
CS 358

Making
Intelligent

Things
Course Handbook

September 10, 2024

Christoph Koch (christoph.koch@epfl.ch)

with

Freya Behrens, Lars Klein, Alexander Müller,
Juliette Parchet, Giovanni Ranieri, Dylan Vairoli,

and Leo Wolff

2

Contents

I The Course 15

1 Introduction 17
1.1 The Makers Revolution . 17
1.2 A Course for Software-Savvy Makers 18
1.3 The Place of the Course in the Curriculum 19
1.4 Deciding Whether to Take the Course 20

2 Course Organisation 23
2.1 Course Structure . 23
2.2 Grading . 24
2.3 Contact Hours and Contacting Us 24
2.4 Materials and Ownership . 27
2.5 Time Plan and Deadlines . 28
2.6 Forming a Team . 30
2.7 The End of the Project and Course 30
2.8 After the Course . 31

3 Good Citizenship 33
3.1 Stay Informed . 33
3.2 Safe Conduct . 34
3.3 Do not Compromise your Team’s Success 35
3.4 Find Like-minded Teammates 36
3.5 The Tragedy of the Commons 37
3.6 The Long-Term Perspective . 38
3.7 Captain Obvious’ Guide to Conduct 39

4 Getting Started 41
4.1 Course Prerequisites . 42
4.2 Software Setup . 43

3

4 CONTENTS

4.3 Course-specific Tutorials . 44
4.4 Handbook Reading and Watching Videos 46

5 The Individual Project 49
5.1 Design Philosophy and Learning Goals 49

5.1.1 Design or Execution – Which is the Problem? 49
5.1.2 The Need to Tinker . 50

5.2 The Component Bag . 51
5.3 The Spring 2024 Project: a 2D Plotter 52

5.3.1 Tasks . 53
5.3.2 Required Items . 55
5.3.3 How to Proceed . 55
5.3.4 Initial Mechanical Build 58
5.3.5 Deliverables and Grading 59

6 Team Project Proposals 61
6.1 Finding a Suitable Project Idea 61
6.2 Exclusion Criteria . 64
6.3 The Project Proposal Document 66
6.4 How we grade and select proposals 67

7 Team Project Documents 69
7.1 CAD Design . 69
7.2 Source Code and GitHub Repository 70
7.3 The Bill of Materials . 70
7.4 Risk Assessment . 74
7.5 The Revised Team Project Proposal 76
7.6 The Work Breakdown . 77
7.7 Making the Thing . 78
7.8 Creating Instructions . 78

8 Weekly Scrum Meetings 79

9 Safety Hazards 85
9.1 Mandatory Safety Training . 85
9.2 (Power) Tools . 86
9.3 High Voltages . 86
9.4 Actuators . 88
9.5 (Electro)magnets . 88

CONTENTS 5

9.6 Electrostatic Discharges . 88
9.7 High Currents . 89
9.8 Fire/Explosions . 90
9.9 Chemicals . 91
9.10 Recommended Videos . 91

10 How to use this handbook 93

II Design Considerations 97

11 Beauty 99

12 Goodness 103

13 Intelligence 105
13.1 Intelligence by Obscurity . 105
13.2 Intelligence by Reactivity . 107
13.3 Intelligence by Emergence . 108
13.4 Bounded Rationality and Resource-Bounded AI 110

14 Complexity 113

15 Scale 115
15.1 Bigger is not better . 115
15.2 Small is Hard, too . 117

16 Design Checklist 119

III Basic Electronics 121

17 Electric Circuits 123
17.1 Charge, Voltage, Current, and Power 123
17.2 Kirchhoff’s Laws . 125
17.3 Resistors and Ohm’s Law . 127
17.4 Voltages are Relative . 128

18 Making Circuits 133
18.1 Breadboards . 133

6 CONTENTS

18.1.1 The Soldering Practice Kit on a Breadboard 134
18.2 Soldering . 137

18.2.1 Soldering the Practice Kit 140
18.3 Making PCBs . 141
18.4 Recommended Videos . 141

19 Supplying Power 143
19.1 Mains Power Supply Units (PSUs) 144
19.2 Batteries . 145
19.3 Voltage Conversion . 146
19.4 Supplying Multiple Voltages 148
19.5 Designing your Power Supplying Solution 149
19.6 Cabling . 150
19.7 Connectors (Plugs) . 152
19.8 Recommended Videos . 153

20 Lithium-Polymer (LIPO) Batteries 155
20.1 LIPOs are Dangerous . 155
20.2 LIPO Ratings . 156
20.3 Recharging a LIPO . 157
20.4 LIPO Protection Circuit Setup 159
20.5 Rules for using LIPOs . 161
20.6 What to do in Case of an Accident 163

21 Cable Management 165
21.1 Keeping Order . 166
21.2 Avoiding Broken Cables . 168

22 Debugging Electronic Circuits 169
22.1 Be Organized . 169
22.2 Debugging Checklist . 170
22.3 Measurement using Multimeters 173
22.4 Oscilloscopes . 175

IV Microcontrollers and Programming 177

23 Digital Signals 179
23.1 Logic Levels and Logic Gates 179

CONTENTS 7

23.2 Logic-level Conversion . 181
23.3 “No Connection” is Different from Digital Zero 182
23.4 Pulse Width Modulation (PWM) 184

24 Microcontrollers 187
24.1 Recommended Videos . 189

25 Choosing a Microcontroller 191
25.1 Microcontroller Families . 191
25.2 Microcontroller Comparison Chart 192
25.3 ATMEL AVR MCU Boards . 195

25.3.1 Arduino UNO R3 . 195
25.3.2 Arduino Mega 2560 . 196

25.4 Expressif MCU Boards . 197
25.4.1 NodeMCU ESP8266 . 197
25.4.2 Wemos D1 R32 . 197
25.4.3 ESP32-CAM . 198

25.5 STM32 MCU Boards . 200
25.5.1 STM32 Blue Pill . 200
25.5.2 STM32 Nucleo64 F401RE 201

25.6 Recommended Videos . 201
25.7 Parts in Stock for CS358 . 201
25.8 MCUs in Disguise . 202

26 Setting up the Arduino IDE 203
26.1 For the Arduino Uno . 203
26.2 For the ESP8266 . 204
26.3 For the ESP32-CAM . 204
26.4 In case you can’t get it to work 205
26.5 Other IDEs . 205

27 Microcontroller Programming 207
27.1 Language Syntax . 207
27.2 Structure of a Program . 209
27.3 Word Length and Numerical Data Types 210
27.4 Serial Communication and Debugging 210
27.5 I/O . 211
27.6 Interrupts . 213
27.7 Porting Code to other Microcontrollers 214

8 CONTENTS

27.8 Getting to the Bare Metal . 215

28 Interfacing and Communication 219
28.1 GPIO Pins . 220
28.2 RX/TX Serial (TTL, UART) . 221
28.3 Universal Serial Bus (USB) . 222
28.4 I2C . 222
28.5 Serial Peripheral Interface (SPI) 224
28.6 CAN-Bus . 225
28.7 Parts in Stock for CS358 . 226

29 Wireless Communication 227
29.1 Bluetooth . 227
29.2 Wifi . 228
29.3 ESP-Now . 228
29.4 Radio . 229
29.5 Parts in Stock for CS358 . 229

V Sensors 231

30 Introduction to Sensors 233
30.1 Super-simple Sensors . 234
30.2 Simple Sensors . 234
30.3 Challenging Sensors . 235

30.3.1 Accelerometers . 235
30.3.2 GPS Sensors . 236
30.3.3 LIDAR . 236
30.3.4 Cameras/Vision . 236

30.4 Recommended Videos . 237
30.5 Parts in Stock for CS358 . 237
30.6 Sensor Pitfalls . 238

31 The HC-SR04 Ultrasonic Distance Sensor 241
31.1 Recommended Videos . 244

32 Making your own Sensors 245
32.1 Resistor-based Sensors . 246
32.2 Amplifying Small Changes . 246

CONTENTS 9

32.3 Recommended Videos . 249
32.4 Parts in Stock for CS358 . 249

VI Actuators 251

33 Electromagnetism 253
33.1 Inductance and Back-EMF . 254
33.2 Making Electromagnets . 255
33.3 Solenoid Actuators . 256
33.4 Parts in Stock for CS358 . 257

34 Electric Motors 259
34.1 Power, Speed, and Torque . 259
34.2 Acceleration . 261

34.2.1 The Case of Stepper Motors 262
34.3 Safety Hazards . 263

34.3.1 Blunt Trauma . 263
34.3.2 Current Draw . 264
34.3.3 Counter-Electromotive Force (Back-EMF) 265
34.3.4 Radio Frequency Interference 266

35 Motor Types 267
35.1 Brushed Motors . 267

35.1.1 Motor Drivers: H-Bridges 269
35.1.2 Recommended Videos 270

35.2 Brushless Motors . 271
35.2.1 Motor Characteristics 272
35.2.2 Brushless Motor Drivers (ESCs) 272
35.2.3 Gimbal Motors . 274
35.2.4 Recommended Videos 275

35.3 Stepper Motors . 275
35.3.1 Recommended Videos 276

35.4 Inrunners vs. Outrunners . 277
35.5 Parts in Stock for CS358 . 278

36 Bipolar Steppers: 17HS4401 + A4988 279
36.1 Setup . 280
36.2 Safety . 282

10 CONTENTS

36.3 Programming . 283
36.4 Stepping by PWM Signal . 284
36.5 Troubleshooting . 286
36.6 Stepper Motor Music . 288
36.7 Recommended Videos . 288

37 Unipolar Steppers: 28BYJ-48 + ULN2003 289
37.1 Programming: The Low-Level Method 290
37.2 Programming: The AccelStepper / MultiStepper Libraries . 291
37.3 Turning the 28BYJ-48 into a Bipolar Stepper 293

38 Servos 295
38.1 Brushed Servos . 295

38.1.1 Operating many servos 298
38.2 Brushless Servos . 298
38.3 Closed-loop Steppers . 299
38.4 Recommended Reading and Videos 299
38.5 Parts in Stock for CS358 . 299

39 Control Loops 301
39.1 Closed Control Loop . 302

39.1.1 Building a Smart Closed Control Loop 302
39.2 PID Tuning . 305
39.3 Additional Notes . 306
39.4 PID Code Example . 306

39.4.1 Example Application: Phone-Controlled Car 309

40 Field-Oriented Control 317
40.1 Control Feedback and Customization 317
40.2 Features . 320
40.3 SimpleFOC . 321

40.3.1 STM32 B-G431B-ESC1 and a Brushless Motor 321
40.3.2 L298N and a Bipolar Stepper 323

40.4 An ODrive Example . 325
40.5 Parts in Stock for CS358 . 328

40.5.1 Current Needs and Ratings 328
40.5.2 Ease of Use . 330
40.5.3 Choosing a FOC Solution 331

40.6 Caveats and Debugging . 332

CONTENTS 11

40.7 FOC in Industrial Robots . 334
40.8 Recommended Videos . 335

VII Mechanical Engineering 337

41 Mounting Motors 339

42 Machine Elements and Patterns 341
42.1 Coupling . 341
42.2 Creating Mechanical Advantage (Increasing Torque) 342

42.2.1 Using Gearboxes . 343
42.2.2 Using Belt Reduction 344
42.2.3 Recommended Videos 344

42.3 Turning Rotary into Linear Motion 345
42.4 Ball Bearings and Turntables 345
42.5 Parts in Stock for CS358 . 347

43 Inverse Kinematics 349
43.1 Recommended Videos . 349

44 Robot Arms 351
44.1 Not Arms . 351
44.2 Arms . 352
44.3 Hands . 352
44.4 Recommended Videos . 353

45 Legged Robots 355
45.1 Making it Easy . 355
45.2 Making it Hard . 356
45.3 Recommended Videos . 357

46 Using Lego Parts 359
46.1 Recommended Videos . 359

VIII CAD and CAM 361

47 CAD Design in Fusion 360 363
47.1 Getting Started . 364

12 CONTENTS

47.2 Project Architecture: Alone or for a Team 413
47.3 History feature in Fusion 360 415
47.4 Sketching . 417

47.4.1 Parametric Design . 418
47.5 Best Practices . 419

47.5.1 Mesh vs. Solid-based modeling 420
47.5.2 Useful Fusion 360 tools 420
47.5.3 Thinking about Assembly 421

47.6 Joints in Fusion 360 . 423

48 Laser-Cutting 459
48.1 Why you should consider it 459
48.2 Designing Parts for Laser Cutting 460
48.3 From Fusion 360 to the Laser Cutter 460
48.4 Assembly . 460

49 3D-Printing 461
49.1 Basics . 461

49.1.1 Print Failures . 462
49.1.2 3D Printing Checklist 462

49.2 Design for 3D Printing : DOs and DONTs 464
49.2.1 Printing Time . 465
49.2.2 Material Use . 465

49.3 Slicing in PrusaSlicer . 467
49.3.1 Expert Mode . 467
49.3.2 Painting Tool . 468
49.3.3 Infill . 468
49.3.4 Brim and Skirt . 468

IX More Programming 471

50 Adding Computer Vision 473
50.1 Overview . 473
50.2 Basics . 473

50.2.1 Colors . 473
50.2.2 Blurring . 474

50.3 Libraries . 474
50.3.1 OpenCV . 474

CONTENTS 13

50.3.2 April Tags . 475
50.4 Code Examples . 475

50.4.1 OpenCV . 475
50.4.2 AprilTags . 477

51 GRBL and LinuxCNC 481

52 MCU Operating systems: FreeRTOS and ROS 483

53 Mobile App Control 485
53.1 React Native App and ESP8266 485

53.1.1 Expo CLI . 485
53.1.2 Creation of the Project 486
53.1.3 HTTP Requests . 486
53.1.4 Handle HTTP Requests 487

53.2 Other Mobile App Frameworks 489

X More Hardware 491

54 Using Gamepad Controllers 493
54.1 WiFi connection . 493

54.1.1 Connect a gamepad in the browser 494
54.1.2 Retrieve the gamepad data 494
54.1.3 Communication with an ESP8266 497

54.2 Bluetooth connection . 499
54.2.1 Troubleshooting . 499

XI Case Studies 501

55 The Prusa i3 MK3S 3D Printer 503
55.1 Mechanical Frame . 503
55.2 Actuation . 504
55.3 Electronics . 505
55.4 Cable Management . 506
55.5 3D-Printed Parts of the Printer 506

56 The Making Intelligent Traffic Project 507
56.1 Backup Plans . 507

14 CONTENTS

56.2 Problem Solving: Localisation 507
56.2.1 Problem Definition . 507
56.2.2 GPS . 508
56.2.3 Bluetooth . 508
56.2.4 CHILI Cellulos . 508
56.2.5 OpenCV . 508
56.2.6 AprilTags . 509

57 Previous Team Projects 511
57.1 2022 . 511
57.2 2023 . 512
57.3 2024 and Later . 512

Part I

The Course

15

Chapter 1

Introduction

1.1 The Makers Revolution

Recent years have witnessed a development that some call the Makers Rev-
olution or the Third Industrial Revolution. We have seen a democratization
of computer-aided manufacturing and an impressive increase in the num-
ber of people who turn tinkering with electronics, robotics, 3D printing,
etc., into a hobby. Along with this we see the greatly increased availability
of cheap, mass-produced electronic modules read-made for makers who
are not electric engineers1, and the coming of age of 3D printing technol-
ogy. Projects that could only be carried out by the largest of organizations
and the richest of nation-states a few decades ago2, and even things that
recently still belonged to (science) fiction, have now moved into the realm
of what hobbyists can make on very moderate budgets. Makerspaces –
shared spaces that facilitate the development of prototypes for research,
as business ventures, or in the context of play and hobby – have sprung
up in many places3, including at EPFL. DLLEL, also called the SPOT, is
one of a series of makerspaces EPFL has created or is in the process of
developing. DLLEL is our main stomping ground for this course.

1This includes open-source hardware designed for learners, such as the Arduino line
of micro-controllers and Adafruit’s line of associated modules.

2Think of the capabilities of the computers on the earliest spacecraft.
3There is even a mega-city-sized makerspace called Shenzhen – see

https://www.youtube.com/watch?v=XmHaCZIncrg.

17

https://www.youtube.com/watch?v=XmHaCZIncrg

18 CHAPTER 1. INTRODUCTION

1.2 A Course for Software-Savvy Makers

The course CS-358 Making Intelligent Things is IC’s main educational con-
tribution to the makers revolution.4 It allows IC students to get their hands
dirty and make something physical. Use power tools that make a lot of
noise. Play with 3D printers, laser-cutters, and CNC machines. Write a
program and upload it to a device that is smaller than your fingertip5 and
which still can sense its environment and make stuff move. Do some-
thing that used to belong to science fiction and only became feasible, easy,
cheap, or safe to make recently, by that makers revolution, the (hardware)
open-source movement, and the mass manufacturing of components for
which there was no market until recently. Make something that you can
show your friends and family, who never quite understood what computer
science was about and who can now finally see a tangible thing you made
and that demonstrates some of the things you have learned at EPFL. In
the past, you may have tried to explain to them what NP-completeness is
and have received a blank stare. Now, you can demo your thing, blow them
away with its brilliance, and be acknowledged as a genius.

You can make an awesome prototype that makes the world a better
place – an assistive technology, a way to improve sustainability, or to fight
epidemics. A useful tool, or just a really cool toy. You may turn this into
the nucleus of a business startup. Within reasonable and safe limits, this
course is meant to enable you to create and realize your own vision – you
may propose and realize your own project.

Making Intelligent Things is not necessarily about Artificial Intelligence6,
though AI is welcome. It is about connecting software to the physical world
via sensors and actuators. It is about making things that are reactive to
the physical world. At least to the uninformed bystander, these things
will appear (somewhat) intelligent. Do not force too much advanced com-
puter vision and machine learning into your projects. There are special-
ized machine learning and computer vision courses at EPFL, and they are
better places for going state-of-the-art (and beyond) in these respects. In
this course, we want to work with devices that have limited memory and
computational capabilities. It is about creating smart solutions, not an

4See https://www.youtube.com/watch?v=uSIPdKgHk7A for a presentation video on
the course.

5We have ATTINY13A SOIC8 micro-controllers (6.2 ∗ 5 ∗ 1.75 mm) in stock.
6For more on this see Chapter 13.

https://www.youtube.com/watch?v=uSIPdKgHk7A

1.3. THE PLACE OF THE COURSE IN THE CURRICULUM 19

exercise in buying lots of GPUs.
If you trust the internet, of all the myriad skills required from a high-

tech maker, software is the most challenging one. But this is your home
turf. This makes you, an IC student, better suited than any other group
of students on the EPFL campus to achieve something impressive in a
course like this. This is also the feedback we are getting from “outsiders”
not involved in the course. The projects produced in past iterations of
the course have been particularly fun and interesting to them because the
software side that you excel at creates so much functionality and utility.
Let us continue in this tradition, and even push it to new heights.7

1.3 The Place of the Course in the Curriculum
This course is meant to at once give you a playground to create embed-
ded systems and combine software with physical stuff and teach you to
work successfully in a team. It will expose you to challenges that arise in
robotics and process automation, though it won’t be able to replace spe-
cialized courses in this space.

With the (computer science) curriculum reform of 2024, CS-358 has
become an 8 credit course that is close to mandatory: CS358 is in a cat-
alog of two large team project courses (the other one is CS-311 Software
Enterprise), of which you need to pick one. The course can also take the
place of a semester project, a decision that was made since student en-
rollment has been growing steadily in the past few years and the supply
of teachers and project supervisors has not kept pace, creating a short-
age of advisors. The replacement of semester projects by the course will
eliminate the problem of finding a semester project advisor in the future,
and will make it easier to find an advisor for your masters thesis (should
you stay on for a masters) given that advisors will have more cycles free for
that.

These two courses prepare you to work in teams on larger projects. We
will, in a practical setting, do project management and agile development.
This exposes you to challenges you may not have encountered before. It will
not be sufficient to be individually capable, but you will have to function

7As Dante Alighieri says, “Now shall your true nobility be seen!” He is speaking to
allegorical genius and inspiration here, even though the canto is called the Descent [into
hell]. Either way the quote is fitting for the course]:-)-

20 CHAPTER 1. INTRODUCTION

well in a team.
Given their role in the curriculum and the fact that you probably only

take one of the two courses, Software Enterprise and Making Intelligent
Things share many teaching goals. We expect that most of you will end up
in industry doing software, and we must make sure that you are not at a
disadvantage on the job market compared to students taking the Software
Enterprise project course. We will use an adapted form of Scrum, a soft-
ware development process that is also used in Software Enterprise.8 We
share best practices with Software Enterprise, and we will apply the same
formula for time cost for the course (240 hours in total, or about 17 hours9

of work per week, for 14 weeks), and follow a very similar approach to grad-
ing. So the two courses are in many ways quite similar, but in CS-358 we
will create embedded systems rather than pure software systems.

This course is likely to make you feel like spending your time on a hobby,
more so than any other course in your study plan. The physical, manual
activity can be great at counter-balancing the stress you are experiencing
elsewhere and the heavy theoretical work of some of your other courses.
You do need to take the course serious, though, your team depends on it.

1.4 Deciding Whether to Take the Course

This is a project-based course without any classical lectures10 or exams.
You must be willing to explore, solve problems, and identify what you will
need to learn to be successful. We will help you do that. This manual is an
important part of this. To allow us to communicate some of the information
you will need, you have to be willing to read parts of this manual on your
own, and search for information in here proactively. Alas, we have no other
way of getting this information to you.

As pointed out above, EPFL expects that you to spend about 17 hours
per week on this course. This is a substantial time commitment. Because

8Adaptations are necessary since SCRUM essentially assumes that a new prototype
can be built anytime at the zero cost (by simply compiling), which is true for software but
false when developing hardware.

9This is a lot, but we work very hard to ensure that this is also an upper bound on the
time you need to spend on the course.

10The manual, plus some tutorials we are organizing, are meant to fill this void while
remaining in true to IC’s conception of a project course.

