drawn from two populations with means p; and ps
¢ two populations have the same mean: p; = po. This corresponds to our null hypothesis.
o three populations have the same variance: o2

32



We generated 40000 runs of a simulation that draws two samples of 100 observations from a normal population
with the same mean and variance. For each randomly generated example, we computed the F-ratio. Here is
the distribution of these 40000 F-ratios and the corresponding F[1,198] distribution.

33
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I

The ANOVA test

Given our observed F-ratio and the theoretical F-distribution for 2 groups (dfl = 2 groups - 1 = 1) of 100
observations (df2 = 200 observations - 2 groups = 198), we now can perform our test.

Under the “Null” hypothesis for the ANOVA, the F-ratio for 2 groups and a sample size of 200, which have the
same mean and same variance, follows a F-distribution with [1,198] degrees of freedom.

OH()Z‘[Ll:‘uQ:...:‘LLn Q\

The “Alternative” hypothesis is that:

o Hitpn # po# .. # fin

\\ /-\9 |
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How to decide whether our F-ratio is “following” the F-distribution ?
p-value

Our experiment produced a F-ratio which is rather extreme: there are only 0.0000000000014% of the theoretical
F-ratios for such experiments that would be larger than the value we observed. This proportion is called the
p-value: what is the probability to have drawn samples for our experiment which would produce a F-ratio larger
than 57.3 It corresponds to the area under the curve to the right of F = 27\3

p.value = pf(F, 1, 198, FALSE)

p.value -

## [1] 1.411514e-12

In social sciences, it is commonly accepted that to reject the null hypothesis, i.e. to say that our F-ratio does
probably not stem from the theoretical F-distribition, it has to come from the 5% most extreme values. This is
called the alpha level, written o = 0.05.

g—

In our example p = 1.411514e — 12 < < < a = 0.05 and hence we reject the Null hypothesis. Therefore we
conclude that the two samples do not belong to two populations with the same means.

36



Critical value

What is the F-ratio above which we can reject the Null hypothesis ? This value is called the critical value and
corresponds to the F value for a probablity of 1 — «, i.e. 0.95.

alpha = 0.05
F.critical = qf(1-alpha, 1, 198)
F.critical

## [1] 3.888853
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Image taken from Hartmann, K., Krois, J., Waske, B. (2018): E-Learning Project SOGA: Statistics and
Geospatial Data Analysis. Department of Earth Sciences, Freie Universitaet Berlin: https://www.geo.fu-
berlin.de/en/v/soga/Basics-of-statistics/Continous- Random- Variables /F-Distribution /index.html
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ANOVA in R

Steps:

e Step 1: Build a linear model with DV ~ IV model = 1m(DV ~IV):
e Step 2: Calculates type-1I or type-III analysis-of-variance tables Anova(model)

e Step 3: Check assumptions
M < 6/\/\ / oIy

Ayzov& 1

— Normality
— Homoscedasticity

41



Step 1 : build a linear model

NB: specify the contrasts that are for the linear model as “contr.sum”, which is not the default in R.

model.0 <- Egﬁlearning condition, /7 GL} ;[?S ~ 1
list( contr. sum) — 7 Mﬁ - 0
o) PST t4
summary (model .0) CWI/L“ ) WW Tt
{52 =1
##
## Call:

## lm(formula = learning ~ condition, data = df, contrasts = list(condition = contr.sum))
##
## Residuals:

## Min 1Q Median 3Q Max

## -2.7555 -0.7754 -0.1243 0.8605 2.7054

#i#

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 0.32767 0.07801  4.200 4.03e-05 **x

## conditionl -0.59030 0.07801 -7.567 1.41e-12 **x

## ——-

## Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’x> 0.05 ’.” 0.1 > ’ 1
##

## Residual standard error: 1.103 on 198 degrees of freedom

42



## Multiple R-squared: 0.2243, Adjusted R-squared: 0.2204
## F-statistic: 57.26 on 1 and 198 DF, p-value: 1.412e-12
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Step 2: Look at the Anova “interpretation” of the model

library(car) # load library car first. ' f ~ ‘\f,. wf&
Anova(model.O, "II") - / - Zf‘

s R [ Juhor MVS ‘ ) /
## Anova Table (Type II tests)
# L1 493]:5}'.2? ,94.004
## Response: learning / //4
## Sum Sq Df F value Pr(>F)
## condition 69.662 1) 57.256 1.412e-12 **x
## Residuals 240.902 - —_

== - ) 7
## Signif. codes: O >**: 0.010’% 0.05 P.> 0.1 > 1

{X‘W‘JW@ 7)
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Step 3: Check Assumptions
Checking Normality assumptions
I present three methods to check the normality of the residuals for our linear model.

o The Shapiro Wilks test (available as shapiro.test())
o The Kolmogorov-Smirnov test (available as ks.test())
e a visual inspection test.

45



Shapiro.test : Testing Normality of residuals in each group The Shapiro-Wilks test allows to test
whether a variable is normally distributed.

Hy: The sample is normally distributed.
Hy: The sample is not normally distributed.

shapiro.test/(model.O$§residuals)

##
## Shapiro-Wilk normality test
##

## data: model.O$residua _ Q% /, ‘L/‘ M
## W = 0.9902, p-value = 0.1909 7 \ Ob ;7 Cow o :7 ol

The p-value is larger than 0.05 and therefore we cannot reject the Null hypothesis. According to this test, the
residuals from our model are normally distributed.

The shapiro.test() is very sensitive to deviations from normality, especially if the sample size is large.
Textbooks usually recommend checking the normality assumption visually (with qq plots) rather than through
tests.
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Kolmogorov-Smirnov test: Testing normality of residuals The Kolmogorov-Smirnov test allows to test
whether two samples were drawn from the same distribution. This allows to compare our observations with a
sample that follows a normal distibution with the same mean and standard deviation. This test is preferred to
the Shapiro Wilks test for large samples.

Hy : The two samples stem from the same distribution

H, : The two samples do not stem from the same distribution

x <- model.O$residuals
ks.test(x, "pnorm", mean(x, T), sd(x, T))

#i#

## One-sample Kolmogorov-Smirnov test ’ 4_
i /] b = C,qvwwll v
## data: x / f ' 7

## D = 0.050941, p-value = 0.677

## alternative hypothesis: two-sided

The p-value is larger than 0.05, we therefore cannot reject Hy and hence conclude that it is likely that the
residuals follow a normal distribution.
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plot.normal.ks(model.O$residuals)
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Visually checking normality of residuals

qgnorm(model .O$residuals, df$condition, 19,
"Normal distribution of residuals")
gqline(model.O$residuals)
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Checking Homoscedasticity assumptions

We would like to have the same variance of residuals across groups. This means that the model explains similarly
well observations from both groups. If this was not the case, we’d have for example very similar errors for all
observations in the IPS group and a larger variation of errors in the PSI group. This would indicate that there
is something “wrong” in the measured data, e.g. all individuals from IPS have the same learning gain, whereas
individuals from the PSI group have a spread of learning gains.

Equality of variances can be tested with the bartlett.test() in R.
Hy: The variances are the same in the groups

H;: The variances are not the same in the groups

bartlett.test{residuals (model.0)| ~ df$condition)
—_—

2.0

#i# %

## Bartlett test of homogeneity of variances =, 4/(/1-(% W
##

## data: residuals(model.0) by df$condition

## Bartlett’s K-squared = 0.27535, df = 1, p-value = 0.5998

In our case, the p-value is much larger than .05 which does not allow us to reject the null hypothesis Hy. Hence
we conclude that the variances are equal in both groups.
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Visual inspection of equal variances An alternative was to check for equality of variances conists of
plotting boxplots of the residuals. If the shape of the boxplots is more or less the same, the variances are more
or less equivalent.

boxplot (model.O$residuals ~ df$condition,
"Homoscedasticity of residuals",
"residuals",
"Condition",
TRUE)
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plot(model.O)
par (nfrow=c(1,1))
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How would these graphs look if they were not normally distributed
o

x <- runif (200)

shapiro.test (x)