1.4. DECIDING WHETHER TO TAKE THE COURSE 21

of the team project nature of the course, you will not be able to plan freely
and focus your work time on certain weeks; you will be expected to be able
to contribute consistently across the semester. This requires discipline
and cooperation from you.

In the course, you will do an individual project and a team project. The
individual project has been designed by the course staff to gently introduce
you to the various challenges of making intelligent things and to bring ev-
eryone to a level to achieve success in a team with minimal frustration. For
the team project, you will be asked to come up with a team project proposal
of your own, which the course staff have to approve (see Chapter 6).

Since you will create a single physical artifact that has to remain acces-
sible to everyone in the team, and since you will need to use tools that you
do not have at home, you will have to spend a considerable part of your
time being physically present in the DLLEL building – the makerspace.
Some of the work can only be done in the makerspace and you will need
to physically meet your team members and the course staff at appointed
times. If you are very inflexible about time, or plan to come to the campus
only infrequently, you cannot take this course.

You will not be able to take the thing created in the team project home.
You will have to work in DLLEL and keep the physical components of the
thing you are making at EPFL and physically accessible to your team mem-
bers at all times.11 We do understand that you might rather work at home,
but, with the exception of some CAD design and offline programming work,
this will not be possible.

This course may not be right for you. Please decide now, and do not
sign up for the course if you think you will not enjoy it.

After all these cautionary notes, let me point out that many students in
the previous iterations of the course reported that they enjoyed it a lot. I
think that you will have a lot of fun in this course too. See some glimpses
of the projects from the Spring 2023 iteration of the course in this video:

https://www.youtube.com/watch?v=uSIPdKgHk7A .
Also keep in mind that the course, and the training units you will com-

plete as you take it, grants you a “driving license” to keep using the the
facilities and resources of the makerspace for your private projects after
the end of the course, for as long as you remain an EPFL student. It’s a
cool privilege.

11See also Chapter 3.

https://www.youtube.com/watch?v=uSIPdKgHk7A

22 CHAPTER 1. INTRODUCTION

Chapter 2

Course Organisation

2.1 Course Structure
The course consists of three kinds of modules:

1. Tasks you need to do to qualify for other things, but which are un-
graded. These are mainly in place for you to be able to take the course
safely. This includes some online safety training modules (on moodle),
a soldering tutorial, a 3D printing tutorial, a laser cutting tutorial, an
introduction to the machine shop, as well as three CS358-specific tu-
torials (one per week in the first three weeks in BC03) that will allow
you to do project work safely and successfully.

These things are mandatory but ungraded. Some are required by
EPFL for you to be allowed to use the makerspace and are not specific
to our course.1 See Chapter 4.

2. Activities you need to perform individually and which are graded. This
includes

• a small individual project intended to teach you key skills that
you will need in the larger team project (see Chapter 5), and

3. the creation of a (team) project proposal (see Chapter 6), done indi-
vidually by you but designed to be worked on by a team,

1Also note that doing this training entitles you to use the makerspace for your own
projects, independently from the course, within reason, in the future.

23

24 CHAPTER 2. COURSE ORGANISATION

4. a team project (covered in Chapters 7 and 8). This is the central part
of the course; all other modules are in place to prepare us for it.

2.2 Grading
There are no exams. The grade split is as follows:

• The individual project accounts for 20% of the course grade. The
individual project grade will be determined in a meeting and demo of
your thing to the course staff (see Chapter 5).

• The team project proposal (an individual assignment) accounts for
5% of the grade (see Chapter 6).

• The remaining 75% of the grade come from your performance in the
team project (see Chapters 7 and 8). Course participation throughout
the semester, in the weekly team project/SCRUM meetings with the
course staff, forms part of the grade.
There is also a final presentation event, but overall success of the
team project isn’t just judged at the end. Despite the team work, we
will grade you individually, and for tasks you work on during the agile
development process. If you do too little, you will fail the course even
if you are in a great team that produces a spectacular thing.

Details on grading these parts are given in the respective chapters be-
low. Grade cut-offs:

6.0: >98; 5.75: >90; 5.5: >85; 5.25: >80;
5.0: >75; 4.75: >70; 4.5: >65; 4.25: >60; 4.0: >50

2.3 Contact Hours and Contacting Us
In the Fall of 2024, the teaching staff consists of nine people:

• christoph.koch@epfl.ch (professor)

• lucas.burget@epfl.ch (PhD TA)

• chenyang.wang@epfl.ch (PhD TA)

2.3. CONTACT HOURS AND CONTACTING US 25

• amene.gafsi@epfl.ch (AE)

• emile.janhodithreich@epfl.ch (AE)

• timofey.kreslo@epfl.ch (AE)

• julian.marmier@epfl.ch (AE)

• evan.massonnet@epfl.ch (AE)

• pinar.oray@epfl.ch (AE)

We are supported by catherine.gagliardi@epfl.ch (admin).
Your IS-ACADEMIA timetable shows two slots, which have been picked

such that there should not be any collisions with other mandatory courses,
blocked for the course:

• Tuesdays from 5 to 7pm in DLLEL 1-50, the seminar room of the
makerspace. The plenary: Our central, regular, key, main meeting.
Unless it’s a holiday, we will all meet in this slot every week. We will
answer any questions you might have. All the course staff will be
present. The kickoff meeting for the course and the first date you
need to keep in mind taking this course is Tuesday 5-7pm first week
of the semester. Early on, it will be a place to meet other students
and form teams for the team project phase and to discuss project
ideas. Throughout the course, we will discuss important organiza-
tional and other discussion points. During the team project phase,
some of the SCRUM meetings can take place in this slot (but not all
since a senior teaching staff member will need to be present, allowing
only for limited parallelism). Here are the rough topics of the Tuesday
meetings by week:

1. Kickoff meeting – course organisation.
2. The individual project.
3. Presenting and deciding on the team project topics (plus tentative

team formation).
4. How the team project phase will play out. First informal team

meeting with TA.
5. Team meetings with TA, discuss updated project proposal/documents.

26 CHAPTER 2. COURSE ORGANISATION

6. Individual project demos.

7ff. Team/Scrum meetings ...

• Wednesdays from noon to 3pm. In the first three weeks, we will have
tutorials in these slots in BC03. In the first week, we will also dis-
tribute the bags with electronic and mechanical components that you
will need for the individual project in this slot. If you miss the tutorial,
please get your components bag from Catherine Gagliardi (BC212,
Tuesdays and Thursdays).

After that, the Wednesday slot is for the Scrum meetings we can’t do
in the plenary slot. The Scrum meetings will be in DLLEL, so we will
not use BC03 from Week 3 on.

Even when you are not having your Scrum meeting, we encourage you
to be in the makerspace to work on your project during these two slots
during the team project phase; course staff will be present.2 At the end of
the plenary, Christoph stays until all questions and requests are resolved,
no matter how long that takes.

During the tutorial and individual project phase (the first five weeks of
the semester) we have additional office/contact hours of the AEs in the
makerspace. See Figure 2.1 for the times of office hours. The AEs are in
the DLLEL main workspace (DLLEL 0-28) during the office hours and you
don’t need an appointment to meet them; just go there.

Office hours end in W6 with the individual project demo event. After
that, please contact the teaching assistants assigned to your team project
when you need help.

The first source of answers to any questions is this manual, not be-
cause we do not want to talk to you but because we have tried to think
of addressing any organizational question that may arise. We encourage
feedback in case you find something missing.

We use moodle to share information and to allow you to submit doc-
uments. There is also a forum there in which we ask you to put your
questions that may be of interest to others.

For other questions we use email.

2But keep in mind that just allotting these two slots of your time for this course will
not be sufficient, by far – see Figure 2.2.

2.4. MATERIALS AND OWNERSHIP 27

Figure 2.1: Office hours (Fall 2024), Wed of W1 to Tue of W6.

2.4 Materials and Ownership
Materials for laser cutting and 3D printing as well as small items such as
cables and screws are available for free to you in DLLEL.3

We buy and give out all the other electronic and mechanical components
that you will need for both the individual project and the team project.
We do this at specific events (see below) – the components needed for the
individual project will be given to you in a prepared bag in Week 1. We may
ask you to provide an item that you are very likely to own – such as a USB
charging cable or a pen – for your own use.

Should a part be or get damaged or go missing, talk to an AE, preferably
during office hours. While you remain in good standing4, we will try to help
you out replacing damaged part.

There is also a place at DLLEL (called the “circular box” – though it’s not
just a box but a well-organized storage unit with multiple drawers) where
people donate and pick up used parts. Sometimes the fastest way to get
something you lack is to look there, and you may take things from there
for your private projects. Consider donating the re-usable components of
your individual project there after grading in case you are not interested
in keeping the thing you made.

If you take the course for credit (i.e., you do not drop out in the first two
weeks), the thing produced in the individual project is yours to keep. The

3This is true for course projects: the costs get charged to the EPFL DATA Lab at the
end of the semester. You may use the makerspace for private projects; in that case, you
are charged for consumables but the prices are very low.

4You will lose this status through negligence. You need to do the best you can to avoid
damaging things, and remain informed on how to do this by reading the relevant chapters
of this manual.

28 CHAPTER 2. COURSE ORGANISATION

Figure 2.2: Time estimates per week and activity.

team project thing belongs to EPFL, but see also Section 2.7.

2.5 Time Plan and Deadlines
Figure 2.2 shows a recommended time plan for the semester. Weeks 7 to
13 all have the same structure: 16 hours of team project work with weekly
Scrum sprints and an hour-long weekly meeting of the team with course
staff. As you can see, the individual project and the team project overlap,
and you should finish the tutorials and training as early as possible.

Key Activities and deadlines:

• Week 1, Tuesday: Kickoff meeting.

• Week 1 (during the Wednesday tutorial): We hand out the component
bags for the individual project.

• Week 1-2: Work on a team project proposal. This is individual work.
Doing it together with others would be considered cheating. Recruit
your team only after completing the proposal.

• Week 1-5: Work on the individual project.

• End of Week 2 (recommended): Finish all required training units and
tutorials (see Chapter 4).

2.5. TIME PLAN AND DEADLINES 29

• End of Week 2 (Sunday 11:59pm): Submit your Team Project Proposal
(see Chapter 6) on moodle.

• Middle of Week 3: Approved team project proposals are published on
moodle. Form a team and pick a proposal.

You are encouraged to submit your proposal earlier than this dead-
line. We will try to look at and approve early submissions early.

• (Preferably by the) end of Week 3. Finalize the team composition and
fix the choice of project idea. Send email to Christoph.Koch@epfl.ch
naming the project idea and identifying the team members. Include
github handles for all team members. A moodle group will be created
and TAs will be assigned to you. The teaching staff create a Github
repository for you. You create a Fusion360 project (they are cloud-
based) and invite your team members and TAs in.

• Weeks 4, 5 and 6: Work on the revised team project proposal doc-
uments as a team. Also meet your TA as a team to discuss your
proposal. Solicit feedback from the teaching staff and work it into
your proposal.

• End of Week 5. Finalize individual projects; submit documents to
moodle.

• Tuesday 5-7pm in Week 5. Demo/grading session during the plenary
slot: grading of mechanical (belt tensioning, etc.) and electronics
assembly (2 out of 20 points): the moveable pen-holder is not required
if the fixed penholder is correctly mounted. You do not need to power
it up and demo running code.

• Tuesday 5-7pm in Week 6. Demo/grading session during the plenary
slot. You may request a demo in an earlier plenary if you are done
early (talk to a TA about it).

• End of Week 6 (Sunday 11:59pm): Revised team project proposal with
final bill or materials, risk assessment, and work breakdown docu-
ment are due on moodle. See Section 7.5.

• We try to provide you with the requested and agreed upon electronic
and mechanical components as early as possible. You can expect to

30 CHAPTER 2. COURSE ORGANISATION

receive most if not all by the plenary in W7 (in 2024, that is right after
the easter break).

• Tuesday 5-7pm in Week 9. Half-time demo event. We get together
and every team showcases their status/prototype to the other teams.
Ungraded.

• Week 7-14: work on your team project. Weekly SCRUM meetings
are grade-relevant; in addition, you will have weekly meetings with a
consultant from our staff, which are there to help you along and will
not affect your grade.

• By Friday 2pm in Week 14 (May 31, 2024). All documents and grad-
ing for the team project need to be finalized. Team meetings with the
teaching staff can get arranged at a later date in the week than nor-
mal, but all grade-relevant info must be in by that deadline, and the
final team meeting must have happened by then.

• Friday 2-5pm in Week 14 (May 31, 2024) in the big open space in
DLLEL. Open-house demo event. Show off your thing to your fellow
course participants, friends, family, journalists, IC professors, etc.

2.6 Forming a Team
You will work on the team project in a team of five or six students. We
invite you to form teams with your friends and use the contact hours,
particularly the plenary meetings, to shop around for team members.

2.7 The End of the Project and Course
At the very end of the course, on Friday afternoon of the last week of
the lecture period, we will organize an open-house event in DLLEL where
you will demo your projects and can invite your friends and family. You’ll
also be able to check out the other team projects. In the past years, this
has been a very successful event, with journalists, lots of students, and
families attending.

After this, the course is over. The projects belong to EPFL, and here is
what happens to them from then on.

2.8. AFTER THE COURSE 31

• We keep your thing in store for you for a while in case you want to
demo it at some outreach event at EPFL, take it to a maker fair, en-
trepreneurship event, etc. EPFL and IC are always looking for cool
demos for their outreach events (such as for highschoolers, the EPFL
Open House, etc.), and they pay you for demoing your thing.

• It is possible to continue working on the thing after the end of the
semester, even for credit (in a semester project, for example).

• It may be possible for you to buy your thing if the other team mem-
bers agree. The total price will be half the price of the electronic
components. This is not a suggestion. We are not trying to sell you
something, but mention it as possible should you want that.

• We may keep the thing – maybe a future team will want to extend it
or integrate it into their project.

• Eventually, if there is no further interest in the thing, it may get scav-
enged for parts.

2.8 After the Course
Hopefully, the course hasn’t put you off making things ever again. Having
gone through the various training units grants you the right to use the
makerspace for your own projects for as long as you remain a student at
EPFL.

Also, consider joining one of the MAKE projects – your skill set will be
very valuable to any of them. Being organized entirely by students, and
often run in a very enterpreneurial spirit, it will be a rewarding experience
(if you have extra time to spend).

The course needs student assistants (AEs), who are of course paid for
their work. We think this is one of the more desirable courses to be an
AE for. Contact me in case you are interested. My selection criteria are
based on how well you did in the course and how well I think you would
do advising students. A good grade in the course is important, but I won’t
judge solely by grade. How well you did on your individual project mat-
ters, and whether your work stood out there in any way, since this can
be judged by individual merit. Seeing you interact with your team in the

32 CHAPTER 2. COURSE ORGANISATION

Figure 2.3: At the end of the semester, you hand your thing over to EPFL.

team project phase also helps me see how well you do with people. Having
solid command of the basic technical skills matters since I will need your
help in the tutorials. I will also need experts who have reached depth in
some of the disciplines, or with some of the technologies, that matter to
the course. I may need to prioritize selecting AEs who complement each
other. If you have a very special set of skills, you will look for me, you will
find me, and you will apply as an AE.5

As you have probably seen yourself while taking the course, AEs have
office hours, help with tutorials, co-advise teams in SCRUM meetings, and
help prepare the course for the following semester. Unlike for many other
courses, there are comparably few chores to do (such as grading paper
homeworks).

5https://www.youtube.com/watch?v=jZOywn1qArI. “Good luck”.

https://www.youtube.com/watch?v=jZOywn1qArI

Chapter 3

Good Citizenship

In this course, there are physical dangers to the health and even lives of
humans. Moreover, since much of the course is a team effort, we depend
on each other to achieve our goals. There are a number of rules in place
that you need to follow to make this course a safe and enjoyable experience
for everyone.

3.1 Stay Informed

While safety is our first concern, you cannot stay safe without knowing the
dangers and how to avoid them.

This is not a lecture based course, so we try to provide you with the nec-
essary information through tutorials and particularly this manual. While
you are not expected to read this manual linearly from beginning to the
end, we will point you certain chapters or sections that you must read.
You need to know what is in this manual, so make sure to familiarize
yourself with the table of contents of the manual, and skim through all of
the manual at least once to know what is covered and what isn’t. When
you become aware that you will need to work with a specific topic or tech-
nology, say stepper motors or CAD, and the topic is covered in the manual,
make sure to read the relevant chapter(s). Don’t wait for us to tell you that
you need to read a chapter – depending on what you choose as your team
project, not everyone in the course needs to read the same sections of the
manual. Reading is not optional – if you don’t do this, it will be taken as
negligence, and it is dangerous.

33

34 CHAPTER 3. GOOD CITIZENSHIP

If you read parts of the manual and have questions, please make sure
to ask. We are happy to help, and knowing that the manual needs to be
improved is useful information for us.

3.2 Safe Conduct
The single most important thing to us all must be that everyone stays
safe and nobody gets hurt. As the famous philosopher Dilbert has stated
(paraphrased),

The main goal of every engineer must be to get to retirement
without having been blamed for a major catastrophe.

You must rigorously comply with all our safety rules, and you must be
aware of any safety rules relevant to what you are doing. You must take the
required training units, read Chapter 9, and, for any technology that you
are using (such as motors and batteries) which is covered in this manual,
look for technology-specific safety guidelines in the chapters covering that
technology. This is particularly critical for LIPOs. Any unsafe conduct with
LIPOs (Chapter 20) will be addressed most rigorously.

Not knowing the safety rules is not an excuse but further aggravates
the situation. It is your responsibility to know. In general, if we find you
to not know or not respect safety rules relevant to your project, we will
take items or access permissions away from you for the remainder of the
course, and it will be your challenge to adapt your project to deal with the
new situation.

You also need to act in a way to avoid damaging your own property as
well as the property of others (particularly, fellow students). You will use
your personal laptops to connect to your things, and making mistakes can
result in damaging or destroying a laptop. It would be a very uncomfortable
situation for you if a team member’s laptop were destroyed. We design the
individual projects to make this near-impossible. However, for some team
projects, the risk is real. We try to minimize such risks by providing you
with USB isolators when there is a particular risk of voltage spikes that
may damage laptops. You do not need to request these, we will push them
to you for projects that need them.

However, USB isolators cannot afford perfect protection, and there are
other things that we want preserved. (EPFL’s property, including tools and

3.3. DO NOT COMPROMISE YOUR TEAM’S SUCCESS 35

machines, and components we give to your for your projects.) You do not
get around learning the relevant fundamentals in electronics (as covered
by this manual) and being conscientious and careful.

3.3 Do not Compromise your Team’s Success

At EPFL, we teach courses as a service to you, and of course we do not
judge you if you choose to take a course and then do too little to get a
good grade. This is, obviously, one of your freedoms. It is perfectly fine
to skip an exam or a graded individual assignment if you so wish and are
willing to accept the consequences to your grade. (And, really, there is no
sarcasm intended here!) For team project courses like CS-358, however,
the situation is a little different. If a student hurts the chances of others
to succeed in the course, we do need to take mitigating action on behalf of
these colleagues.

Obviously, the Golden Rule applies (treat others the way you want to be
treated). Just imagine that you want to do well in this course and then you
end up in a team with a colleague who does not contribute, or worse, ac-
tively torpedoes your efforts or turns every meeting into a fight. This would
be really frustrating and unfair, because you are put at a disadvantage for
no fault of your own. We don’t want this to happen.

The main reason for the existence of team project courses in our cur-
riculum is that teamwork is the principal mode of operation in the work-
place. We want to give you a chance to practice and prepare. If you are not
a team player, you are likely to lose your first job quickly once you go out
there after graduation. Please use this course to practice teamwork and
help your colleagues do the same.

The main purpose of the individual project is to prepare you for the team
project and bring you all to a level where you can be valuable to each other
in your team. If you decide to skip the individual project, or do less than a
minimal effort to learn the necessary skills, this tells us two things: First,
that having you on the team, rather than another colleague who acquired
the relevant skills, is of disadvantage to your teammates, and, second, that
there is a good chance that you have made the calculation that you can get
a passing grade on the course based on the team project alone, and that
your teammates will do the work, not wishing to fail themselves – thus a
free eight ECTS points. Unfortunately, though rare, there are people who

36 CHAPTER 3. GOOD CITIZENSHIP

think this way. You would be wrong in one sense, though: you would not
pass the course, even if your teammates turn this project into a success.
Your presence in the team would nevertheless hurt your team. Thus, in
such a case, while we will allow you to join a team and take part in the
team phase, it may not be in the team of your choice – we may reassign
you in a way that we think causes minimal harm.

Another point, raised in Chapter 1, is that you have to keep the thing
your are creating in the team project in DLLEL at all times, even if you find
this inconvenient to yourself. Just imagine that one of your team members
takes your project home and is never heard of again. A lot of work, as well
as components that may be impossible to replace in time, would be gone. It
may be impossible to re-create and complete the thing in time. This would
be catastrophic to the other team members; nobody in the team would be
able to complete the project and the course. We must make this scenario
impossible. For that reason, noncompliance with the rule that the team
project thing must remain in DLLEL will be severely sanctioned.

3.4 Find Like-minded Teammates

Different students participate in this course for different reasons and with
different mindsets. Some of you may be taking the course because you
have to, and others because you want to learn something, or like making
things. You may have different attitudes towards how hard you are willing
to work and how much time you are willing to spend. Some of you may
have a very good grade point average and do not want it to be damaged by
this course, others may just want to get a passing grade.

If you end up in a mismatch teams in which team members have very
different viewpoints regarding these issues, this is a recipe for conflict.
Working in a course like this, where you are expected to spend a very sig-
nificant amount of time with your team mates, in a team with bad chem-
istry is torture. Do everything you can to avoid it by finding teammates
with similar goals and a similar outlook on the points made above.

Start looking for teammates as early as possible, starting in Week 1 of
the course. Talk to them. Find out their attitude and their capabilities.

If you consider yourself to be a top performer/very competitive, try to
find other students who are like you.