##

## Shapiro-Wilk normality test
##

## data: x

## W = 0.94566, p-value = 7.36e-07

par( c(1,2))

hist(x)

qqnorm(x, 19)

qqline(x, "red", 2)
par( c(1,1))
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How would these graphs look if they did not have equal variances 7

x1 <- rnorm(100, 0, 1)

x2 <- rnorm(100, 0, 3)

x <- c(x1, x2)

cond <- c(rep("A",100), rep("B",100))
d <- data.frame(cond, x)

bartlett.test(d$x ~ d$cond)

##

## Bartlett test of homogeneity of variances

##

## data: d$x by d$cond

## Bartlett’s K-squared = 81.861, df = 1, p-value < 2.2e-16

boxplot(d$x ~ d$cond, TRUE, "A fake example with unequal variances")
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What if assumptions are not met ?

Normality: ANOVA is said to be pretty robust against deviations of normality, which means that the validity
of p-values are not too much affected by skew (the distribution is asymetric) or kurtosis (the distribution is too
heavy or too light tailed).

=> Data Transformation. Trying to transform the dependent variable so that the distribution approaches
normality, by taking 1/x, log(x) or sqrt(x).

=> Using a non-parametric equivalent for ANOVA: Kruskall—Walli?ﬂ‘ ran%} test.

Equality of variance: Deviations for the equality of variance have most impact on the result of the ANOVA
if the group sizes are unequal.

=> Using the Welch correction for oneway.test () by specifying var.equal=FALSE.
Tt .
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Running a non-parametric Kruskall-Wallis as an alternative

The principle for the Kurskall Wallis test is very similar to the idea behind ANOVA. The difference is that rather
than using the raw scores, the Kruskall-Wallis test relies on ranks. This test does not make assumptions
about the distribution of the residuals, nor about the variances.

Hy: The mean ranks of the groups are the same.

H;: The mean ranks of the groups are not the same.

The decision variable:

g nir’i.—Fz
H = (N — 1) im0 o

i=1
" ijl(r;j —7)2 lg—1]
kruskal.test(learning ~ condition, daf)
—— —
##
## Kruskal-Wallis rank sum test
##

## data: learning by condition
## Kruskal-Wallis chi-squared = 43.443, df =

F< ,001

”’7H4

1, p-value = 4.365e-11

From the results of the test we see that we can reject the Null hypothesis (p < .05) and therefore conclude that

the mean ranks are different among the two groups.
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ANOVA with 2 factors

We now add a control variable (age.group) as a new factor to the ANOVA. This introduces the possibility for
interaction between variables.

In order to test for a potential moderation effect (the effect of the condition varies depending on another
variable), we include interaction effects in the linear model.

The total variance is now decomposed into:
SSTotal = SSFactorl + SSFactor2 4+ SSInteraction + SSWithin

The degrees of freedom for an interaction effect between 2 variables with k and m levels are (k — 1)(m — 1),
with condition and gender: (2 —1)(2 — 1) =1 and with condition and age group (2 —1)(3 —1) = 2.

In the specification of the model, the interaction between 2 factors is written with a column as in
condition:age.group.
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model.2 <- 1lm(learning -~
condition +
age.group_t+

conditio ge.group,

Tist( contr.sum, contr.sum),
df)
summary (model.2)
##
## Call:
## 1m(formula = learning ~ condition + age.group + condition:age.group,
#H# data = df, contrasts = list(condition = contr.sum, age.group = contr.sum))
##
## Residuals:
## Min 1Q  Median 3Q Max
## -2.55457 -0.74262 -0.03032 0.87658 2.24990
#i#
## Coefficients:
#it Estimate Std. Error t value Pr(>|tl)
## (Intercept) 0.31422 0.07583 4.144 5.10e-05 **x
## conditionl -0.56384 0.07583 -7.435 3.27e-12 **x
## age.groupl -0.33434 0.10940 -3.056 0.00256 **
## age.group2 0.16601 0.10465 1.586 0.11428
## conditionl:age.groupl -0.02690 0.10940 -0.246 0.80599
## conditionl:age.group2 -0.24722 0.10465 -2.362 0.01915 *