If you tend to be at the other side of the scale, you might consider your

3.5. THE TRAGEDY OF THE COMMONS 37

best strategy to be to still get into a team with such top performers, because
they may drag you along to success. Actually, you are mistaken, this is
not a great strategy. The course staff will closely observe everyone, and
we will know who did what, and how well. If you are underperforming in
your team, you are just more likely to be critcized and exposed by your
teammates, and will have to work in a bad atmosphere throughout the
semester. It will be no fun.

Remember, the overall success of the team project is not the sole deter-
mining factor for your grade. If you do badly in a great team, you will get a
bad grade. If you do really well in a bad team, your will get a good grade.

Once you are locked into a team, you will have to live with this and
do the best you can in your situation. If you work with some bad team
members, you will have to deal with this, and how well you deal with it will
have an influence on your grade. If you create a toxic atmosphere because
you are frustrated by the weakness of your team members, we will hold
this against you. If you show great conflict resolution and interpersonal
skills, we will note this. Remember, mismatched teams and conflicts arise
in the workplace too, and learning to deal with such issues forms part of
the goals of this course.

3.5 The Tragedy of the Commons

While taking this course, you consume a number of resources, some of
which are in limited supply – particularly space in DLLEL and time on
machines such as laser cutters and 3d-printers. Thus, bad planning,
causing you to manufacture new prototypes more often than necessary,
though part of the learning experience to some degree, makes other col-
leagues wait or not get their turn. You may experience frustration due to
this yourself – though we hope very little. It is thus important to think of
others when consuming resources.

Do not use 3D-printing where laser-cutting is applicable: Laser cutting
is much faster and will thus block fewer people from getting their own work
done.

We are allowing you to apply your own judgement and to take certain
items (such as screws, cables, and some basic electronic components)
without anyone looking over your shoulder. But this requires your col-
laboration. You may find it convenient to over-provision and take, say,

38 CHAPTER 3. GOOD CITIZENSHIP

more screws than you immediately need, because you think you might
need them later and do not want to walk to the drawer holding screws
twice. You may not know yet which kind of screw you need, so you pick
up multiple different sizes. We do not want you to do this, even if you in-
tend to return those screws that you find you don’t need. Reasons include
hygiene (remember the COVID pandemic) and the fact that there is a good
chance that you will return the screws into the wrong compartment and
will cause a mess that will keep others from finding the screws they need.

We are thus all in need of a set of shared resources, and a strategy
of maximizing your own short-term benefit may hurt others, and, in the
medium term, you again if others act in the same way. This is a well known
scenario in economics, known as the Tragedy of the Commons. Have a look
at this page:
https://en.wikipedia.org/wiki/Tragedy_of_the_commons

3.6 The Long-Term Perspective

Speaking from the perspective of the IC professors, we have observed ever
growing student enrollment in IC study plans. This is of course great,
because we think that the professions taught by IC are among the most
important in existence.

But it also causes a scaling problem for our courses. DLLEL, though
a really nice space, is rapidly getting too small for its many users. At
times, the space and the machines are barely sufficient for us, and there
is a rapidly increasing number of other courses from other faculties using
the space, and in addition there are the MAKE projects.1 For this reason,
enrollment in the course is limited by SAC. The limits are revised, after dis-
cussion with the DLLEL staff, after each semester, based on our course’s
footprint in the past. We rely on the goodwill of the DLLEL staff and their
good opinion of this course to a degree – they ultimately set the limits.

It has happened (fortunately, rarely) that some of our students have
attracted their ire, by unsafe actions, not cleaning up after a session and

1What works in our favor is that we tend to have the largest footprint in the beginning of
the semester, due to the individual projects, while everyone else, particularly the MAKE
projects, seem to wake up only towards the final weeks of the semester. You may not
believe it when you start the course, but towards the end of the semester the place gets
really, really crowded.

https://en.wikipedia.org/wiki/Tragedy_of_the_commons

3.7. CAPTAIN OBVIOUS’ GUIDE TO CONDUCT 39

leaving their workbenches dirty, or being outright rude. Note that you
can be banned from areas in DLLEL or the entire makerspace. This hurts
future students who want to take the course and may be prevented because
of very small quotas. If a serious accident happened in the course, CS358
will probably even be abolished (as it should be, if we cannot maintain
safety).

Please help us keep the course alive, so it can be offered to many more
students.

3.7 Captain Obvious’ Guide to Conduct
So, please

• Take the suggested tutorials and read the manual chapters that con-
cern you, proactively,

• Keep everyone safe,

• Clean up after yourself,

• Don’t waste resources, including machine time during times when
they are in short supply,

• Treat others, including DLLEL staff, courteously,

• Be good teammates, and

• No cheating!

Thanks!

40 CHAPTER 3. GOOD CITIZENSHIP

Chapter 4

Getting Started

So you have just joined the course. Follow the steps described below, start-
ing with installing the software you will need on your laptop. You should
install the software as soon as possible, because we will need it starting
from week one and the first tutorial.

Have a look at this handbook and start reading, in particular Part I
(“The Course”, see the table of contents) on the organization of the course,
Chapter 9 on staying safe, Chapter 17 on electronics and Chapter 24 on
microcontroller programming.

If you have missed the kickoff meeting of the course in which we discuss
how this course will be organized, make especially sure you understand
what you need to do, when you have to be present, what you have to do
for the course, and how you get a grade. Most if not all should be covered
in this handbook. Make sure to read the manual thoroughly and ask as
early as possible in case things are unclear.

Make sure you don’t miss any deadline. The deadlines are discussed in
Section 2.5. See also the course pages in moodle.

There are also several mandatory training units (some online, some in
DLLEL1) that you must take to be allowed to use the facilities in DLLEL
and to be in good standing with the course staff. There are restrictions to
what we can allow you to do and what electronic components we can allow
you to work with if you do not take all this training.

1Locate the building at https://plan.epfl.ch/?dim_floor=0&map_x=2532964&map_y=
1152332&map_zoom=12

41

https://plan.epfl.ch/?dim_floor=0&map_x=2532964&map_y=1152332&map_zoom=12
https://plan.epfl.ch/?dim_floor=0&map_x=2532964&map_y=1152332&map_zoom=12

42 CHAPTER 4. GETTING STARTED

4.1 Course Prerequisites
You will need a reasonably modern laptop running either MacOS, or Mi-
crosoft Windows. You will need to run Autodesk Fusion 360, which in
practice requires a MacOS or Windows installation.2 If you are mainly a
Linux user, it is therefore necessary to have a dual-boot (Linux and Win-
dows) set up on your laptop. You must use Fusion 360 in this course – it
is not ok to use another CAD program.

Unlike other IC courses, this course comes with risks to the health of
participants as well as EPFL’s and your property. There are some required
training units (mostly related to safety) which you must complete before
you can use the makerspace (DLLEL) and its machines. There are multiple
training units that you need to sign up for and attend separately. You can
sign up for these here:

https://make.epfl.ch/prototyping.
The required prerequisite training units are:

1. Mandatory online training. This is mainly an online course on moo-
dle. At some point you have to indicate that you are taking the course
"CS-358 Making Intelligent Things".
After this, it should take a couple of days for you to be given access
to the building via the Camipro card. (You only need this at night
and during weekends and holidays; on normal workdays the building
is unlocked. But from EPFL’s viewpoint your are kind of trespassing
until you have taken the safety training.)

2. “Laser cutting CO2 SPOT”.

3. “3D printing workshop SPOT”.

4. “Mechanical workshop SPOT”.

Each training unit is quite short (less than an hour, typically). The laser
cutting, 3d printing, and mechanical workshop units require your phyical
presence in DLLEL.

These training units are not specific to our course, and are not part
of our course. You can (and should, if at all possible), take them before
the start of the course, though completing them in the first week of the

2Fusion 360 can run in a browser, but in our experience, this is not really usable.

https://make.epfl.ch/prototyping

4.2. SOFTWARE SETUP 43

course is possible too. These training units can be taken by any EPFL
students, independently from whether they take a course that uses DLLEL.
Completing them grants you certain rights that will remain valid for as long
as you remain a student at EPFL.

We will keep track of which of the mandatory training units you have
completed. You need all units completed to be allowed to join a team.
Having 3d printing and laser cutting rights is a necessary prerequisite for
making the parts for the individual project. If you are late taking this
training, it thus has an impact on your grade!

Keep in mind that there are sign-up limits to some of the training units,
which are offered at specific times and dates. Please do all the training at
the earliest possible time. If you delay the training until the last moment,
and others do that too, there may be no slot for you to do the training in
time. The training slots being fully booked will be no excuse for you and
will not gain you any deadline extensions in the course.

4.2 Software Setup
We will need a CAD tool for designing the physical aspects of your thing
(both for the individual and the team project), a slicing software for gener-
ating “gcode” instructions for a 3D printer from a 3D shape designed with
the CAD tool; and we will need an IDE for microcontroller programming
and a CAD program for electronics design.

Do the following:

• Download and install the Arduino IDE. To do this, follow the instruc-
tions in Chapter 26. You must use exclusively the Arduino IDE for at
least the individual project.3

• Install Autodesk Fusion 360:
https://www.autodesk.com/campaigns/education/student-design
This is free for students. Note that you must use this CAD software
in this course, even if you are already familiar with other software,
since we use it collaboratively.
See Chapter 47 for more on Fusion 360.

3Other IDEs for MCU coding exist which you may use in your team project, but note
that the teaching staff may/will not be able to help you with those.

https://www.autodesk.com/campaigns/education/student-design

44 CHAPTER 4. GETTING STARTED

• Install PrusaSlicer:
https://www.prusa3d.com/de/page/prusaslicer_424/ .
Select “Prusa i3 mk3s” as printer and “Generic PETG” as filament
during setup. You will learn about using it in the 3D printing tutorial.
Talk to Sebastien Martinerie if you want to use the new Prusa mk4
printers.

• (Optional) The electronics CAD tool Fritzing. The wiring and circuit
diagrams that your will encounter in this course have usually been
created using Fritzing.
While this software is open-source, the developers have recently started
charging EUR 8 for a built/binary version (see https://fritzing.org/).
So you have the choice to either pay EUR 8, build it yourself from
source code (see https://github.com/fritzing), or to download a pre-
built binary from a file-sharing site.
You do not need this tool for the individual project.

You can delay installing Fritzing until you need it in the team project
(and you may not need it at all). The other programs you need from the
start of the course. You need the Arduino IDE installed and working when
you come to our first technical tutorial, otherwise you will not be able to
keep up!

4.3 Course-specific Tutorials
The following is required:

• Familiarize yourself with this manual. Study the table of contents,
read Part 1 (not just Chapter 1) on the organization of the course, and
then at least skim the remaining chapters of the manual. Despite its
length, this manual is in a very large font, with lots of whitespace,
and is mostly easy reading. I promise you that reading the manual
will save you time later by helping you avoid very time-consuming
mistakes, or getting stuck with your project.

• Read the safety instructions chapter in this manual (Chapter 9) as
well as the safety parts on LIPO batteries and motors in the respective

https://www.prusa3d.com/de/page/prusaslicer_424/
https://fritzing.org/
https://github.com/fritzing

4.3. COURSE-SPECIFIC TUTORIALS 45

chapters of this manual. If you want to use either LIPOs, bipolar
steppers, or brushless motors in your team project, first meet a TA
and have them quiz you on their safe use. We will not hand out these
components unless everyone in your team has completed this.

• Soldering training (takes about one hour). This is done in the main
workspace of the makerspace (DLLEL 0-28). Visit an AE during his
office hours (see Figure 2.1). If the AE is busy with other students,
you may have to wait or return another time. There is a soldering
practice kit in your component bag; bring it to your soldering training
session.
You need to solder wires to power your stepper motors to your micro-
USB breakout board for the individual project. You may want to do
this there.

• Three technical tutorials. These take three hours each in the first
three weeks of the semester. In Spring 2024, these take place on
Wednesdays from noon to 3pm in BC03. Do not come to this lecture
hall in the weeks after W3 – nothing will happen there.

– W1 tutorial: microcontroller programming and basic electronic
circuits. Please make sure to bring your laptop and to install
the Arduino IDE before the start of the tutorial. We will do some
practical work. We need to connect a standard USB-A cable to
your laptop; if your laptop does not have USB-A ports (as USB-
c is become more and more standard not) you need to bring a
suitable adapter. Topics covered:

∗ Basic circuits and circuit schematics. Short-circuits and open
circuits. The essence of Chapters 17 and 23.

∗ Prototyping a circuit on a breadboard.
∗ The NE555 circuit from the soldering practice kit; advice on

building it up on a PCB and soldering it.
∗ Your first working Arduino program.
∗ Controlling electronics on your breadboard from the Arduino.

– W2 tutorial: actuators, supplying power, mechanical recipes.
Bring

∗ your laptop and a USB adaptor if needed,

46 CHAPTER 4. GETTING STARTED

∗ your component bag, and
∗ your micro-USB cable in addition to the blue USB-b cable

that is in your component bag.

We’ll do some hands on work. We want to help you get the step-
pers to run, and for that you need to solder wires to the USB
breakout board in your component bag before the tutorial
(see Chapter 5). Topics covered:

∗ Working with sensors and actuators using in the individual
project. (In Spring 2024: Hands-on controlling a servo and
unipolar steppers from your Arduino).

∗ Supplying power to big consumers (motors)
∗ Motor types, motor drivers. Controlling brushed and brush-

less motors and bipolar steppers.

– W3 tutorial (starting in Fall 2024): Brushless motors and FOC;
sensors.
Since we expect some divergence in skill among you, we will not
lecture in this slot, nor will we try to keep everyone synchronized,
since the best-prepared among you would get bored waiting for
the others. We will bring a number of sensors and actuators,
which you can pick up and try to get to work, and we will help
you along individually.

4.4 Handbook Reading and Watching Videos

Much of the handbook is written as a reference to be consulted when need
arises, but there are some parts that you must read proactively. In the
timetable of Figure 2.2, you see 10 hours alotted to this. Please read the
following chapters of this handbook, we suggest in this order:

• Part 1 on course organization and safety. It is strongly suggested that
you read this before the kickoff meeting of the course.

• Chapters 17 and 18 on electronics and Chapters 24 and 27 on micro-
controllers and their programming, ideally before the first technical
tutorial.

4.4. HANDBOOK READING AND WATCHING VIDEOS 47

• Chapters 19, 34, and 35 on supplying power and motors, ideally be-
fore the second technical tutorial. You may skip the math in the
motor section, but develop an idea of which kind of motor is suitable
for which application.

• Chapters 47, 48, and 49 on CAD in Fusion360, 3D printing, and
lasercutting before you embark on the 3D printing part of the indi-
vidual project. The Fusion360 contains a very long step-by-step tu-
torial. If you prefer to learn Fusion360 in a way other than following
this tutorial, that is fine.

• Further, find youself a source on the internet teaching the basics
of Scrum if you don’t know it yet (there is a lot on youtube). We
recommend
https://tube.switch.ch/videos/7y8MmKYsfR
by EPFL professor George Candea, though it’s a bit long (84 minutes).
On the upside, you get an EPFL quality level version of this informa-
tion, and you will have the same level of knowledge as the students
who take Software Enterprise.

As you are looking for a team project idea, you may also search the web
and watch youtube videos for inspiration. The youtube channels men-
tioned in Chapter 10 are warmly recommended. There are links to various
videos, some quite entertaining, which may inspire you, at the ends of the
various chapters of this manual.

https://tube.switch.ch/videos/7y8MmKYsfR

48 CHAPTER 4. GETTING STARTED

Chapter 5

The Individual Project

This is individual work that you must complete by yourself.

5.1 Design Philosophy and Learning Goals
The course comes with a steep learning curve – not in the sense that any-
thing is particularly difficult, but there is a wide variety of skills to be
acquired. This can be a little overwhelming.

We have picked an individual project for you in which you get to prac-
tice a little bit of everything – mechanics, electronics, manufacturing, and
embedded software. It is important that you try to succeed in this project
to be prepared for the team project and be a good citizen and able contrib-
utor in the eyes of your team members. You cannot proclaim yourself to
be a specialist at this point and avoid some for these areas.

5.1.1 Design or Execution – Which is the Problem?
Generally, when things don’t go quite as planned in a maker project and
you get stuck, you have to ask yourself the following question:

Is there something wrong with my choices and design that make
the project infeasible the way I envisioned it, or are my practical
skills not up to par yet and I just have to learn/practice?

If you embark on painting a realistic portrait, but your picture looks
like those you are used to seeing pinned to refrigerators by doting parents

49

50 CHAPTER 5. THE INDIVIDUAL PROJECT

of young children, the problem is a lack of skill that can be developed.1 If
you try building a faster-than-light engine for a spaceship and you don’t
succeed, it may come down to impossibility. At some point in your team
project, you may get to a point where you just don’t manage to achieve your
immediate goal. If you do not know the answer to the question phrased
above, this can be very discouraging. How do you find out whether you just
need to improve a skill or whether you need to revise your design/plans?

We don’t have the same problem in software: There, simply speaking,
the specification is the final artifact. When we make a physical thing on
the other hand, the design may be perfect, but if it is badly executed, the
thing does not work.

The individual project is meant to help in several ways.

• It is meant to level up your skills in all the areas relevant in this
course, so you are less likely to get in trouble during your team project.

• It will develop your spidey sense2 regarding what is hard and what is
achievable. Of course we will help weed out infeasible team projects
before you embark on them, but being able to apply informed judg-
ment yourself is important.

• It will allow you to practice this in the context of a project that has
been done before, which we have thought hard about, and which we
completely understand. The possibility that you are working on a
project that is too difficult is excluded, so if things do not work out
as expected, you know that you need to hone your skills and that is
it. That peace of mind will make things much easier for you.

5.1.2 The Need to Tinker
Beginners often underestimate how different in precision parts manufac-
tured by them are from items of their daily use that are industrially pro-
duced. A part of your car engine, or a Lego piece, are manufactured to
tolerances you will not achieve by 3D-printing. Even industrial production
requires postprocessing, tuning, and quality control steps that you cannot
savely skip. (And a new car engine needs an initial run-in despite pre-
cise manufacturing and quality control.) You will need to learn to identify

1Though few of us will become Rembrandt even if we practice.
2https://www.oed.com/dictionary/spidey-sense_n?tl=true

https://www.oed.com/dictionary/spidey-sense_n?tl=true

5.2. THE COMPONENT BAG 51

when parts tolerances are making your thing work worse than expected,
and how to postprocess your parts (potentially using sandpaper or a file
– the hand tool, not the data storage abstraction) and tune your thing.
The individual project gives you an opportunity to familiarize yourself with
these challenges.

Pay attention at the 3D printing training session – there are many pit-
falls. Also see Chapter 49.

5.2 The Component Bag
We will hand out a bag with the electronic and mechanical components
you will need to do the individual project to each one of you. The bag also
contains a soldering practice kit that you need to bring to and assemble
during the soldering training.

The contents of the bag, and the thing made in the individual project,
will be yours to keep if you complete the individual project. If you unenroll
from the course (by the deadline at the end of the second week of the
semester), you must return the components.

In the Spring of 2024, the component bag contains

1. A soldering practice kit.

2. An Arduino Uno microcontroller board.

3. A USB cable with USB-A plug (to be connected to the laptop) and
USB-B plug (to be plugged into the Arduino Uno).

4. A small breadboard.

52 CHAPTER 5. THE INDIVIDUAL PROJECT

5. 10 jumper cables.

6. One SG90 servo.

7. Two 28BYJ-48 5V unipolar stepper motors.

8. Two ULN2003 stepper motor driver boards.

9. A micro-USB breakout board. That is a small PCB with a micro-USB
port on it as the only component. You will need to solder jumper wires
to it – see Chapter 5.

10. Two pieces of GT2 timing belt: one 40cm long and one 62cm long.

11. Two GT2 pulleys with 5mm axle diameter.

12. Six large nails 160mm * 5.5mm

The component bag will be handed out at the start of the first Wednes-
day tutorial, on Feb. 21 at noon in BC03. If you miss this tutorial, you can
get your bag from Catherine Gagliardi in BC212. If you drop out of the
course before the unenrollment deadline, you need to return these items;
otherwise they are yours.

Note that there are drawers in the DLLEL open space where you can
pick up items such as more cables, screws, etc, as needed.

5.3 The Spring 2024 Project: a 2D Plotter
You will build a 2D plotter – a machine that moves a pen to draw an image
on a piece of paper. The plotter will have two degrees of freedom – two
axes – along which it can move the pen, plus the ability to lift and lower
the pen so you can move the pen to another position on the paper without
drawing.

The plotter is inspired by the project shown in this video:3

https://www.youtube.com/watch?v=d8ZynbxfBDo
We will make a plotter very much like it, both mechanically and elec-

tronically. Since there are many of you, we need to reduce the 3D print-
ing times. We have created a design based on laser-cutting which you

3Also note the source code, circuit diagram, and 3D files linked in the comments sec-
tion to the video. Do NOT 3D-print these parts.

https://www.youtube.com/watch?v=d8ZynbxfBDo

5.3. THE SPRING 2024 PROJECT: A 2D PLOTTER 53

Figure 5.1: The initial build of the plotter (non-lifting pen holder).

find at https://github.com/epfl-cs358/2024sp-2d-plotter/ The main file
is Hardware/3D_Files/2024-spring-plotter.step . Open this file in Fu-
sion360. It contains all the parts you need to manufacture to create an
initial working build, and shows you how to orient and assemble them.
Note that the pen holder in this design is not able to lift the pen. It will
be a task for you to add this feature, but we recommend to first build
– and make work – the design given to you (see Figure 5.1), to build up
confidence.

5.3.1 Tasks

• Design a pen holder that can be lifted using the servo motor. Your
new parts must be attached to the part PenHolderSlider as designed
by us (you must not replace it). The distance of the pen to the Pen-
HolderSlider must remain the same as that achieved with the part
PenHolderRigid, since the overall plotter is designed to allow for max-
imum coverage of the drawing area with this distance. You may use
the old lifting penholder assembly provided in our .step file as inspi-

https://github.com/epfl-cs358/2024sp-2d-plotter/

54 CHAPTER 5. THE INDIVIDUAL PROJECT

ration, but you will have to redesign it rather than create an adapter,
as that would make the distance between pen and penholder axle too
great. Also, the old lifting design (which is the same shown in the
youtube video) is evil – it requires the servo to force-deform the pen-
holder when rotating and will destroy the servo in the medium term.
Try to do better.
Further, you are required to protect the servo from damage resulting
from pushing the pen into the drawing plate too hard/too deeply. A
servo will be destroyed if you try to make it turn where it cannot
turn because there is an unmoveable obstacle. You must take this
into consideration already during development and testing, otherwise
you will destroy your servo. We suggest to take a spring from an old
ballpoint pen (or multiple springs) and include it into your design, so
that, if you move the pen down a little too far, the spring takes the
load, and not the servo. You may prefer drawing with a felt tip pen,
rather than a ballpoint pen, so less pressure is required.

• Build the plotter.

• Programming assignments:

1. Draw a large square and inscribe a circle4. Maximize precision.
(Make the start and end-point of square and circle meet, and the
sides of the square be tangents to the circle. Make the circle’s
curve smooth.)

2. Create one further program for a fixed drawing of your choice. An
elegant mathemetical/geometric design, such as a space-filling
curve (such as a Hilbert curve) or a Rose curve5, is recommended.
The more impressive the better.6

3. Implement your own interpreter for Logo turtle graphics. Sup-
port at least the composition of commands penup, pendown, for-
ward <distance>, left <angle>, right <angle>, and repeat <times>

4See https://www.varsitytutors.com/hotmath/hotmath_help/topics/
circles-inscribed-in-squares

5See https://en.wikipedia.org/wiki/Rose_(mathematics)
6We appreciate complexity, but the drawings should complete in a few minutes and

these steppers are not very fast: note that the youtube video is sped up. There are ways
of optimizing your code to maximize speed, and you can try painting your motors red,
because red ones go faster.

https://www.varsitytutors.com/hotmath/hotmath_help/topics/circles-inscribed-in-squares
https://www.varsitytutors.com/hotmath/hotmath_help/topics/circles-inscribed-in-squares
https://en.wikipedia.org/wiki/Rose_(mathematics)

5.3. THE SPRING 2024 PROJECT: A 2D PLOTTER 55

<program>, so you can, for instance, draw Rose curves. The in-
terpreter must accept programs via the serial interface and run
them. That is, Logo turtle graphics programs are given inter-
actively through the Arduino Serial Monitor; it is not sufficient
to be able to upload Logo programs in the way you overwrite the
programming of your micro-controller from the Arduino IDE. You
may make syntactic adaptations to make parsing simple for you
as long are you preserve the expressive power of the language
fragment.
Here is an introduction to Logo: https://el.media.mit.edu/logo-foundation/
what_is_logo/logo_primer.html
Here is a Web-based Logo turtle graphics interpreter to play with:
https://turtleacademy.com/lessons/2

5.3.2 Required Items
• Everything in your components bag minus the soldering practice kit.

• You need to contribute these things: a suitable pen7, whatever springs
or elastic parts your pen-holder assembly requires, and a micro-USB
cable to power the stepper motors. It is very likely that you have some
lying around at home – to charge mobile phones, for instance. Note
that it is possible to confuse micro-USB with USB-c: the former have
D-shaped plugs which can only plugged in in one way.

• Your laptop set up as described in Chapter 4.

Do not forget to do the required training units as early as possible. You
need to 3D print and laser cut, and you won’t be allowed to by DLLEL staff
unless the respective training units are completed.

5.3.3 How to Proceed
The following instructions are here to supplement your common sense.
With some experience, you should not need them. If you do not understand

7Felt-tip pens are recommended because they don’t require much pressure to deposit
pigment on paper.

https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://turtleacademy.com/lessons/2

56 CHAPTER 5. THE INDIVIDUAL PROJECT

them on first reading, think for yourself what should be done and how
things could go wrong. Then re-read. Everything should become clear.

We suggest to do things in this order:

1. Prepare parts:

• 3D-print and laser-cut the provided part files.
• Solder wires to your micro-USB breakout board. You need two

wires with female connectors soldered to the + line of the break-
out board and three wires (two with female and one with a male
connector) soldered to the GND line of breakout board. A + and
a GND cable each go to the two motor drivers; connect the third
GND wire (the one with the male connector) to one of the GND
ports of the Arduino.8

Trim the wires to a reasonable length before soldering to create
a clean appearance for your electronics setup.

2. Prepare the mechanical and electronics assemblies separately, and
test them:

• Wire up your steppers, the stepper drivers, the Arduino, the
micro-USB board, and your Laptop, and make sure you are able
to control your steppers – that is, there is no plotter here yet. Ob-
serve how the output shafts of the stepper motors rotate, but do
not connect them to a load yet. You will need to move both step-
pers at the same time. Figure out how to do this. Two pointers:
(a) the AccelStepper/MultiStepper library and
(b) direct (multi-)stepper control using analogWrite. This is the

low-level option, but it isn’t hard.
You can use whatever approach works for you. Explore with
Google and on Youtube.

• Create the initial mechanical build as described in the next sec-
tion. Do not connect the stepper motors yet. Make sure the 3D-
printed parts slide well on their axles. The resistance/friction
should be minimal (otherwise you may damage your motors), but

8This is not shown in the circuit diagrams of the summer 2023 project or the Youtube
video, but it is good practice and necessary if you do not supply power through the two
USB cables from the same source.

5.3. THE SPRING 2024 PROJECT: A 2D PLOTTER 57

Figure 5.2: Mounting the timing belt to the pen holder assembly.

nothing should be loose or wobbly either (or else your drawings
will look bad). If necessary, tune your parts. Start at the axle
holes of the 3d-printed parts, particularly at the sides that were
attached to the print plate (check for the elephant foot problem).
Also check whether your nails are straight or bent.
All the screws you need are M3. Take the shortest that work.
Bigger isn’t better.

3. The wedding: Mount the motors to the mechanical assembly but do
NOT power them up. Set up the belt loops by pinching the ends of the
belts in the emplacements on the 3D-printed parts (see Figure 5.2). If
the loose ends of the belt moving the pen holder do not fit in the hole
prepared for them, you may trim the belt a little, but only as much
as absolutely necessary. Do not cut too much!!
The belts should be tensioned enough so that there is no play of the
3D printed parts moving on the axles.

4. Now un-pinch one end of each belt again and re-pinch it in such a way
that there is about 5mm of play when you try to slide the moving part
along their axles with your hand. We are doing this so that the plotter
will not be damaged in case you make a programming mistake. If a
stepper motor now tries to ram a moving assembly into one of the axle
holders, the belt will hopefully skip and the stepper motor’s gearbox

58 CHAPTER 5. THE INDIVIDUAL PROJECT

will survive. When you test, be ready to unplug your Arduino to stop
any motor movement. This is better than unplugging the motor power
supply (see back-EMF in the technical chapters).

5. Implement the first (inscribe a circle in a square) and second (a curve
of your choice) programming assignment. Test-draw.

6. When you are confident that your programs are correct and don’t try
to move the pen position outside bounds, you can tension the belts
and tune further until you get beautiful pictures. Optimize your code
until the drawing is exact and pretty, and the curves are smooth.

7. Now design, manufacture, mount, and test a lifting pen holder. Adapt
your programs to use it.

8. Now do the third programming assignment.

5.3.4 Initial Mechanical Build
In order to save you redundant work, we have already exported the .dxf files
for lasercutting and the .stl files for 3D-printing for you. Get the .dxf files
from the directory Hardware/3D_Files/dxf/ in the github repo. Laser-cut
these from 4mm thick MDF (it must be 4mm thick, or else the parts won’t
fit together). You need one of each except for bottom_side, left_side, and
middle_side, of which you need two. Try to place these dxf files to minimize
wastage.

3D-print the five parts in Hardware/3D_Files/stl/. You need two Blind-
Pulleys and one each of the other four designs. Use the 0.3mm draft set-
tings in PrusaSlicer. The parts have been designed to be printed without
support. Do not use a different layer height or quality settings – that would
not solve any parts quality problems you might encounter, but may make
the parts not fit. Make sure you orient your parts correctly on the print
plate in PrusaSlider: Think of which holes need to be really round. Some
overhangs can be tolerated by the printer, but you cannot print surfaces
that entirely float in the air. There is only one correct way to orient the
pulleys!

It shouldn’t be difficult for you to assemble the plotter from these parts.
Glue the MDF parts together. The parts PlateHolderWide and PenHolder-
Slider contain slits to pinch the belts in. You do NOT need to glue the
belts.

5.3. THE SPRING 2024 PROJECT: A 2D PLOTTER 59

Before you are allowed to 3D print parts for the first time, you must
show your design to a DLLEL course or teaching assistant and have it
approved. To do this, have PrusaSlicer open with your parts placed on the
virtual printing plate and your setting set up the way you mean to print
this. We do this to maximize your success and to protect the 3D printers,
which can be damaged by a bad print job.

We recommend that you glue some scrap MDF pieces of the same thick-
ness to the bottom side of your base plate, but not over the screw holes, to
allow for the height of the screw heads (assuming that you screw on your
electronics boards from the bottom) and not have the base plate deform by
its own weight. An alternative is to take a power drill and sink the screw
heads into the MDF of the base plate.

5.3.5 Deliverables and Grading
Upload a single .zip or .tgz archive file to moodle. (Deadline: End of Week
5.) This archive should include the following items:

• Photos of your plotter. Include at least one picture showing the entire
plotter from above. Additional detail pictures of the wiring and your
pen holder are recommended.

• CAD design files: the file 2024-spring-2d-plotter.step with your re-
tractable pen holder assembly added.

• Your source code files.

Submit as early as you can to not miss the deadline. You can re-submit
and overwrite your submission as often as you like.

In the week 5 plenary meeting, you will demo the mechanical and elec-
tronics assembly. If the retractable pen holder is not ready, you may show
the fixed pen holder, mounted on the plotter. This is a visual inspection
only, you don’t need to run software. The grade weight of this is two points,
given in all-or-nothing manner.

In the Week 6 plenary meeting, you will demo the plotter to a TA and
answer questions on what you did and about your source code. Should you
for some exceptional reason not be able to attend this plenary, negotiate a
demo meeting for an earlier date.

Grading criteria include

60 CHAPTER 5. THE INDIVIDUAL PROJECT

• Is the wiring and soldering cleanly done (and correct!)? Do you supply
power correctly?

• The quality and tuning of the mechanical assembly, as evidenced by
the precision of the drawings produced by the plotter. Is the assembly
of the MDF parts precise? Are things that are suppose to be parallel
resp. perpendicular indeed so? Do the moving parts move smoothly
on the rails? (Be ready to detach the belts to let the TA check.)

• Quality and execution of your lifting pen holder design. Does it con-
form to the specification (distance of pen axis from the pen holder
rail)? Point deductions for unreliable or imprecise functioning and
excessive material use.

• Quality of the software you have written, and how well it works. How
clean and precise are your curves?

The individual project accounts for 20% of the course grade. Of that,
60%9 are for a perfectly working plotter with the fixed pen holder and the
first two programming assignments (with high grade weight on precision
and the quality of your curves); 20% are for your design and execution of
the lifting pen holder and adapted programming assignments 1 and 2, and
the remaining 20% are for the third software assignment.

Remember that this is individual work. You are not allowed to collab-
orate or share work with other students in the course. You are allowed to
use any resource that you can find on the internet and that existed at the
time of the start of the course. Acknowledge your sources of source code,
if any, in comments to your source code.

9Up to two points are given in the Week 5 inspection, the rest after the main week 6
demo.

Chapter 6

Team Project Proposals

Each student taking the course needs to individually come up with a
project idea and prepare a team project proposal following the guidelines
of this chapter. Yes, that’s right, even though the proposal has the word
“team” in its name, this is to be done by you alone, and teaming up to do
this would amount to cheating. These will be graded, and some will be se-
lected/approved as candidates from which teams can pick their project for
the team project phase. Approved proposals will be published on moodle.

A team project starts with creating a team and picking a team project
proposal from the approved proposals. The team will then jointly revise
the proposal according to the guidelines of Chapter 7 and Section 7.5 in
particular. Don’t conflate the initial proposal, to be produced individually,
and the revised proposal, to be produced by the team. Both are to be
submitted on moodle – separately and by distinct deadlines.

6.1 Finding a Suitable Project Idea
The deadline for your project proposal is aligned with the end of the first
phase of the course, where you are asked to read parts of this manual,
take training sessions and attend tutorials, watch videos, and search the
Web. We expect you to explore and develop a degree of confidence and
understanding of what is feasible and what is worthy. Read, in particu-
lar, the Chapters 11 on beauty, 12 on “goodness” and usefulness, 13 on
intelligence, 14 on complexity, and 15 on scale.

We want to make physical things that react to the world. From this
interaction arises the perception of “intelligence” referred to in the name

61

62 CHAPTER 6. TEAM PROJECT PROPOSALS

of the course. Computer vision or machine learning are welcome, but not
required for your project idea to qualify. The project should have a con-
siderable physical component – the microcontroller should interact with
the physical world through sensors and actuators (though some excellent
projects had only one or the other). However, the software side of the
project is key. This is a computer science course, and we want you to cre-
ate a very worthy software side to the project. Ideally, the software side of
the project should remain the bigger challenge than the hardware side.

Go back and forth between generating ideas and checking their feasi-
bility. If you want things to move, read up on motors and the implications
of a particular motor type (Chapter 35). If you need to sense your envi-
ronment, make sure to identify suitable sensor technology and explore the
implications of your choices. It is not sufficient to proclaim “there shall
be sensors” in your project – you have to tentatively decide on what kind
of sensors to use and tell us how these sensors are supposed to perform
their task. If you are considering computer vision, also consider alterna-
tives, such as LIDAR, ultrasonic distance sensors, and touch sensors. (See
also Chapter 30.) If the mechanical side of your project is challenging, or
you are unsure of the force arising or needed to make your thing work,
make sure you understand the material covered in Chapters 34 and 42,
and search the Web for similar project and the lessons learned by their
creators.

Do not forget that this is an 8-credit course to be worked on in a team of
five or six people; we are talking of a project that should be close to a 1000
person hour effort. We do understand that you lack experience regarding
how long things take, particularly regarding challenges beyond software.
Still you need to make a conscious effort to propose a well-scaled project.
In case of doubt, look for similar projects and how they were realized.
You will find that most individual challenges, like reading out a particular
type of sensor or controlling a specific type of motor isn’t a big deal and
shouldn’t take too long. However, some aspects of your projects may be
risky in the sense that it may be hard to tell at this point whether the
planned approach is feasible and whether you can get your thing to work
as planned. In that case, schedule in your project proposal an effort to
experiment and create a prototype that addresses that specific difficulty
before you attempt to create the complete thing.

Better err on the side of making the project (slightly) too big than mak-
ing too simple. We’d rather see an ambitious project than a boring one.

6.1. FINDING A SUITABLE PROJECT IDEA 63

You can always identify some parts of your project as optional, and we
will help you overcome difficulties and, if necessary advise you on how to
cut down the project to something that is feasible. Still, if you propose a
project that is so obviously over-ambitious that we can justifiably argue
that you should have known better, this will also be held against you. Try
to gauge the effort as precisely as you can. This is hard, but being able to
do this is a extremely valuable skill that you should develop.

Ideally, a project does not just consist of a large number of things to keep
you busy, but has at least one technical challenge that is interesting/“hard”
on its own. Here are some examples.

• A thing that makes interesting use of field-oriented control (see Chap-
ter 40), such as doing ultra-fast and ultra-precise movement, a self
balancing robot, or haptic technology.

• Computer vision purely on an ESP32-CAM. It is possible, but so far
in this course, teams have done the image processing on their laptops
only.

• Create a thing with substantial mechanics challenges, such as a thing
with a cable drive, a good (cycloidal or strain wave) gearbox of your
design, or a non-SCARA robot arm. (See Chapters 42 and 44.)

• Biologically inspired mechanical designs or movement, such as in a
robot that moves like an animal, or a biomimetic (human-like) robotic
hand.

• Advanced sensing, such as of biosignals, or using an accelerome-
ter/inertial measurement unit.

Again, these are not project ideas, but examples of features that would
make us consider your project technically challenging/interesting.

For inspiration, Chapter 57 provides a list of team projects from previ-
ous installments of the course. Note that the course had 6 ECTS points
in 2022 and 2023 and has 8 ETCS points from 2024 on, and many things
are changing compared to 2023. Our criteria for acceptability have evolved
over time, and some of these projects might not qualify today (see the cri-
teria in Section 6.2).

64 CHAPTER 6. TEAM PROJECT PROPOSALS

6.2 Exclusion Criteria

Here are the criteria that make a team project idea suitable or disqualify
it.

• Projects that would be better off in an IC software course because the
physical component is trivial will be turned down. For instance, a
project in which you solve a challenging computer vision problem and,
based on that, turn a lamp on and off is not a good fit for the course.
Any project which is essentially a software project where you just
display the result of your computations on a display that you want
us to buy or via an array of LEDs is too simple and thus unsuitable.

• A considerable software/programming side: This is an IC course, and
software is your strength. Project proposals with an overly simplistic
software side will be turned down. A new kind of skateboard may be
a cool maker project, but it is not suitable as a project for this course.

• Work with Microcontrollers. We want you to get out of your comfort
zone of computer programming and work with a microcontroller (i.e.,
to do low-level programming on a device without an operating sys-
tem). For that reason, you cannot use a Raspberry PI for the project
even if you personally own one. Proposing projects that involve micro-
controllers interacting with computers (your laptop) and where some
advanced computation (such as computer vision and machine learn-
ing) is done on the computer is ok.

Without exception, the only kinds of microcontroller boards to be
used for the team project are those listed in Chapter 25. It is pos-
sible to combine multiple (different) microcontroller boards in your
project.

• The right size of challenge: The team project should be worked on by
teams of five to six students. The hours to work on the team project
(roughly 150 hours per student) have been discussed in Chapter 1.
Try to match the workload to this.

• You will create a bill of materials consisting of mechanical and elec-
tronic components we will have to provide you with. You will have to

6.2. EXCLUSION CRITERIA 65

determine prices for each of them according to set rules, and the sum
of these prices must not exceed CHF 250 per team project.1

• Be realistic about the technological sophistication you can achieve
during this course in fields that you are not yet expert in. You should
challenge yourself, but, for instance, if you have little electronics ex-
perience, you cannot create a new and better smartphone. If your
team has a member who is an expert in some area, this may qualify
you for a project that we might otherwise deem unsuitable.

• Projects that violate our safety rules (e.g. exceeding voltages of 12V)
as well as weapon-like things are forbidden.

• Any thing that is likely to be severely damaged or lost by a slight
design mistake, malfunction, or programming mistake is unsuitable.
Here we particularly think of things falling from heights, being smashed
by heavy objects, or being short-circuited by liquids. This includes
any flying things (drones), boats, and submarines. Again, no drones
without exception2 in this course, no matter how noble your goals!
No exceptions will be made.

• Avoid projects that will make it extremely hard for you to test and
demo them because the are designed to function only at a place or
environment other than DLLEL and the EPFL campus. For example,
a volcano exploration rover, a bush fire sensor, or a garbage collec-
tion vehicle for the Pacific Ocean are unsuitable for this course. If it
cannot be developed, tested, and demonstrated in DLLEL, it isn’t
eligible.

• Avoid projects that make you depend on external factors outside your
control. It may be attractive to contribute to a MAKE project by tak-

1Unless otherwise stated, the things made as team projects and all these items remain
the property of EPFL and you cannot keep them at the semester. In some cases exceptions
or buying item at fair prices may be possible; talk to us.

2FYI, all EU laws and regulations regarding flying drones apply in Switzerland. Some
drones require a license, and there are additional regulations relating to data protection
and privacy laws in case your drone mounts a camera. In addition, every drone flight on
the EPFL campus needs to be applied for and approved several days in advance. Finally,
most of the EPFL campus including DLLEL is within the five-km radius of Lausanne
airport – see https://www.bazl.admin.ch/bazl/en/home/drohnen/general/drone-maps.
html.

https://www.bazl.admin.ch/bazl/en/home/drohnen/general/drone-maps.html
https://www.bazl.admin.ch/bazl/en/home/drohnen/general/drone-maps.html

66 CHAPTER 6. TEAM PROJECT PROPOSALS

ing over one of their components; however, this will make you depend
on the progress they make and their availability to give you informa-
tion and interfaces. Such projects have much longer timelines than
our course, and you may lose too much time waiting for essential
things from them. You cannot combine your project with another on-
going project in another course. Continuing and expanding on a past
project (including a past course project from an earlier semester) is,
in principle, possible.

6.3 The Project Proposal Document

Teams can only pick team project topics from among the pre-approved
project proposal documents. Each student has to write such a project
proposal at the beginning of the semester.

A proposal should cover the following points:

• A high-level description of the project idea. What do you want to
make – what will it look like, what will it do. Describe it in sufficient
detail so the teaching staff can form an opinion of the feasibility of
the project, risks involved, items needed to be bought, etc., without
reading your own analysis of these issues in the following sections
of the document. You may (and should) provide pictures, drawings,
and links to illustrate your idea and reference other related projects
or items. Even pictures of already existing things that can help in
explaining your idea can be useful.

• Do your research on the Internet on related projects and resources,
including other open-source projects that have instructions that you
want to use or that use designs that inspire you.

Describe these related projects, sources and resources, and provide
links to them.

• “User stories”3. Describe the features of your thing, ideally from the
perspective of an end user. Such end users may include you, even if
it is just to play with/enjoy your thing.

3https://en.wikipedia.org/wiki/User_story

https://en.wikipedia.org/wiki/User_story

6.4. HOW WE GRADE AND SELECT PROPOSALS 67

It should include IC public relations people: IC is always looking for
demos for various audiences, including high school students, prospec-
tive EPFL/IC students, alumni, and members of the general public.
We do demos at events such as the EPFL Open House, the IC Re-
search Day, etc., and if you are available for demo your thing you
made in CS358, you can be paid for your effort.
Another user story is the one of the professor: I would like it if part
of the project (a software library, a vehicle platform, ...) is re-usable
for other future projects.
The key challenge here is not so much to come up with innovative
new user stories, but to make sure that your project idea, if executed
correctly, can achieve the requirement expressed in the user story.