#it
#i#t
#it
#it
#it
#it

Signif. codes:

0 ’?*xx’ 0.001 ’*x> 0.01 x> 0.06 ’.’ 0.1~

Residual standard error: 1.066 on 194 degrees of freedom

Multiple R-squared:

F-statistic:

15.82 on 5 and 194 DF,

0.2897, Adjusted R-squared: 0.2714

p-value: 4.628e-13
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Anova(model.?2, DILILITDY

## Anova Table (Type III tests)

" paruie

Response: learning

#i# Sum Sq Df F value Pr(>F)

## (Intercept) 19.525 1 17.1706 5.099e-05 *x**

## condition 62.867 1 55.2856 3.267e-12 *xxx

## age.group 10.630 2 4.6739 Q;91941 *

## condition:age.group 9.365 2 E:IIZZ. 0.01773 *

## Residuals 220.602 194

## ——-

## Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’x> 0.05 ’.” 0.1 > ’ 1
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Is there an interaction 7

e When there is an interaction, we use type III sums of squares and don’t interpret main effects.
o If there are no interactions, switch to a model that only includes main effects and use type II sums of
squares.
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Interpreting interactions

Age Group

" pst
£
g Condition
2 IPS
c
£ ) — Psl
[0
— 0-

‘/
_1.

ki(ljs studlents profeslsionals
Condition



Learning gain

IPS

Condition

PSI
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Reporting the ANOVA with interaction

A two way ANOVA was conducted with the experimental condition, and the control variable age group. We
tested for interactions between the condition and the control variables. There was a significant interaction
effect between condition and age group (F[2,194]=4.1177, p =.0104). Inspection of the graphical patterns of
the means indicates that the PSI condition worked especially well for students in comparison with kids and
professionals.
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Gender

Let’s do the same analysis with the control variable gender. We start with a model that contains the interaction
term (type III). Since there is no interactions between the factors, we re-run the model without interaction and
use type II sums of squares.

model.with.interaction <- lm(learning ~ condition + gender + condition:gender,

list( contr.sum, contr.sum),
df)

Anova(model.with.interaction, "III"™)

#it
#i#t
##
##
#i#t
#it
#i#t
##
##
##
#it

Anova Table (Type III tests)

Response: learning

Sum Sq Df F value Pr(>F)
(Intercept) 20.326 1 16.7324 6.282e-05 *x*x*
condition 67.435 1 55.5118 2.899e-12 *x*x*

gender 2.451 1 2.0176 0.1571 %\(_S;
condition:gender 0.401 1 0.3301
Residuals 238.099 196

Signif. codes: O ’xxx’ 0.001 ’xx’ 0.01 ’x> 0.05 ’>.” 0.1 > ’ 1
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model.without.interaction <- lm(learning ~ condition + gender,

list( contr.sum, contr.sum),
df)

Anova(model.without.interaction, "II")

##
##
#it
#it
##
##
##
#i#t
#it

Anova Table (Type II tests)

Response: learning

Sum Sq Df F value Pr(>F)
condition 68.167 1 56.3055 2.086e-12 **x
gender 2.403 1 1.9846 0.1605
Residuals 238.500 197

Signif. codes: O ’xxx’ 0.001 ’xx’ 0.01 ’x> 0.05 ’.” 0.1 > ’ 1
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Reporting the ANOVA without interaction

tapply(df$learning, df$condition, mean)

#it IPS PSI
## -0.2626251 0.9179664

tapply(df$learning, df$condition, sd)

## IPS PSI
## 1.131207 1.072908

A two way ANOVA was conducted with the experimental condition, and the control variable gender. There
was no interaction effect between condition and gender. There is a main effect of the experimental condition
(F[1,197]=56.306, p<.000). The subjects in the PSI group had a larger learning gain (M=0.918, sd=1.07) than
the subjects in the IPS group (M=-0.262, sd=1.13). There was no main effect of gender (F[1,197]=1.98, p >
.05).
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