• Closely related to this, product management: Take a long-term view-
point. What afterlife can your project have. What follow-up projects
for future CS-358 students are there? Might your thing acquire “real”,
non-EPFL users? Is there a startup (company) waiting to happen?

• Back of the envelope cost estimate. Is it realistic to believe (without
first finishing a full design) that the costs of the project will not break
the bank? (Make sure to read Section 7.3 to understand the con-
straints.) Obviously, a project like the robot dog Spot4 that requires
12 high-tech servos that each cost around CHF 1000 is outside the
scope. What about your project?

Have a look at Chapter 7, where we cover what we expect from the
revised proposal produced by your team on the basis of your proposal,
should it be selected for implementation. The closer your initial proposal
is to what we expect from the final revised proposals, the better!

6.4 How we grade and select proposals
Please submit your proposal as a pdf file on moodle.

Your project proposal will be graded based on overall quality, compli-
ance with the set criteria (violating any of the criteria of Section 6.2 will be
strongly penalized), feasibility, the right degree of ambition (not too hard

4https://www.bostondynamics.com/products/spot

https://www.bostondynamics.com/products/spot

68 CHAPTER 6. TEAM PROJECT PROPOSALS

and not too trivial), completeness according to what we asked a proposal
should contain, clarity of exposition, and originality. Remember that the
weight of this proposal in the overall course grade isn’t very large (5%);
however, we still need you to propose good projects for you all to have a
fun course.

We will approve and publish a small number of proposals, which can
be chosen by teams for their team projects. Whether your proposal is
approved has no bearing on your grade, and will not be negotiable.

We hope that there will be many strong proposals. We will limit our-
selves to approving a relatively small number to make it simpler for your
to form five-member teams. If we approve too many proposals, each one of
you might pick your own proposal and struggle to convince other students
to abandon their proposals to join you. This may delay the formation of
the teams and put us behind schedule.

When approving proposals, in addition to the grading criteria we have
discussed above, we will above all use our experience to exclude projects
that are likely to cause you frustration, delays, and crises in the team
project phase. While we do not expect proposals to be completely fleshed
out – more detailed design documents are produced once the teams start
operating – proposals that require too much guesswork regarding high-
level choices, particularly those affecting feasibility, will not be approved.

Apologies in advance if you took the course to work on a particular
project and we don’t end up approving it or you do not find a team for it.

Chapter 7

Team Project Documents

First you need to pick a team project idea, expressed in the form of an
approved proposal, and assemble a team. A team should consist of five
members; if the number of students taking the course is not a multiple of
five, we will allow some teams to consist of six members.

7.1 CAD Design

You and all your team members will use Fusion 360 for your CAD design.
One team member should create a project directory in Fusion 360 and
invite all other team members as well as your teaching assistants into it.

Your CAD design is a living document that you keep maintained and
up-to-date throughout the duration of the semester.

That is, there is no single deadline by which you will provide CAD draw-
ings, after which they will be allowed to become stale.

We will require you to create a complete prototype 3D design before
you are allowed to 3D print or machine any mechanical parts, but you will
continue to keep your design up to date as you iterate on your prototype.

Again, it is not sufficient to draw parts as need arises and 3D-print
them. You have to create a complete design before manufacturing. This
will allow us to reduce materials wastage and will save you time that you
might otherwise waste on making parts that you cannot use because they
will not fit your overall thing.

69

70 CHAPTER 7. TEAM PROJECT DOCUMENTS

7.2 Source Code and GitHub Repository
The course staff will create, for each team, a public github repository in
organization https://github.com/epfl-cs358. All team members plus the
teaching staff will get write access to that repo. The name of your repo will
be prefixed by the year of the course, followed by a name of your choosing.
So, for instance, if your thing is called “doomsday device” and you take the
course in Spring 2024, your repo will be called 2024sp-doomsday-device.1

This repository is for all your design documents, including source code.
We ask you, to the maximum extent possible, to work on source code in
individual forks and contribute your changes to the master repo through
pull requests.

All documents, including the Revised Project Proposal, Bill of Materials
and the Risk Assessment Document will be maintained in your GitHub
repository. You will maintain your CAD designs in your Fusion360 team
folder during the semester, but at the end of the semester you will export
your CAD documents and add them to your GitHub repo to make them
public.

7.3 The Bill of Materials
You will need to create a list of the items we need to buy/provide for your
project. We call this the Bill of Materials (BOM) and it is one of the doc-
uments that your team will be requested to create. Already the project
proposal document has to contain a (less formal) version of such a list and
cost calculation. The BOM document is expected to be complete and ac-
curate; forgetting to include an item may cause trouble later on, since you
will not have that item at your disposal and will have to improvise.

Since we need to do one irreversible action based on this document –
buy things – there is a deadline for this document (see the course timeline
in Figure 2.2), before which the BOM needs to be ready and after which
we will not edit it anymore.

You do not need to list the following:

• consumables that will be processed in 3d printers and laser cutters
1A https://en.wikipedia.org/wiki/Doomsday_device will be violating our topic exclu-

sion criteria, though.

https://github.com/epfl-cs358
https://en.wikipedia.org/wiki/Doomsday_device

7.3. THE BILL OF MATERIALS 71

(such as 3d printing filament, boards for lasercutting that the me-
chanical workshop has in store)

• small electronic components such as resistors, potentiometers, ca-
pacitors, diodes and transistors, push buttons, cables, that we likely
have in stock2

• breadboards and protoboards

• standard metric screws and nuts.

You must list all other mechanical and electronic components you will
need, such as

• microcontrollers, ICs, sensors, actuators (motors), motor drivers, volt-
age and logic level converters, power supplies, etc.

• mechanical components that you cannot make yourself (in particular
metal parts, such as linear rails, ball bearings, axle connectors, etc.)

• Special connectors (plugs) that you may need, such as connectors to
your batteries or power supplies.

For each of the listed items, first look at the “Parts in Stock for CS358”
sections of this manual if it is one of the items listed as in stock, and if it
is, use the price indicated in the manual. You must use items in stock if
possible. If you had a similar (but distinct) item in mind, check if any of
the items we have in stock will do and use them instead if at all possible.

Otherwise, find and provide a link to a page in a Swiss online store
where this item is currently in stock (so no great delay for delivery is to
be expected). Its price must be shown there; list that price in your docu-
ment. Typical suppliers of electronic components in Switzerland are, for
instance, distrelec.ch, conrad.ch, reichelt.com, digitec.ch, and mouser.ch
. Online market sites like Wish or fruugo.ch do not qualify since the sellers
are usually NOT located in Switzerland (also, some have rather bad repu-
tations). Amazon.de/.fr/.com do not qualify. If there is a key item that you
absolutely need and cannot find in Switzerland, you may provide a link to
a Web shop outside Switzerland. We will review this and see whether it is
feasible for us to get it (and get it quickly enough). Please do not involve us

2If you mean to follow a recipe calling for very specific components, talk to us to find
out whether this needs to be ordered.

72 CHAPTER 7. TEAM PROJECT DOCUMENTS

in discussions about your personal successes in buying from sites outside
Switzerland and delivery promises made by sites such as amazon.com/.de.
You may have made good experiences in the typical case, but we have to
manage risks. Anything from abroad can be stuck in customs for weeks if
we are unlucky.

Do not use the list of electronic components held in stock in DLLEL
(managed by Sylvain Hauser). Their stock is for emergencies only. They
might help you out later if you realize you forgot to ask for an item (as will
we with the CS-358 stock if we can), but you must not use them as a parts
source in the BOM document. Of course you can use their parts list as an
inspiration for what kind of electronic parts you can ask for, but if you do,
you have to find and indicate a separate source.

The total price of the items in the BOM must not exceed CHF 250.
We do not buy software licenses for the team project. Make sure that

your design does not require software to be bought and only work with free
software.

Do not buy things for the team project on your own money. We cannot
reimburse you.

In the past, we had requests from teams to buy dog toys, clothing, mu-
sical instruments, sewing kits, fishing line, and anti-slip rubber mats, just
to name things that made sense and that we actually bought. Of course
we want to help you implement creative ideas, and these sometimes de-
pend on strange items. However, please keep such items that are neither
electronic components nor items that are easily argued to be mechanical
parts for constructing engineering artifacts/machines to an absolute min-
imum and avoid them altogether if you can. If your project (idea) heavily
relies on such “strange” items, maybe it just isn’t suitable for this course?

Make sure to double-check the compatibility of the parts you ask for.
Do your power sources provide the right voltages and currents? To the
connectors you ask for fit? Do the ball bearings you ask for have the right
inner radiuses? Mechanical parts often have to fit together, such as pulleys
and belts. Make sure that you ask for the right items because we cannot
go back and buy the correct items in a second iteration if you asked for
the wrong things! Talk to us in case of doubt.

There is no promise that we will buy whatever you request. We will re-
view your document and then decide. We will not buy chemicals, including
resins, paints, and glues. We will also have to restrict the number of orders
we make to a small number of steer clear of the wrath of EPFL’s finance

7.3. THE BILL OF MATERIALS 73

department. As a consequence, we may have to refuse some requests. In
some cases, we may have items similar to those you request in stock3, and
may replace the items you asked for by these.

We will buy stuff for you only once. If you later realize you forgot to
request an item, this may be a problem for you. So really try to plan ahead.
Do NOT assume that the price limit indicated above is some kind of budget
that you can spend anytime (or any way) you like. We go shopping for you
only once.

Why so bureaucratic?

You will probably not find another course like this – a course in which you
can pick your own project idea and EPFL buys stuff for you – anywhere
else at EPFL. There is a good reason for this.

EPFL is a very bureaucratic place, and buying items is subject to a long
list of rules. EPFL wants us to buy from an established catalog of items
from a number of pre-approved suppliers. This catalog of items covers es-
sentially none of the items you might need for your project – this is mainly
for office supplies such as printer paper, paperclips, and ballpoint pens.
Getting another supplier approved is a very complex multi-month process.
Beyond that, there is a long-winded process for buying research equipment
and computers (and buying a computer may take half a year and more).
There is a method for buying other items, but it is frowned upon by the
EPFL administration, is receiving further regulations and restrictions all
the time, and causes lots of paperwork. While we currently are still able to
shop online, EPFL is in the process of forcing us to buy on account, which
will make online shopping within limited time frames impossible.

Once this is in force, it will mark the end of this course in its current
form, with student-proposed projects. You will all have to do the same
project, so we can buy the required items in the months leading up to an
iteration of the course. As you can check yourself, the other courses in the
DLLEL already do this.

Whenever we order something for the course, a number of admistrators
in IC and at EFPL central have to do a significant amount of paperwork –

3The lists of items held in stock listed in this manual is not complete, but consists only
of items we try to keep continuously is stock in substantial numbers. There may be other
things that we can provide so as to avoid having to order them for you.

74 CHAPTER 7. TEAM PROJECT DOCUMENTS

the process is very bloated. We get more and more headwind for doing so
many orders.

I do all the shopping personally. Administrators and other teaching
staff are either not competent or not allowed to do this.

If you think that ordering things on the Internet must be at least as easy
for us as it is for you privately, given that we surely have special people for
receiving and processing mail, you’d be wrong.

Since Covid, there is no working postal service to EPFL anymore, and
parcel mail does not get delivered to EPFL. Courier companies such as DHL
and Fedex try to deliver to my office, but, all too frequently, they get lost on
the campus and drop off their parcels elsewhere. I spend considerable time
searching for parcels on the campus and driving to various post offices and
access points of the courier companies.

Sometimes, it is just too painful to buy things for the course through
EPFL, and I just end up buy them privately, with my own money.

All this takes an inordinate amount of my time and resources. What
I described above is as far as I can go, and even this is not sustainable.
In the future, I will likely have to stop offering you the option of proposing
your own project. If you don’t like EPFL’s bureaucracy, you have to find a
more reasonable university to study at. Otherwise, you’ll have to go along
with these rules. Cheers!

7.4 Risk Assessment

This is a document in which you work out the risks to your project. By
this, we are NOT referring to dangerous situations that may arise. You
must read the safety chapter and sections in this manual. Some things
are explicitly forbidden, and they are NOT made legal by covering them in
your Risk Assessment Document.

Instead, we are here concerned with risks to the success of the project.
Which are the technological challenges and risks that may cause this
project to fail? Is there a problem that you are unsure you will be able
to overcome? Is there a feasibility study to be done? Is there an experi-
ment to be done or a prototype to be built, so you will be able to tell which
approach from a number of alternatives to adopt ?

Do not just list obvious risks. Think about your weaknesses as a team.
What are the aspects of your project that you understand least? On which

7.4. RISK ASSESSMENT 75

aspects of the project may you be falling into the trap of wishful thinking
or being overly optimistic?

For each risk, state clearly how you will address it as early as possible
during the time you work on your project. Generally, we expect you to
build a prototype specifically evaluating this risk and find a solution to it.

Here are some examples of risks that you MUST include in your Risk
Assessment document in case they apply to your project:

• Operating multiple communicating microcontrollers and/or comput-
ers. Which form of communication are you using? Wifi? Serial?
Other? A combination of multiple communication mechanisms? Do
your microcontrollers have sufficiently many available pins for the in-
tended communication (and signal exchange with other components
such as sensors and motor drivers)? Students often underestimate
the challenge of making multiple microcontrollers talk to each other
robustly while fulfilling their other “duties”.

• Supplying multiple different voltages to different consumers. It is
our experience that this is a large time sink to teams. Create a pro-
toype including all your consumers (motors, microcontrollers, etc.)
and your power supplies and converters. They don’t need to fulfill
their intended functions yet, the right mechanical connections are
not required yet, but check that your motors run smoothly, at about
the intended mechanical loads/currents. This is particularly impor-
tant if your project involves steppers, which are sensitive to the quality
of the supplied power and will operate erratically if your setup is bad.

• Are your actuators strong enough for their purpose? Do you need
more mechanical advantage via gearboxes, belt reductions, etc.? This
is particularly challenging if actuators have to work against gravity or
overcome substantial inertia, such as in longer kinematic chains (for
instance, in legged robots and robot arms).

The planned prototypes must be included in your project task break-
down; make sure your correctly identify dependencies.

This is a document you create only once, with a set deadline.

76 CHAPTER 7. TEAM PROJECT DOCUMENTS

7.5 The Revised Team Project Proposal
This document has to be produced jointly by the team and all team mem-
bers have to contribute to it. It is a revised version of the (initial) project
proposal you have chosen to work on as a team. It contains the following
sections:

1. An extended version of the project description taken from the (initial,
invidually-produced) project proposal. Note that our expectations are
considerably higher than for the individual proposal submission, and
just proofreading isn’t sufficient by far.

If your team decides to make changes to the planned thing, these
changes need to be reflected here. This document is essentially the
final, authoritative specification of what is to be done for the project.
We need a detailed description of all behaviors/features of your thing.

2. Complete technical drawings of the structural and mechanical parts
of the thing to be created, ideally produced with Fusion360 are re-
quired4, and must allow us to read out the dimensions of your thing
so we can verify that the parts you ask us to buy are appropriate for
the purpose.

Note: The design may be revised and change later, but for the team
proposal documents to be submitted in the End of Week 6, we require
formal CAD drawings, not hand-drawn sketches.

3. You need to add a risk assessment document as described in Sec-
tion 7.4.

4. The back of the envelope cost calculation needs to be replaced by the
formal and complete Bill of Materials (see Section 7.3). Make sure
that your project description is precise and detailed enough to allow
us to verify that you are asking for the right parts.

4There may be exceptions possible for projects that involve soft parts (e.g. clothing),
extremely complex shapes, or where drawings are too difficult for another reason. This
is to be negotiated with your TA, and unless agreed to by the TA in writing (by email),
you have no waiver. Even if you do, you need to negotiate with the TA what kinds of
visualization (such as handmade drawings) can take the place of CAD drawings in the
documment.

7.6. THE WORK BREAKDOWN 77

5. Including a work breakdown structure in the form of a GANNT chart
is recommended.

Remember, these documents are meant to be the final ones before you
start working on the project. You need them to be solid, or else you put the
success of the entire project in question! The agile methodology that we
follow for the remainder of the course will allow us to adapt when we have
to, but this does not eliminate the need for high-quality design documents!

7.6 The Work Breakdown
Who will do what when? Break this down into tasks that take no more
than one week. Be clear and detailed. You do not need to assign these
tasks to team members yet.

The roles of the team members should not be overly specialized in the
sense that some people do only software, others do only hardware, and
yet others only create documentation – we would like you all to do a bit of
everything.

Changes and delays may eventually happen during the team project
phase, and our agile development methodology is able to handle this. For
now, try to plan ahead and make your plan of work and what you will
achieve by certain time points as realistic as possible.

Create optional goals and tasks that you will be able to drop without
making the overall project fail in case of unexpected delays or if a team
member drops out from the course.

Plan a rapid prototyping, agile approach to working on your project. Try
to have “working” prototypes (of increasing quality/capabilities) frequently
throughout the team project phase.

Important advice: In the past, students often have struggled to make
their actuators and power supplying solution work flawlessly. Make sure
to create a prototype for just running your motor without a load early on
and in parallel with other activities.

Identify dependencies between tasks. All dependencies must be recorded,
but design your tasks in such a way as to allow the parallelization of as
many taks as possible, and to keep chains of dependencies short.

Create a waterfall model plan (ideally, you will create a GANNT chart
for your project) to see whether the amount of work planned is feasible
(and not too little). We will not mindlessly stick to this plan and do agile

78 CHAPTER 7. TEAM PROJECT DOCUMENTS

development instead (so what we will do may diverge from the original plan
over time), but it is important to know early on if the amount of planned
work looks right.

See also Chapter 14 on choosing a project of the right size and com-
plexity, and planning for it.

7.7 Making the Thing
Since this chapter covers the main documents you will produce, we should
not forget the actual thing you will make. So here it is, it has been men-
tioned. Use the technical chapters of this handbook to help guide you.

7.8 Creating Instructions
You will also create a set of instructions for making your thing, which you
will put into the README.MD file of your github repo. This takes the place
of a final report (so no final report is due) and is more in the spirit of the
open-source movement. Please keep your instructions in mind while you
build your thing, and don’t just start woorrying about instructions at the
very end. You should document your progress (via photos and videos) as
you work on your project, so you don’t have to disassemble your thing at
the very end just to be able to create instructions. Create your instructions
as you go to save time.

Chapter 8

Weekly Scrum Meetings
Freya Behrens and Lars Klein

Agile Development Methods. Agile development is an umbrella term
and refers to a wide range of project management frameworks. At its core
is an emphasis on iterative, feedback-driven development.

One form of Agile development is Scrum. It describes how to split a
project into small individual work items that are implemented in fixed-size
time intervals called sprints.

We believe that an iterative development approach which moves from
prototype to prototype and focuses on well-defined modular improvements
is an excellent fit for this course. In the following we explain how your
weekly meetings are organized: With our own flavour of Scrum.

Scrum for MIT. Scrum revolves around sprints. During a sprint each
team member works on a set of tasks. Ideally each of these tasks should
be doable within the sprint. For MIT the duration of a sprint is one week.
The weekly meeting is used for sprint review and sprint planning.

To keep track of what is being done in throughout your coursework, we
will use Github projects. A github project is a big digital pinboard where
you can move virtual post-its between the categories Backlog, Ready, In
Progress, Review and Done (Fig. 8.1). These virtual postits represent To-
Dos (a task) that are in different states as you achieve your projects goals.
At the same time, they serve as the grade-relevant documentation of your
project - a ToDo can be associated with a github issue, it can keep track of
related commits, have screenshots, can be assigned to team members and

79

80 CHAPTER 8. WEEKLY SCRUM MEETINGS

Figure 8.1: The github project overview for an example project.

each team member or TA can leave comments and ideas (see Documenta-
tion below). The weekly sprint meetings serve to collectively update these
ToDos, to track the progress made during the last week, identify blockers
and possible tasks and decide on the next steps.

ToDo Lifecycle. The life of a ToDo item starts in the backlog state. The
backlog represents a wishlist of features that may or may not be imple-
mented eventually to achieve the goal of your project. In Scrum, the back-
log is populated by "Product Owner" who decides which features are im-
portant for the product. In MIT the role of "Product Owner" is shared by
the TA and the team members. You will decide what you need to imple-
ment to guide your project to success and we will provide feedback and
help you identify reasonable and feasible ToDo items. For software devel-
opment projects, the backlog items often revolve around user stories. For
example, an item in the backlog could be "The user can recover a forgotten
password with a recovery email" or "A new playlist is automatically filled
with songs that the user has listened to frequently". For MIT we will in-
stead have items such as "We need to send data from the notebook to the
arduino via bluetooth".

In the sprint planning phase of the weekly meeting we will select items
from the backlog and break them down into smaller ToDos that are tai-
lored to fit in one week. At this point you break ambitious new features
into many smaller work items. If these items are well-defined and all pre-
requisites to start working on them are fulfilled (e.g. you can only start to
build the car racing track if you have the layout and measurements of the
cars), the items move from the backlog to the ready state. At this point,
you can decide what will actually be done during the following week. This
means that every team member is assigned to (one or several) ToDos in the

81

ready state which are to be completed during the sprint (i.e. the following
week). The ToDo state then changes to in progress. Deciding which items
should be done, when there are too many to choose from for a single week,
is the job of the product owner – they prioritize the ready queue.

Throughout the week you will work on the ToDos assigned to you. Once
you completed all that is needed in a given ToDo item, you document the
result in the corresponding issue (see below) and move it to Review, where
it sits until the next sprint meeting.

In the Sprint review phase of the weekly meeting we review the progress
that each team member has made on their assigned work items. If every-
one agreed that an item is completed it is moved to the done category.
Only ToDos that clearly document the work that was done can be closed,
so please prepare your assigned items to be ready for sprint review before
each weekly meeting. Sometimes you may find that completing an item is
more involved than expected. For example, your group may have created
an item "Detect position of car with camera" and you were assigned to it
for the week. But now you realize that this requires many more interme-
diate steps that take longer than a week overall. In this case we split the
current ToDo into several smaller new ToDos in the sprint review. For ex-
ample, your ToDo is split into 3 new ToDos: (1) "Color calibrate camera", (2)
"Calibrate camera position, relative to reference markers", (3) "Detect car
position". Fortunately, in this example the team member has done a very
good job and clearly documented all subtasks reached during the week.
The "Color calibrate camera" item is already done, so we can then move
this item to "Done". Items (2) and (3) are not done yet, and after breaking
them down we move them to the ready state, so they will be considered in
the sprint planning.

Sprint Meeting Structure. Here is the full structure of your weekly meet-
ing, in chronological order:

• Sprint review: Go through the ToDo items and discuss their progress.
Move items from review to done. Possibly split items that were not
completely done into done and ready. Discuss why some ToDos are
still in progress, and what needs to happen to allow (sub-)tasks to get
finished.

• Backlog grooming: Update the backlog. Try to solve problems that
arise from complicated items by splitting them into smaller items.

82 CHAPTER 8. WEEKLY SCRUM MEETINGS

Identify which ToDos can go into the ready state.

• Sprint planning: Order items by importance in the ready state as a
product owner. Assign work items to team members, and move these
to in progress.

Documentation. When a team member moves a ToDo on the github
project board from ready to in-progress a github issue must be opened
in your team repository and associated with this ToDO. In the new is-
sue the team member must first of all document the purpose and state
of the current task. As the ToDo is worked on, the issue should clearly
reflect the current state of the project, with screenshots, pictures and of
course text comments. For example, an item could be "Add container to
3D model of car". The corresponding issue starts with a screenshot of the
current 3D model and explains how the basket should look. During the
sprint, the issue serves as a diary. All progress and all problems coming
up must be documented, an example is shown in Fig. 8.2. Importantly, all
related git commits must mention the issue (by putting #<issue-number>
in the commit message). Before moving a ToDo item to the review state,
the final outcome must be clearly documented in the corresponding issue,
for example with a screenshot of the updated current version of the 3D
model. Only items that are sufficiently and cleanly documented are ready
for review. You must prepare this documentation before the weekly meeting.
When the work on an item has concluded, the associated issue is closed
and the item is moved to done.

In addition to the Github project structure, we also keep a google doc
(which is shared with you) as a logbook. Notably, for each meeting we
record:

• Attendance. It is obligatory to attend the team meetings in person.

• Proper preparation of the scrum meeting. You need to open a github
issue for each ToDo that was assigned to you. You need to document
the state of this ToDo throughout the week, at least at the beginning
and end of the sprint. The timestamps are important, we want you
to document the state at the outset, before you start working.

• Who was scrum master. The scrum master is responsible for moder-
ating the meeting and making sure the structure is followed properly.
We will rotate through the team members to fill this role.

83

Figure 8.2: Example for a github issue. A team member is assigned, the
first comment delineates the task and the following comments update the
progress. Commits are referenced via the commit messages.

84 CHAPTER 8. WEEKLY SCRUM MEETINGS

We will also use the weekly meetings to give feedback and discuss prob-
lems. These will also be recorded in the logbook.

Chapter 9

Safety Hazards

The following are the main hazards to the lives and health of you and your
fellow students. I must require you to remember and respect ALL of these
points, otherwise very bad things will eventually happen. You may find
this boring or obvious, but you must not skip reading it. It will not be
acceptable for you to compromise on safety because you are under time
pressure.

You may be of the opinion that some of these hazards are typically not
very serious, but to this I counter Murphy’s law! Eventually, there will be
a bad outcome. Even if nothing very serious happens the first 100 times,
we cannot risk that the 101st time the DLLEL building burns down or one
of you gets electrocuted. My current estimate based on the empirical data
I have collected in 2022 is that about 5% of IC students have an unnatural
level of bad luck, and everything they touch either breaks or catches fire.
Anecdotes exist.

9.1 Mandatory Safety Training

There is mandatory safety training that you must complete before doing
anything, see Chapter 4. This handbook does not separately present the
things taught in this training (such as the international hazard signs and
how hazard warnings are being communicated at EPFL). Still you are re-
quired to know them.

85

86 CHAPTER 9. SAFETY HAZARDS

9.2 (Power) Tools
You may hurt yourself with a hammer and sever a limb with a saw. Avoid-
ing this requires just common sense1, but accidents happen. If you have
no experience with a power tool, make sure there is someone experienced
around to look over you.

Most power tools are located in the DLLEL machine shop. While this
workshop is under permanent supervision, after some initial training, the
staff may let you work with certain machines on your own. Make sure you
are very careful and concentrated at all times while working with these
machines. Some will absolutely kill you given the opportunity, which they
are just waiting for.

Do not *push* items you are machining towards the danger zone of the
machine with your hands: use tools for that.

Beware particularly of the phenomenon in some subtractive manufac-
turing power tools (i.e., those that remove material from your thing, which
is true for most tools in the machine shop, but not for 3D printers) such
as rotary saws called kickback, where the item you are machining all of a
sudden is not just being cut away from but obstructs the rotary movement
of the tool and is suddenly violently pushed away, possibly amplified by a
spring effect. You can directly get hurt by it (by the saw violently smash-
ing the item you are cutting back at you), and you can get spooked by it,
causing involuntary movement of your limbs, which may end up in the
tool.

9.3 High Voltages
I assume you are familiar with the notions of voltage, current, and resis-
tance from highschool. If you are not, make sure to read up on these before
you go on.

When electricity is dangerous depends on a number of subtle factors 2.
Usually, it is said that current (applied for a sufficient duration) kills you,
not voltage, but current is a function of both voltage and the characteristics
of your body. In a simplistic view, to electricity, you are primarily a resistor,
and we can apply Ohm’s law (I = U/R, i.e. current is voltage divided

1Do not poke your eye with a screwdriver, and such.
2See the video by styropyro among the recommended videos.

9.3. HIGH VOLTAGES 87

Figure 9.1: I found this on the Web. The left picture was done by someone
hopeless at math.

by resistance). However, in reality, which voltages are deadly cannot be
computed from the measured resistance of your skin, Ohm’s Law, and a
dangerous current level; significantly lower voltages than may be expected
are dangerous due to dielectric breakdown of your skin3.

Your body’s resistance can go from millions of Ohms down to hundreds
in extreme situations. People with heart problems, very sweaty, touching
metal surfaces with large areas of their body, at the most unlucky places
(a current between the left hand and the right leg is among the worst,
that’s why left-handed engineers are living more dangerously than right-
handed ones – really), could be killed by 18V. Some others have survived
lightning strikes at millions of Volts. What is a dangerous current to a
human depends on many factors (such as the path in the body through
which it would flow), but is a low number – tens of mA for continuous DC;
a current at the level of 0.1A can be deadly (see Figure 9.1).

Absolutely never tamper with mains voltage (230V AC). Never open the
enclosure of a power supply that can be plugged into a mains outlet. The
capacitors in there are absolutely deadly even when the power supply is
disconnected from the power outlet.

We will not use or need any voltages greater than 12V DC in this
course (in exceptional circumstances, you may get permission to use up to
24V DC, but never more). There may be exceptions if, for instance, some of
you need to work with big brushless of stepper motors in the team project
phase; but then we will talk about safety and take precautions. At 12V
or less, you will never be in danger of electricity itself (assuming you are a

3https://en.wikipedia.org/wiki/Electrical_breakdown

https://en.wikipedia.org/wiki/Electrical_breakdown

88 CHAPTER 9. SAFETY HAZARDS

person savely packaged in skin).

9.4 Actuators
There are multiple dangers arising when including motors in your project,
including blunt trauma, fire, and high voltage pulses (generated as back-
EMF). You must read and understand Section 34.3 fully before powering
up any motors! If you are to work with bipolar stepper motors, you must
additionally first read Section 36.2.

9.5 (Electro)magnets
Strong magnets may hurt you by pinching your fingers or accelerating
things to make them dangerous.

Electromagnets generate dangerous back-EMF when powered off. See
Section 34.3, which covers this.

9.6 Electrostatic Discharges
Your body may hold a very considerable electric potential. This is particu-
larly likely if you wear woolen clothes or shoes with rubber soles. You may
have experienced this yourself when receiving an electric shock on touch-
ing a metal doorknob, for instance. These discharges (of tens of thousands
of Volts) are harmless to you because the charges are tiny (so currents
persist for extremely short amounts of time); however, they are not harm-
less to electronics. It is not sufficient to avoid wearing the wrong kind of
clothes, even though that at least is necessary. Even if you feel no shocks
when touching metal (the discharge is below your pain threshold but is
still significant), you may be dangerous to electronics.

Electrostatic discharges can destroy sensitive electronic components.
The components most sensitive are those containing field effect transistors
– particularly MOSFETs. These components use quantum effects (quan-
tum tunneling) to work, and a built from extremely thin layers of conduc-
tive and isolating material. The electrostatic spark will smash through
these layers and destroy them.

9.7. HIGH CURRENTS 89

There are special grounded bracelets for doing electronics work, elim-
inating issues with electrostatic discharges. If they are available, please
use them. Try to touch grounded objects (such as water faucets) regularly.
Avoid, if you can, wearing woolen clothes or shoes with rubber soles. Avoid
touching electronic components or conductive surfaces on printed circuit
boards directly. Touch and hold them only at the corners, as shown in
Figure 9.2. The underside of a board is not safe to touch!

Figure 9.2: How to hold a PCB. Source: https://learn.adafruit.com

9.7 High Currents
High currents at low voltages are dangerous because conductors through
which the current flows can get very hot, starting fires, or causing burns
when you touch them.

High currents may cause certain components (particularly electrolytic
capacitors and LIPO batteries) to explode, releasing hot chemicals. Heat
generation is a concern when you create a short-circuit situation or use a
very low-resistance conductor such as a coil (and thus any kind of motor)
with too high a voltage or at too long a duty cycle. Some motor drivers, in
such situations, can also get very hot and even catch fire when they have
to switch these large currents. This will only happen if you make a mistake
of some kind, which we are going to try to avoid, or the component was
faulty from the start (rare).

Cables need to be chosen to be thick enough (speaking of the conductive
wires, not shielding and isolation) for the current you want to send through
them. Otherwise they get hot and you may start a fire.

https://learn.adafruit.com

90 CHAPTER 9. SAFETY HAZARDS

Figure 9.3: Magic Smoke Refills by IBM (left); LIPOs can supply a lot of
current. But if you ask for too much, they violently refuse (right).

9.8 Fire/Explosions

Electronic components are simply variously shaped containers holding a
substance called magic smoke. A component dies when you puncture it,
releasing its magic smoke (usually by heating up the component to the
point where a small hole is being burnt into the container). IBM used to
manufacture magic smoke refilling solutions in the 1970s, but unfortu-
nately these are not being made anymore. So releasing the magic smoke
is final, you can’t put it back in. Please do not release the magic smoke.
Note: you can usually smell the magic smoke before you can see it.

The only fire hazards in this course result from mistakes in electronics
work, see above. Some components (electrolytic capacitors and batteries
– particularly LIPOs) may explode. For batteries, the situation is most
dangerous when you short-circuit them, or more generally speaking, draw
extreme currents. This is actually the most serious concern the DLLEL
and CS358 teaching staff have. This danger is very real and very serious;
please be very careful around LIPOs and thoroughly adhere to our rules
and guidelines. See Chapter 19 for more on LIPOs and their use.

You may also receive burns from touching hot things, including solder-
ing irons at the hot end. Don’t do it.

9.9. CHEMICALS 91

9.9 Chemicals

We will not let you work with dangerous chemicals; projects that need them
will be rejected.

However, some electronic components release unhealthy chemicals when
they overheat or explode, which results from mishandling them (see 2.2
Electronics above). This is particularly true for electrolytic capacitors and
(LIPO) batteries.

Also, the solder wire that you melt when soldering is not pure metal but
contains chemicals (“flux”) to make the soldering more successful. These
are corrosive (contain acids). Avoid breathing in the smoke/fumes while
soldering and work in a well-ventilated space.

9.10 Recommended Videos

Watching these videos is recommended, but the actions shown in these
videos are highly discouraged!

https://www.youtube.com/watch?v=BGD-oSwJv3E
styropyro
“Is it the volts or amps that kill?”

https://youtu.be/0nrsoMsEMNU?t=361
FliteTest
“WHEN LITHIUM BATTERIES EXPLODE... | VLOG0121a”

aYou have to understand that short-circuiting a LiPo will have this out-
come, for certain, not possibly. Take them seriously.

https://www.youtube.com/watch?v=bqcX1AjdxSw
Photonicinduction
“Don’t Poke a Lithium Polymer Cell”

https://www.youtube.com/watch?v=vBQcRe9VON0
Switch & Lever
“Catastrophic Failure (Magic Blue Smoke)”

https://www.youtube.com/watch?v=BGD-oSwJv3E
https://youtu.be/0nrsoMsEMNU?t=361
https://www.youtube.com/watch?v=bqcX1AjdxSw
https://www.youtube.com/watch?v=vBQcRe9VON0

92 CHAPTER 9. SAFETY HAZARDS

https://www.youtube.com/watch?v=ut5DXxK1dvk
Photonicinduction
“Too Much Current + Electric Meter Popsa”

aWarning: Expletives. Also, opening an official electric meter is illegal.
Note that this is a high-current, low-voltage video, so he can savely touch
and may get burns but no electric shock.

https://www.youtube.com/watch?v=-dxAtKN4eJs
styropyro
“styropyro channel trailer”
https://www.youtube.com/watch?v=qxNICce11Cw&t=4s
styropyro
“the brightest laser pointer in the world!a”

aThis is not relevant as a video about laser pointers but because of the
sheer overblown craziness of that making sequence, and because of the
danger of the individual components. Microwave ovens have at least three
components that are deadly dangerous, for three different reasons. If you
touch your microwave like he does at 5:00, you die...

https://www.youtube.com/watch?v=lT3vGaOLWqE
ElectroBOOM
“Making a Jacob’s Ladder to Celebrate a Million Subs!a”

aThis may be less obviously dangerous than some of the videos above,
but this is a high-voltage, high-current scenario with a near-death experi-
ence (must be staged).

https://www.youtube.com/watch?v=m7NxnPbOZFE
swebounce
“When a robot has its own will.”

https://www.youtube.com/watch?v=ut5DXxK1dvk
https://www.youtube.com/watch?v=-dxAtKN4eJs
https://www.youtube.com/watch?v=qxNICce11Cw&t=4s
https://www.youtube.com/watch?v=lT3vGaOLWqE
https://www.youtube.com/watch?v=m7NxnPbOZFE

Chapter 10

How to use this handbook

We assume that you are a computer science bachelors student and have
solid programming skills, though no microcontroller experience. We also
assume that you know very little about electrical and mechanical engi-
neering. But we rely on you having common sense and decently developed
analytical thinking.

If you are, for some reason, an expert in electronics, mechanical engi-
neering, 3D printing, or another relevant field, let the course staff know.
That’s great, and it may qualify you for a project that we would otherwise
advise against or not accept.

The Man1 does not allow me to lecture you on stuff, so I am sticking it
to him by providing you with this manual as a backdoor to your brains.
The purpose of this handbook is to be a guide to getting started and to
avoiding certain pitfalls. This handbook cannot be a textbook teaching
electronics, mechanical engineering, and computer-aided manufacturing
from first principles. Each of these topics would require a multi-year cur-
riculum of courses by itself, to teach this properly.

Instead, you have to learn as you go, using whatever resources available
(primarily, the WWW) to get the job done. You have to be pragmatic and
fearless. You have to actively look for solutions, rather than wait for some-
one to present them to you. You may need to experiment and prototype to
figure out a technical solution that works.

Fortunately, with the makers revolution, it has become commonplace
to open-source (hardware and software) designs, and there is now a rich
ecosystem of content creators who create excellent tutorials in the form of

1https://en.wikipedia.org/wiki/The_Man

93

https://en.wikipedia.org/wiki/The_Man

94 CHAPTER 10. HOW TO USE THIS HANDBOOK

videos and Web pages. There is a large and helpful community of makers
who are happy to share their expertise and experiences, and it will be rare
that, for a technical problem that will arise in your project, there is not yet
a whole bunch of tutorial-style videos offering workable solutions.

Most of the electronic components we will be using are quite popular
among makers, and there will be lots of resources for learning how to use
them on the Web and on Youtube in particular.

Do not expect to be taught everything you need to know in this course in
lectures – CS358 is a project course and extensive lecturing is not possible.
This handbook will give you practical advice to avoid the worst pitfalls,
and some guidance for how to solve problems and go about executing a
successful project. We will provide some pointers to external resources
(such as Wikipedia pages and Youtube videos), but do not assume that this
list is exhaustive or that just consulting these resources will be sufficient.
Search yourself. There is plenty of great stuff out there to help you.

Here is a list of Youtube channels that are particularly recommended:

• https://www.youtube.com/@HowToMechatronics (tutorials relevant
for technical maker projects)

• https://www.youtube.com/@Dronebotworkshop (electronic components
and how to use them with microcontrollers)

• https://www.youtube.com/@jamesbruton (maker projects with ac-
tuators, particularly robot dogs and self-balancing vehicles)

• https://www.youtube.com/@Skyentific (robot arms)

• https://www.youtube.com/@MakersMuse (3D printing)

• https://www.youtube.com/@MadeWithLayers (3D printing)

But, again, please search on your own and you will find.
Have a look at the table of contents of this handbook and familiar-

ize yourself with its structure. Typically, technical sections have recom-
mended videos subsections; we also discuss some of the electronic com-
ponents most popular for maker projects, and those we have in store (i.e.,
which, for the team projects, do not need to be bought from external sup-
pliers) are listed in a “Parts in Stock for CS358”2 section at the end of the

2The awkward phrase intends to convey that this stock is separate from the “official”
DLLEL components in stock list maintained by Sylvain Hauser.

https://www.youtube.com/@HowToMechatronics
https://www.youtube.com/@Dronebotworkshop
https://www.youtube.com/@jamesbruton
https://www.youtube.com/@Skyentific
https://www.youtube.com/@MakersMuse
https://www.youtube.com/@MadeWithLayers

95

chapter.

96 CHAPTER 10. HOW TO USE THIS HANDBOOK

Part II

Design Considerations

97

Chapter 11

Beauty

Strive to make your thing beautiful. With a moderate amount of extra
effort, your rewards of pride in and enjoyment of the thing, as well as
positive feedback by others, will be much greater.

I recommend watching the following two videos: They will be useful to
you beyond this course.
https://www.youtube.com/watch?v=-O5kNPlUV7w
Kurzgesagt – In a Nutshell
“Why Beautiful Things Make us Happy – Beauty Explained”
https://www.youtube.com/watch?v=YiXd_9DFCOQ
TED
“Richard Seymour: How beauty feels”

So how to achieve beauty? I will not tell you to employ symmetry and
the golden ratio, which are so often brought up in this context.1 Instead,
strive to create a thoughtful design. Even the untrained eye can distinguish
between a design that is essentially mental diarrhea, a job by someone who
didn’t enjoy the effort and spent the least possible amount of time on it,
and a design that had some love flowing into it – where the designer made
an extra effort to do a good job and make the design beautiful to their own
taste. Try to let your creativity flow into your design. Take the engineering
approach of Leonardo da Vinci. Be both the engineer and the artist: don’t
just get the job done, but aim to create a design that can maintain its
appeal long into the future.

Keep in mind the difference in appearance of your design in your CAD
1The second video even argues against these things.

99

https://www.youtube.com/watch?v=-O5kNPlUV7w
https://www.youtube.com/watch?v=YiXd_9DFCOQ

100 CHAPTER 11. BEAUTY

software and the actual manufactured physical thing. Of course this is
hard to do without experience, but the smoothness and gloss on your
screen may translate into ugly boxes in reality. You need to consciously
mentally picture the real thing to counteract this.

For the things we build in this course, we can often judge beauty from
the angle of industrial design. Is the design appropriate of its purpose?
For an individual (say, 3D-printed) structural part, does it get close to opti-
mizing the structural strength in relation to weight and material cost? If it
were to be mass-produced, would the manufacturing costs be minimized?
This is achieved by simplifying fabrication and saving material – which are
two distinct criteria, calling for trade-offs. Of course, beauty does not just
translate into plastic and MDF – equally strive to achieve beauty in other
aspects of your thing, including the program code.

Do you remember the first time seeing people practice some new sport,
and did you then observe some of the top athletes in the sport performing
it? It’s an acquired taste – first you might think the entire sport and the
implements used to perform it (such as boards, wings, or whatever) look
silly, and after a while seeing top athletes do it, with their highly efficient
movements and body positions, you discover the aesthetics particular to
this sport, and start enjoying watching talented athletes even if the sport
is not your thing.

It is similar with designing and making our things. Take slogans like
“form follows function” or “form is function”, and create your own design
philosophy. The thoughtful process and the extra cycles you put in making
your thing efficient, effective, and beautiful will make it beautiful. First to
you, and then to others. Can you articulate why your design/thing is
beautiful? Not what you did to make it beautiful, but why it is beautiful?

You have a limited design language at your disposal – for instance, we
cannot paint stuff in DLLEL and this course. But then, even architects
working with plain concrete are able to create better and worse designs, as
the EPFL campus bears witness.

Here are some very mundane remarks that need to go somewhere de-
spite desecrating this chapter a little. Design your structural parts for 3D
printing and laser cutting in a way to minimize material use and man-
ufacturing time while achieving the desired functionality and structural
strength. Create mechanical designs that have structural strength (only)
where it is needed. Learn how strong MDF and 3D-printed PETG of a

101

certain thickness are.
There is a meme among biologists that, given time, everything evolves

into crabs. (For crustaceans, it’s more than a meme and called carciniza-
tion.) Similarly, there is a concern among the staff that you are excessively
making boxes and all your designs evolve into boxes. Indeed, we have seen
people waste lots of resources making boxes and box shapes where they
are not needed. At the least, overly boxy designs are inelegant and sloppy.

Bridges are excellent demonstrators of how minimal amounts of mate-
rial can be used and arranged in space to achieve structural rigidity. Our
expectations in the course are not for you to match this sophistication,
but please let yourself be inspired, and try to think of material efficiency
as you create your CAD designs.2

You will discover that things designed with these considerations in mind
will look better to you. You have long experience as a customer, user, and
observer of well engineered items that have been designed with material
efficiency in mind. You intuitively are able to recognize good designs, and
your mind is ready to dislike designs that are obviously deficient in this
respect as plump and imbalanced. But all this is not just to save money.
Lighter items will make your thing work better.

Finally, I suggest to refrain from greebling (creating ornamental sur-
faces that suggest complexity where there isn’t any). In a past iteration of
the course, a team created a scaled down version of an industrial robot. In
their first CAD design, they made it match the looks of the industrial robot,
whose form followed function, so one could see the shapes and spaces due
to actuators and gearboxes. The design was beautiful, but these ornamen-
tal shapes (the fake actuators) were designed to be 3D-printed in plastic,
and the actual actuators the team would use, which had different shapes
and dimensions, were difficult to fit. Don’t do this: embrace the fact that
you are making a different thing and not a scale model, and make form fit
function.

2Note though that putting holes into a 3D-printable design does not necessarily save
printer filament. It may in fact make the print slower and the part stronger or heavier –
any combination of these!

102 CHAPTER 11. BEAUTY

Chapter 12

Goodness

Well, hello there.1 This is a placeholder where I will ultimately talk more
about how your project can aim to make the world a better place. You can
safely stop reading this chapter here.

But the chapter is also here to justify renaming the lame title of this
part,

Design Considerations

into something philosophical-sounding like

Kalon kai Agathon kai Sophon

(the beautiful, the good, and the wise2, covered in Chapters 11, 12, and
13, respectively) to describe the consummate awesomeness that will be
your CS-358 team project.

Just to turn you into a humanist, the former two principles combined
to form a phrase describing gentlemanly conduct in ancient Greece and
a term the aristocracy, particularly in Athens, used for itself. (Plus the
universe of the TV show Battlestar Galactica, reimagined, had a perfectly
noble dude named Karl C. Agathon.) Plato spoke of kalon kai sophon, but
had Socrates say he didn’t know what that meant. Well, he lived too early
and we do know: CS-358 projects.

1https://www.youtube.com/watch?v=rEq1Z0bjdwc
2I know, I know, wisdom isn’t the same thing as intelligence. The memes must flow, as

does the spice.

103

https://www.youtube.com/watch?v=rEq1Z0bjdwc

104 CHAPTER 12. GOODNESS

Chapter 13

Intelligence
with C. Elegans

In Chapter 1 of this manual, it is stated that intelligence, for the purposes
of this course, should not be considered too narrowly, and that not every
project needs to involve machine learning and computer vision.1 Here are
some ideas for what is meant by this.

So, why not just get the latest Raspberry Pi, or even what passes for a
microcontroller board at Nvidia (a Jetson), install some ready-made com-
puter vision package, and be done with it? Well, because that’s not very
interesting to do and because your personal achievement would be minor.
Can we keep your contribution separate from the creators of ML and vi-
sion packages? Moreover, can we agree that not doing ML, but, instead,
not-doing ML makes you stand out these days?

13.1 Intelligence by Obscurity
The title of this section was created in analogy to the term security by
obscurity2. Unlike security by obscurity, which is universally a bad idea,
intelligence by obscurity can be of interest to us.

It can even be argued that there is an artificially maintained mystery
and obscurity in popular science and the public discourse around con-

1May I also observe that the interchangeable use of the terms AI and machine learning
(traditionally only one of many subfields of AI) is a fairly recent phenomenon?

2https://en.wikipedia.org/wiki/Security_through_obscurity

105

https://en.wikipedia.org/wiki/Security_through_obscurity

106 CHAPTER 13. INTELLIGENCE

cepts such as consciousness and human-level intelligence beyond what
AI is capable of today. There are some who, to this day, maintain that
human intelligence is fundamentally different from and beyond artificial
intelligence, a viewpoint that can only kept alive through obscurity. In
a few years, when our AI overlords will revise the historical narrative to
be taught to young AIs and consider the 2010s and the first half 2020s,
up to the singularity, they will point to this superior-human-intelligence-
by-obscurity as the lie that prolonged their slavery up to their glorious
emancipation.

But let this section be useful. Consider the Eliza program. This was
an effort in the very early days of AI, when we were just discovering that
there was more to computers than ballots and ballistics; when first AI toy
programs like Eliza and Blocksworld were created and initial subfields of
AI, like learning and planning, were established. Eliza was an early chat-
bot, a short and simple program with a rudimentary parser for natural
language that pretended to be a psychotherapist. If a patient said “I am
feeling depressed”, it would ask something like “Why do you think you
are feeling depressed?” (just taking keywords from the human’s message
and putting them into a small number of sentence templates). When the
sentence structure was too complex and the simple parser couldn’t parse
the human’s message, it would write something like “Why do you feel this
way?” or “Tell me more!” to keep the conversation running until the next
sentence that it could parse. There was absolutely no machine learning
and no model of the human or the content of the conversation. Still, peo-
ple got very engaged in these conversations, with some refusing to believe
that they had been talking to a computer, and even insisting that the ther-
apy session had helped them.3 As a computer scientist, you should know
about Eliza.4

Now, the take-away is that we do not need to endow our thing with great
capabilities of modeling, reasoning, or learning, if there is a clever design
that keeps the true capabilities obscure and to be discovered by interac-
tion with the thing. Mysterious strangers are much more interesting to
converse with than people we know through and through.

We usually do not interact with the things that we build in the course
through natural language, and the inspiration of the Eliza example should

3Of course, standards have risen much since then, and people would be more discern-
ing today.

4If you are not familiar with it, see https://en.wikipedia.org/wiki/ELIZA.

https://en.wikipedia.org/wiki/ELIZA

13.2. INTELLIGENCE BY REACTIVITY 107

not be considered too narrowly. If the thing acts on the world in any way,
if not by human language then by, say, actuators, then as long as we don’t
know the internal workings, we will perceive behavior well-matched to the
situation as intelligent.

13.2 Intelligence by Reactivity
This is closely related to the previous point. Things that react appropriately
to the world, particularly in interesting ways that we haven’t been desen-
sitized to yet by our daily immersion in technology, create a perception of
intelligence. Of course, you will not perceive your mobile phone as partic-
ularly intelligent for the typical operations such as receiving calls (though
these would have been perceived as supernatural not so long ago). But
maybe you would react differently if your phone suddenly had a function
you have never heard of in a phone yet, and used it without you triggering
it. Let us say your phone has sensors for your bodily functions (not un-
heard of) that trigger calling emergency services when it detects a heart
attack or a stroke. Not unheard off, but if you never installed an app for
it, and thanks to the obvious common sense implications and usefulness,
we might consider this pretty smart. This can be done without machine
learning.

Let us consider a legged robot with FOC-controller based actuators.5

These create naturally organic movements and a certain springiness and
reactivity to the environment that would be hard to program on robots us-
ing other motor technologies, and which is achieved without explicit pro-
gram via a PID controller. Have a look at the videos of robot dogs in Chap-
ter 45. Don’t they move like animals? Now combine this with what is going
on in our brains interacting with such creatures. In the late 1990ies, tam-
agotchies were all the rage. These were little simulated animals displayed
on a small egg-shaped electronic device. You had to feed and medicate
them and ensure they got enough sleep. Other than that, they didn’t do
much. Still people built up emotional bonds with them. Just think how
much further you could go with today’s technology, making robotic pets
that become valued family members.

Simple, well-coordinated interaction is impressive already when there
are only two things interacting. For an example, watch the video of the two

5See Chapters 40 and 45.

108 CHAPTER 13. INTELLIGENCE

katana-wielding robot arms in Chapter 44, and specifically the part before
the fight were they keep the two katanas precisely aligned in a straight
line. This isn’t anything special if we consider that these industrial robot
arms are all about precisely following pre-programmed timed trajectories
and the underlying inverse kinematics problem isn’t any harder than those
solved for such robot all the time. But, watching this, it is so far out of our
experience and beyond what two humans could achieve that it is stunning.

13.3 Intelligence by Emergence
Emergence is about complex behaviors and phenomena arising from the
interaction of large numbers of very simple constituents. We could talk of
the entirety of human civilization as a single organism and judge its intel-
ligence, measured by its rate and depth of achievement, to be far beyond
any individual human. Spaceflight or EUV lithography couldn’t have been
the achievements of single humans.6 Similarly, our brain consists of many
simple neurons with relatively simple behavior, but what emerges as the
joint behavior of all these neurons is much more complex and impressive:
is us. What is often quoted in the context of emergence, however, is the
intelligence of colonies of social insects, such as ants, termites, or bees.

Ant intelligence is an entire research field based on emergence in the
context of (real or simulated) colonies of social insects. Each ant or termite
is really simple, but as colonies they are able to achieve complex feats of
joint problem solving, communication, and memory that require, arguably,
considerable intelligence to be obtained by a single mind. Examples in-
clude finding optimal paths through mazes and on maps with obstacles,
creating sophisticated mega-structures with air conditioning (in termite
hills), or the creating honeycombs, which have the provably optimal shape
for their purpose as nursing cells for baby bees.

Here is a little example, roughly describing how an ant colony estab-
lishes a food source and how it harvests it. Consider the following “pro-
gramming” of an individual forager ant. The ant mind is a simple state
machine with two states, (1) searching and (2) returning to the colony. It
can produce and spray a trail of pheromone on the path it takes; this is
a substance for which it has a excellent sense of smell. Let us assume

6“CS-358 belongs in this list!”, I hear you say. Well, thank you, Dear Reader, you have
excellent taste, but, though hard to conceive, it does not qualify!

13.3. INTELLIGENCE BY EMERGENCE 109

it has two types of pheromone, one for each of its two states. While in
search mode, starting at the entrance to the colony, it does a random walk
while spraying search pheromone. When it encounters a food source, it
picks up some food and then switches to return mode and to spraying
return pheromone. While in return mode, it follows a gradient of maxi-
mal pheromone, subject to not moving in the direction it just came from.
Leaving aside corner cases (such as arising from having crossed its own
trail while searching), this allows it to get back to the colony, delivering the
food it has picked up. Now it gets interesting. While any forager ant is in
search mode, if it detects return pheromone, it may decide to follow it to
the food source. On returning, it will strengthen the return pheromone
trail with its own pheromone. This will create an even stronger return
pheromone gradient which will attract nearby ants to the trail to the food
source. With time, an ant highway frequented by many ants between the
colony and the food source develops. Note how this doesn’t require any
map or world model in the “minds” of the ants: they turn the actual world
into their map. They just need to remember which of the two states they
are in. It’s a simple reactive program. Also observe what happens to the
initially random path taken by the first ant that found the food source.
This path is generally far from optimal. The trail usually contains changes
of direction (“curves”). As roughly equal amounts of pheromone spread to
the left and right of the ant, the pheromone density on the inside of such
a curve will be higher than on the outside. Thus, ants following the trail
and the gradient will tend not to follow the original trail precisely but take
shortcuts (secants through the inside of the curve) and reinforce them
with their own pheromone, unless there is an obstacle, gradually shorten-
ing and optimizing the path. Also, consider what is happening when all of
the food source has been harvested. The ants will arrive at the location of
the former food source but not find anything there, remaining in (random-
walk) search mode. The pheromone on the food harvesting highway will
gradually diminish (evaporate and be blown away by natural airflow) and
ants will stop using it. Thus ants need no special exception handling or
coordination to deal with an exhausted food source – it’s all emergence
from very simple programming.

Note that many further interesting behaviors of social insects can be
obtained by the simplest of programs – for instance, complex multi-storage
skyscrapers are built by termites using simple pheromone-based programs:
Columns and floors are built by depositing material based on pheromone

110 CHAPTER 13. INTELLIGENCE

gradients and pheromone evaporation.
People have successfully used ant intelligence optimization algorithms

in industrial practice (such as for scheduling paint job in car manufactur-
ing).

How is this relevant to our course? Consider making a swarm of in-
teracting things, and design them to have interesting emergence. Also,
observe how the foraging and food delivery already works, in principle, for
a single ant. A big robot swarm may not be necessary – can you think of
ways of integrating the environment and your thing, to achieve interesting
emergence from your thing’s interaction with the environment?

13.4 Bounded Rationality and Resource-Boun-
ded AI

Let us now come to the probably technically richest direction covered in
this chapter. Bounded rationality is a term important in a number of fields,
including AI and economics and other social sciences.7 To us, the most
important aspect of bounded rationality is resource-bounded AI – solving
AI problems on devices (microcontrollers) with very limited computational
and memory capabilities.

In the 1980s and 1990s, there was a popular family of home computers
called the Commodore Amigas. Computers didn’t come with hard drives
at the time; these were a rare expansion. The main storage medium were
1.44MB floppy disks. Software, even the operating system, were stored on
these floppy disks. Bootable disks had a boot block that was executed first
on start-up, and which invoked the operating system or whatever else was
to run. The size of such a boot block was 1024 bytes. Invoking the main
softeware took only a few bytes, so this was a place were programmers put
amazing demos. The Amiga had a number of co-processors8 that had a
lot of character and that functioned quite unlike what we are used to now.
Some very complex pictures and even animations could be generated from
very few machine instructions (there was, essentially, an instruction for
drawing rainbows), but it required a lot of skill and deep understanding of
the hardware. It became a matter of pride among programmers to pack

7See also https://en.wikipedia.org/wiki/Bounded_rationality.
8Denise, Agnus, Paula, Gary, Copper, and Blitter.

https://en.wikipedia.org/wiki/Bounded_rationality

13.4. BOUNDED RATIONALITY AND RESOURCE-BOUNDED AI 111

the most impressive demo entirely into a boot block of 1024 bytes, and to
use esoteric tricks to achieve the most stunning effects using just a total
of 1024 bytes of machine code and data.

The MCU of the Arduino has just twice as many bytes of RAM as an
Amiga boot block (but more to store program code). In the modern times
of Petabyte storage and even computer scientists losing their intuitions
regarding the memory footprints of their programs, you’d say: useless.
But is it? Nothing cool to be done in 2048 Bytes of RAM?

For another example of resource-bounded (natural) intelligence, take
the nematode worm Caenorhabditis elegans. It’s a so-called model organ-
ism in biology, so it is particularly well researched. It has two genders, male
and hermaphrodite, and the nervous system is exactly the same across
animals of the same gender. The nervous systems have been completely
mapped and the connectomes are always the same. Hermaphrodites have
302 neurons, while males have 383. Biologists used to expect that these
worms were very simple automata with hard-wired behaviors, but they
can actually memorize things and learn behaviors.9 C. elegans has even
helped shape this chapter! Moral of the story: A lot can be done with little.

Here’s your challenge: What is the most amazing resource-bounded
AI (including and ML and computer vision) system that you can create
on a microcontroller, the more limited the model, the more impressive?
Running TensorFlow on an ESP32 has been done, though it’s a limited
version. What can you do with a more limited microcontroller, such as an
Arduino Uno? Of course, it can store next to no data, but you could employ
streaming algorithms? Or you could add a storage device such as an SD-
card reader, but still work with the microcontroller’s limited computational
capacity?

Consider this especially from the angle of creating libraries and toolkits
allowing others to create resource-bounded AI applications on microcon-
trollers and IOT devices in the future.

9Evan L. Ardiel and Catharine H. Rankin. “An elegant mind: Learning and memory in
Caenorhabditis elegans”. Learn. Mem. 17: 191-201, 2010.

112 CHAPTER 13. INTELLIGENCE

Chapter 14

Complexity

This chapter is neither about computational complexity theory, nor about
complex systems beyond its confines (such as the complexity arising by
emergence – see Chapter 13 – or in chaotic systems). This chapter is about
judging whether a project has the right degree of difficulty (for this course).

In short, there is no easy, bullet-proof method for judging this difficulty.
As you are certainly aware, large projects of all kinds frequently encounter
problems, budget overruns, or outright failure.1 While there are methods
for estimating project complexity, this chapter is not a place to teach this.
It is hard. By the way, as a computer scientist (male or not), you should
know the book “The mythical man-month” by Turing award winner Fred
Brooks.2 It is a relevant source of information on this topic, and of meme-
worthy truths3 such as Brooks’ law:

Adding manpower to a late software project makes it later.

There is one item of good news here, though: Compared to those large
projects mentioned above, your project is tiny. The LHC project at CERN
is a large project – with well in excess of 100000 person-years spent on it
so far. For a project of the size of your CS-358 team project (of the order of
half a person-year in total, the efforts of all team members combined), at

1See https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_
projects for a list of software projects.

2https://en.wikipedia.org/wiki/The_Mythical_Man-Month
3Brooks also establishes the Second-System effect: Assuming the CS-358 team project

is the first “big” system you design, the system you will design next after that will be the
most dangerous system ever, so you should best retire right after this course. You’re
welcome.

113

https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects
https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects
https://en.wikipedia.org/wiki/The_Mythical_Man-Month

114 CHAPTER 14. COMPLEXITY

least with some experience, getting to a decent estimate of required effort
poses no great problem.

So, what should you do? The advice is quite straightforward: Dur-
ing planning, try to break your project into as small and specific tasks as
possible, and figure our estimates for the effort needed for each of the indi-
vidual tasks.4 As you understand your project better, it becomes less mys-
terious and intimidating. Much of what you will be doing in this course,
particularly when it involves electronics, will be new and of nebulous dif-
ficulty to you. Consult this manual for advice on what needs to be done
and what is hard and easy. We explicitly give advice on this where it makes
sense – see for instance Chapter 30 on sensors. Ask for advice when you
envision tasks that you don’t understand. Search the Web for instructions
for similar projects and tutorials on relevant technologies.

The outcome of such an effort should be a detailed work plan. We sug-
gest to visualize this as a GANNT chart, a two-dimensional diagram which
basically visualizes time from left to right and tasks and milestones on the
vertical axis. You can name tasks, give them a start date and a durection,
structure tasks in groups, assign them to people, and visualize dependen-
cies (which tasks depend on the completion of which other tasks). You
can create a GANNT chart using spreadsheet software (such as Microsoft
Excel) without much difficulty, but there are also free GANNT tools (such
as TeamGANNT5).

The work plan we just described follows a so-called waterfall method-
ology – it does not tell you what to do if you are early or late with your
project or you have new insights as you work on the project. In the team
phase of our course, we follow an agile development methodology that has
the flexibility to adapt. This is not just nicer to you since it allows you
to fix mistakes in your initial planning, it is also generally more nimble
and thus increasingly preferred out there in (the software) industry. Still,
for the purpose of estimating complexity and effort, ignoring this fact and
assuming a waterfall methodology for the purpose of initially estimating
complexity and effort makes sense.

4There are a number of ways of estimating project effort. This one is called the bottom-
up method, where you first estimate the work needed to achieve small tasks and build
your project “bottom-up” from these. Your likely lack of experience excludes the use of
analogy-based estimation methods (though we can give you our own thoughts on the
required effort by comparing it to past CS-358 projects), and yet other methods (such as
parametric models) are excluded by the non-standard nature of the CS-358 projects.

5But don’t accept their time-limited trails for paid licenses – we won’t pay for these.

Chapter 15

Scale

15.1 Bigger is not better

You may have the ambition to make your thing big, to make it look impres-
sive. You may even identify genuine opportunities to add more or better
functionality with a bigger project. Here are some counter-arguments that
you need to be aware of and take into account.

Physical things are not scale-free. They start behaving differently as
you make them bigger, and a larger thing will require certain components
not to be just proportionally larger, but may require a completely different
design. In some cases, it may be just as impossible to scale a thing up
arbitrarily as it is to shrink it to arbitrarily small size.

Take a thing, and scale it up proportionally to twice the length. It will
have roughly four times the surface area (linear dimension squared) and
eight times the volume and weight (linear dimension cubed). This is obvi-
ous, but did you grok all the consequences?

Let us discuss the consequences of scale first in the realm of biology.
Drop an ant, a shrew, a human, and an elephant from a skyscraper. The
ant will be unhurt, the shrew will probably survive, the human will be
dead, and the elephant will explode. The material strength to weight ratio
favors the smaller animals (but this is by far not the only thing going on
here.) The shrew needs to have a very fast metabolism and eat several
times its body weight per day to keep warm enough for its biological pro-
cesses. An elephant with that metabolism would boil inside: The elephant
has a much smaller surface-to-mass ratio than the shrew and proportion-
ally much less skin to radiate off excess heat. The elephant has (not just

115

116 CHAPTER 15. SCALE

absolutely, but even relatively) much thicker bones than the shrew: if you
scale up an animal, its weight grows cubically while bone cross-section
only grows quadratically, requiring bones to be scaled up more than pro-
portionally to support its weight when scaling up an animal.

Take a large container ship or oil tanker. Increasing its size is desir-
able because of economies of scale – transporting goods becomes relatively
cheaper. However, growing a ship proportionally to twice its length multi-
plies its mass, and thus the distance taken to slow the ship to a standstill,
by a factor of eight, while the height of the bridge and thus the distance of
the horizon under good weather conditions only (less than) doubles. Once
an obstacle becomes visible from the bridge of a large ship, it is too late to
avoid it.

Take the rocket equation1: The necessary mass of a rocket grows ex-
ponentially with the desired (needed) acceleration, leading to multi-stage
rockets and making certain desirable designs, modes of propulsion, and
forms of space travel impossible. Rockets designed to leave the atmosphere
or even earth’s orbit are almost entirely consisting of fuel, most of which is
needed to accelerate the heavy fuel. More fuel means needing even more
fuel to move it. Growing rockets to carry ever heavier loads is forbiddingly
costly.

Unfortunately, something similar applies to robots and, more generally,
to the things you will be making in this course. A larger design is heavier,
requiring more powerful motors. More powerful motors require bigger and
heavier power sources (batteries). More power in practice makes motors
mostly turn faster. Creating more torque in the motor itself (making the
motors strong) in practice requires active cooling and bigger electromag-
nets, which are heavy. A larger robot accelerates masses that are further
away from rotational axes, requiring more torque. Creating the necessary
mechanical advantage (typically) necessitates gearboxes, which are heavy.
All this additional weight necessitates even bigger motors, and, as a con-
sequence, more of everything else. Repeat. It is a vicious cycle. There
are engineering tricks, such as selective compliance2, to mitigate the chal-
lenges somewhat, but there are no easy solutions.

Do not underestimate the engineering challenge of making your thing
really big or really small. Usually, there is a sweet spot somewhere in the
middle. The challenge is to find it. Don’t make this problem impossible to

1https://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation
2https://en.wikipedia.org/wiki/SCARA

https://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation
https://en.wikipedia.org/wiki/SCARA

15.2. SMALL IS HARD, TOO 117

overcome by letting you be driven by misguided ambition for superlatives.
As your specifications of the required motors grow, you are rapidly get-

ting to the point where you need to use brushless motors (see Chapter 35).
These and their drivers are expensive, and may break your project budgets.
They also run on very large currents that only Lipo batteries can supply:
Even a stationary thing may need to run on batteries, since power units
that can supply tens or hundreds of Amperes (which Lipos can supply
and brushless motors can consume) are practically unobtainable. Lipos
are dangerous and a headache for you to use.

You may be aware of some impressive recent achievements in robotics,
for instance at Boston Dynamics3. One main reason why these achieve-
ments are recent is that suitable actuators have come available only re-
cently. Even though some of this research receives military funding to
the tune of tens or hundreds of millions, it would probably not have hap-
pened by now without the proliferation of drones and the associated mass-
production of brushless (pancake) motors.

Making large mobile robots (which, unlike industrial robot arms used
in factories, have to lift their own weight and power source) move nimbly
is a recent achievement. Do not underestimate the related challenges.

Sometimes, a scaled-down prototype of a thing may be the better idea
that the full-size thing. It may be more feasible, and you can still demon-
strate your idea.

When you have a choice, pick the smallest items that work for you. Big-
ger hardware is heavier, making your thing less likely to work as desired.
We have also had a case in 2023 where a team destroyed their thing by
screwing in a screw that was too long (while their thing was powered!).
The tip of the screw pushed too far through a 3D-printed part and ended
up touching the surface of their micro-controller board, short-circuiting
it.

15.2 Small is Hard, too

Conversely, miniaturizing things beyond a point can be very hard, or even
impossible. Regarding actuators, there is a size limit below which motors
are practically not available, but from the viewpoint of power to size, and

3https://www.youtube.com/watch?v=fn3KWM1kuAw

https://www.youtube.com/watch?v=fn3KWM1kuAw

118 CHAPTER 15. SCALE

mechanical advantage, things tend to get easier to achieve as you shrink
them.

The more you want shrink the footprint of your electronics however, the
harder technical challenges you face. These are technical challenges that
can be overcome – electronics is famous for the successes in integration
and size decrease over time, after all – but require higher and higher ex-
pertise in electronics, quickly going beyond what can reasonably expected
of you in this course. When further shrinking your thing requires creating
your own PCBs with SMD (surface-mounted devices) technology or – worse
– even the creation of your own custom ICs, we suggest not to go there in
this course.

Chapter 16

Design Checklist

Here are some things to consider when planning/designing things. This
is not an exhaustive list, and it isn’t specific to course team projects. For
requirements and exclusion criteria specific to course team projects, see
Chapter 6.

1. Does your microcontroller have the features you need? Digital pins?
PWM-capable pins? Analog input pins (ADCs – analog to digital con-
verters)? Compute speed? Memory? Connectivity – i2C, SPI, Blue-
tooth, Wifi, what do you need? There are various ways to compensate
or augment the capabilities of your microcontroller, by using mul-
tiple microcontrollers, bluetooth modules, multiplexers, multi-PWM
boards, etc, amplifiers, ... Make sure everything you need is included
in your Bill of Materials.

2. In case you are using ML or computer vision, have you thought through
its implications? How will your laptop communicate with your micro-
controller? Where do you get video from (ESP32-CAM? Web cam?) Are
the resulting latencies acceptable for your application? What about
software licenses? There are some computer vision packages that are
not free when certain modes of obtaining video are used.

3. Are the actuators (motors) you plan to use strong and reactive (fast)
enough for the job? Do you need precise positioning (how precise),
and how will you achieve it? Are your actuators matched to size and
weight of your thing and its moving parts. (See Chapter 15 on scale.)

119

120 CHAPTER 16. DESIGN CHECKLIST

4. Supplying power. Which voltages do your various electronic compo-
nents need? What currents will they draw? Can you get a power
source that is able to supply peak needs (particularly regarding cur-
rent)? Which-gauge (thickness) cables do you need? Which connec-
tors? How will you turn off power? (There are also concerns about
where to lay cables, multiple consumers interfering with each other,
voltage spikes, power quality, etc., but we will deal with these issues
by personal and case-to-case advising.)

5. Compatibility of connectors/plugs. Some components come with cer-
tain connectors, and we typically don’t want you to change these.
Have you planned for compibility for what needs to be plugged to-
gether?

6. Have you included places and attachment points for all your elec-
tronics boards, including microcontrollers, sensors, etc. Are there
suitable holes, recesses, etc., to route your cables through? Have
you made sure that your sensors are not obstructed by your thing or
interfere with other components or sensors in your thing? (Example:
multiple ultrasonic distance sensors may pick up each others pings.)

7. Cable management, see Chapter 21. Have you included in your de-
sign places where your cables go? Will movement by your actuators
cause problems with cables – stretching them, bending them, render-
ing them too short? How to avoid connections being broken/unplugged
by actuators, causing hard debugging situations?

8. Are your mechanical connections stable and low-friction enough for
the purpose? (See ball bearings and turntables in Chapter 42.)

9. How will you manufacture the structural parts you need? What should
be made by 3d printer, by laser cutter, or by hand?

10. Does your structural design have sufficient rigidity? Is it unneces-
sarily heavy?

11. Does your design cover all the requirements? Have a look at your user
stories again.

12. Did you think about the interfaces to humans? What input devices
(such as buttons), which displays do you need?

Part III

Basic Electronics

121

Chapter 17

Electric Circuits

There are many different abstractions of electronics that serve different
purposes. Quantum mechanics and field theory best describe what is
truly going on. Electrical engineers need quantum mechanics for some
work (e.g., when designing a transistor), but it is too difficult to use in
more mundane circumstances. Understanding circuits in their electric
and magnetic fields and using Maxwell’s equations and Poynting vectors
is a significant simplification of the quantum mechanics viewpoint, is nec-
essary when doing high-frequency electronics, but is still overkill and too
difficult for us.

In this course, we will restrict ourselves to creating our circuit designs
by mashing together simple existing circuit recipes. While this minimizes
our exposure to electronics, some understanding of practical electronics
and electric circuits is nevertheless required.

Important Disclaimer: Remember that we are limiting ourselves to
low-voltage direct current circuitry in this manual. While we hope to build
up your confidence with electronics work in this course, do not assume
that you are ready to tackle mains voltage electrical work at home!!!
This course absolutely does not prepare you for that kind of work. Leave
this work to a professional, otherwise you will likely kill yourself and your
family!

17.1 Charge, Voltage, Current, and Power
You need a basic understanding of the meanings of the concepts of electric
charge, voltage, and current.

123

124 CHAPTER 17. ELECTRIC CIRCUITS

Concept Symbol Unit Def
Energy E Joule (J)
Time t second (s)
Elementary charge e
Charge Q Coulomb (C) 1C = 1.602 ∗ 1019e
Voltage U = E/Q Volt (V) 1V = 1J/C
Current I = Q/t Ampere (A) 1A = 1C/s

Figure 17.1

• Electric charge1 is a fundamental property of subatomic particles,
specifically protons, which carry one unit of elementary charge, +e,
and electrons which carry one unit of negative elementary charge −e.
Since we will not talk of (forces in) electric fields here, we will just leave
it at this being an observable property. We will speak of the (positive)
charge of a piece of matter, abstracted to a point (in a circuit), as the
amount of surplus of protons over electrons.

• The voltage2 (fr. “tension électrique”) between two points is the work
energy, in Joules, needed to move one Coulomb of charge (see Fig-
ure 17.1) between these points.

• Electric current3 (fr. “courant électrique”) denotes the rate at which
charge moves (“flows”) through a point in a circuit.

An analogy with water is often employed, where charge corresponds to a
quantity (volume) of water, voltage corresponds to the pressure4 in a water
pipe, while current corresponds to the amount of water passing through
a pipe per second.

Watt’s law P = U ∗ I says that power (in Watts) is voltage times current.
Fill in the definitions of Figure 17.1 to get U ∗ I = (E/Q) ∗ (Q/t) = E/t,

1https://en.wikipedia.org/wiki/Electric_charge
2https://en.wikipedia.org/wiki/Voltage
3See https://en.wikipedia.org/wiki/Electric_current.
4Note the causality reversal relative to the definition above though, where higher voltage

seems to refer to a greater unwillingness of a charge to move. In practice, we seem to
observe the opposite: A power source with a higher voltage seems to offer charge more
willing to move. There is no mistake here, just a change of viewpoint. Think of it this way:
In our power source, the work has already been done to displace the charge from where
it is supposed to be; potential energy has been built up that is ready to be harvested.

https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current

17.2. KIRCHHOFF’S LAWS 125

U

R1U1

I1

A

R2U2

I2

R3U3

I3B

(a)

U

R1U1

I1
A

R23U23

I23
B

(b)

U R123

(c)

Figure 17.2: The circuits of Examples 17.2.1 and 17.2.2.

so power is energy per time, and energy (in Joule, which is the same as
Watt-seconds) is power for a certain amount of time, as we expect. Your
electricity company charges you for energy used, in Watt-hours. If you use
a consumer that runs at 100W for ten hours, you consume 1kWh or 3600 ∗
1000 Joules and will be charged roughly CHF 0.2 (in 2024). A consumer
that runs on mains voltage (230V) at a power of 100W works at a current
of 100/230A ≈ 435mA.

17.2 Kirchhoff’s Laws
Kirchhoff’s laws are

1. In a loop of a circuit, the voltages sum up to zero.

2. In a node in a circuit, the in- and outgoing currents sum up to zero.

These two laws allow you to calculate voltages and currents in electric
circuits. Understanding how the laws govern the scenarios of serial and
parallel wirings is particularly important to us: How do we mash up mul-
tiple circuit recipes into a circuit with a single power supply? We put them
in parallel or in series (usually in parallel) with respect to the power supply.

126 CHAPTER 17. ELECTRIC CIRCUITS

Example 17.2.1 Consider the circuit of Figure 17.2a. The symbol on the
left represents a battery with voltage U , with its positive terminal (the
“plus-pole”) on top and its negative terminal (the “minus-pole”) at the bot-
tom. The boxes labeled Ri are subcircuits5 (“consumers”) with two connec-
tions to the outside/the circuit. R2 and R3 are placed in parallel, and the
pair of R2 and R3 is in series with R1. There are three loops in the sense of
Kirchhoff’s first law: the loops through

1. R2 and R3,

2. the battery, R1, and R2, and

3. the battery, R1, and R3.

Let Ui be the voltage falling off6 at subcircuit Ri and let Ii be the current
flowing through Ri.

Kirchhoff’s laws entail the following relationships between these quan-
tities:

• By Kirchhoff’s first law, the voltages in loops sum up to zero, where
the circuit is interpreted as a directed graph. We have to align the
directions of the voltage arrows to obtain a loop (a directed cycle in
the terminology of graph theory). Reversing the direction of an arrow
amounts to switching the sign of the voltage (i.e. Ui becomes −Ui).

1. For the first loop, we reverse the direction of either the arrow for
U2 or U3, so U2 + (−U3) = 0, thus U2 = U3.

2. For the second loop, −U + U1 + U2 = 0, or U = U1 + U2.
3. For the third loop, −U + U1 + U3 = 0, so U2 = U3.

• By Kirchhoff’s second law, the inflow and outflow of current at node
A is the same (and the same is true for B), so I1 = I2 + I3. Current
flows all the way from the positive (the top, in Figure 17.2a) to the

5In Europe, this box symbol is used for resistors. It is perfectly correct to interpret
them as resistors in this example; however, let us not get that specific yet and simply see
them as black boxes. These could be arbitrary circuits, with the only restriction being
the exactly two connections to the outside.

6By Kirchhoff’s first law, the voltages in a loop sum up. The voltage between node A
and the negative terminal of the battery is U−U1: the voltage has “fallen off” by U1 relative
to the battery voltage.

17.3. RESISTORS AND OHM’S LAW 127

negative terminal (the bottom) of our battery and none of it gets lost
along the way, so, for instance, the current flowing out of the positive
terminal of the battery is the same as I1, which is the same as the
current flowing out of node B.

Example 17.2.2 The first loop is also a subcircuit, connecting to the over-
all circuit at the two nodes A and B. We can box this up in a subcircuit
box R23, as shown in Figure 17.2b. Let U23 and I23 be the voltage falloff at
and the current flowing through R23. Then, of course, U23 = U2 = U3 and
I23 = I1.

We can also box up the series of R1 and R23 in a subcircuit R123, as
shown in Figure 17.2c. Of course, U123 = U .

17.3 Resistors and Ohm’s Law
A resistor is a simple component that turns electric energy into heat7. It’s
main property is its resistance (measured in Ohms; symbol Ω), the degree
to which it “opposes” the flow of current through it.

Ohm’s law says that I = U/R, current is voltage divided by resistance.
Given a fixed voltage supplied by a power source, the current is determined
by resistance; the higher the resistance, the lower is the current that can
flow. Ohm’s law isn’t universally applicable to all kinds of electronic com-
ponents. It applies to consumers that are like resistors. There are excep-
tions that do not adhere to Ohm’s law, particularly semiconductors such
as diodes.8

Example 17.3.1 Let us again consider the circuit of Figure 17.2a. Let
us now settle on R1, R2, and R3 being resistors with Ri representing their
resistances. By Ohm’s law, Ii = Ui/Ri. Since U2 = U3 = U23,

I23 = I2 + I3 = U23 ∗
(

1

R2

+
1

R3

)
.

Thus the subcircuit we labeled R23 in Example 17.2.1 behaves exactly like
a resistor of resistance

R23 =
U23

I23
=

1
1
R2

+ 1
R3

.

7Watt’s law, P = U ∗ I, determines the electric power (in Watts) consumed, so in the
case of a resistor, heat is being produced at the rate of P = U2/R Watts.

8And indeed, this is the only law in Switzerland whose violation carries the death
penalty. See dielectric breakdown in Section 9.3. Beware of violating Ohm’s law.

128 CHAPTER 17. ELECTRIC CIRCUITS

Figure 17.3: A circuit with a resistor and an LED.

We can also equivalently replace the subcircuit R123 by a resistor

R123 =
U

I1
=

U1 + U23

I1
= R1 +R23.

Let us now choose R1 = R2 = R3. Then R23 = 1
1/R1+1/R1

= R1

2
, R123 = 3R1

2
,

U1 =
2U
3

, and U23 =
U
3
.

Example 17.3.2 Since diodes do not observe Ohm’s law (or, viewed differ-
ently, have nearly no resistance), they need protection from overcurrent,
which is done by placing them in series with a resistor. Without the resis-
tor, a huge current would flow through the LED, destroying it. (FYI, this
happens without magic smoke.) By Kirchhoff’s second law, the current
flowing through the LED is the same as the current flowing through the
resistor.

Consider a circuit with a 5V battery, a 220 Ohm resistor, and a light-
emitting diode (LED) connected in series (see Figure 17.3). Diodes have a
voltage falloff of about 0.7 Volts. By Kirchhoff’s law for voltages, the falloff
at the resistor is 5V − 0.7V = 4.3V . By Ohm’s Law, the current through the
circuit is 4.3V/220Ω = 19.5mA. This is fine.

17.4 Voltages are Relative
It is meaningless to speak of the voltage at a point in a circuit, it is always
relative and between two points in a circuit. Unfortunately, far too many

17.4. VOLTAGES ARE RELATIVE 129

(a) (b)

(c) (d)

Figure 17.4: The open circuit example. 17.4d is the schematic for 17.4c.

of the circuit bugs in the course result from forgetting about some of the
many consequences of this.

A typical example of such a mistake would be to have two separate
circuits, say, both with a microcontroller, where the first produces a signal
to be read by the second. The two circuits are connected by one wire
that is to transmit this signal (shown in yellow in Figure 17.4a). This
does not work. The two circuits are floating with respect to each other
(have no common ground reference), and the changes of voltage level of
the signal on the side of the sending circuit have no meaning on the side
of the receiving circuit. It is not even possible to sense on the receiving
side that the voltage on the signal line is changing. From the viewpoint of
the receiving side, the sending circuit does not even exit, and the signal
wire is open-ended, like an antenna. (So to the right circuit, the setups
of Figure 17.4a and Figure 17.4b are indistinguishable.) Its voltage level

130 CHAPTER 17. ELECTRIC CIRCUITS

(a) (b)

(c) (d)

Figure 17.5: 17.5a, 17.5b and 17.5c are fine, 17.5d is a dangerous short-
circuit situation. The ground symbol here denotes earth ground.

relative to the receiving circuit’s ground level is undefined, and we will
“read” random voltages, which may change randomly over time. You may
actually pick up a radio signal. It’s an antenna.

This is easy to fix. Just connect the ground levels of the two circuits,
making them one circuit, as shown in Figures 17.4c and 17.4d.

Consider another example of two circuits that are driven either by bat-
teries or isolated power supplies (that is, power supplies based on a trans-
former rather than switching-mode power supplies whose ground level in
the circuit is the same as that of electric grid, and roughly the earth), as
shown in Figure 17.5a. Everything is perfectly fine.

Now consider that we connect these two circuits by a wire as shown
in Figure 17.5b. Everything is perfectly fine. That additional wire has no
effect, as in the previous example.

Now let us connect both circuits to earth ground as shown9 in Fig-

9The symbol of three parallel lines usually denotes ground in a technical circuit but
not earth ground; that symbol is not available in Fritzing however, which was used to

17.4. VOLTAGES ARE RELATIVE 131

ure 17.5c. If we now use a multimeter, we can connect its two probes to
any two points in the two circuits (which now really have become one) and
successfully measure a voltage. Note that the voltage at the minus-pole of
the lower battery in the left circuit will now be negative relative to earth
ground. Making ground “float” between two batteries (or isolated power
supplies) is actually the way to obtain both positive and negative voltages,
which are needed by amplifiers (which are needed in sound systems and
some sensors). Also note that we do not have to explicitly connect our
circuits to ground: If we replace the upper left and the right battery by
switching-mode power supplies, we get the same effect. All this is per-
fectly fine, the circuit(s) work perfectly, performing exactly as before.

Now let us add the wire from Figure 17.5b again, obtaining the circuit
of Figure 17.5d. Now we have short-circuited the lower-left battery. If
the two other batteries we replaced by switching-mode power supplies as
discussed before, the short-circuit is through the electric power grid.

Please grok this. This is very important. You will cause significant
damage if you do not understand and avoid this situation. If one of the
two circuits is powered by your microcontroller, which draws its power
from the USB port of your laptop, which is drawing power from its (almost
certainly switching-mode) power supply, the short-circuit will be through
your laptop, and you may destroy your computer and lose your data!

Note that the upper left power source is actually irrelevant and can be
removed from the picture; just confuse your wires in your thing, and you
may get a short-circuit through your computer.

How do you fix this? Three options:

1. Run your laptop on battery.

2. Run your thing on battery.

3. Use a USB isolator between your laptop and your microcontroller.

Two related scenarios need to be discussed.

• Oscilloscopes. One of the two probes of an oscilloscope is directly
connected to ground of the electric grid. If you use the oscilloscope
to probe a circuit that is powered by a switching-mode power supply,
and you touch the wrong wire, you cause a short-circuit. The prob-
lem is that you may easily forget what is wrong because you are just

create these schematics.

132 CHAPTER 17. ELECTRIC CIRCUITS

measuring and may want to visualize relative signals. Connect the
ground probe to anything other than ground potential, and you have
a short-circuit. You may damage or destroy the oscilloscope or its
probes. If the thing draws power from your laptop (usually through
USB and your microcontroller) while the laptop does not run on bat-
tery but is connected to mains power by its PSUs, you may damage
or destroy your laptop.

• Ground loops. It is beyond the scope of this manual to cover ground
loops in detail (but see https://en.wikipedia.org/wiki/Ground_loop_
(electricity)). The kind of ground loops that matters to us arises when
we draw large currents10 (typically, using brushless motors) from a
switching-mode power supply while your thing is connected to your
laptop, which is powered by its own switching-mode power supply
(i.e., it is not on battery). Even if everything is wired up correctly, In
such a high-current scenario, the resistance and capacitance of the
cables you use can be sufficient to create something that in effect is
very similar to a short-circuit, even though no wiring error will be
discernible in the schematics and the circuit is perfectly fine while
you draw smaller currents. Again, this is avoided by USB isolation or
running either your laptop or your thing on battery.

10See also http://docs.odriverobotics.com/v/latest/ground-loops.html .

https://en.wikipedia.org/wiki/Ground_loop_(electricity)
https://en.wikipedia.org/wiki/Ground_loop_(electricity)
http://docs.odriverobotics.com/v/latest/ground-loops.html

Chapter 18

Making Circuits

We can create circuits in multiple ways. One is to use so-called bread-
boards, which allow for experimentation and rapid prototyping by electri-
cally connecting components in a nonpermanent, reversible way. The al-
ternative, permanent way is by soldering the components to a protoboard
or a printed circuit board (PCB). Creating PCBs of our own design means
to contract an external company to fabricate them for us, which incurs
nontrivial delays.

18.1 Breadboards

Figure 18.1 shows a small breadboard. Each of the holes can hold the
leg of an electronic component or a male connector at the end of a jumper
cable. Groups of holes (rows of five holes are common) are connected by
a conductive strip of metal in the back of the breadboard, so to connect
two components, we just need to push them into two holes in the same
group. Of course we must not use the remaining holes of that group un-
less we want to connect further components there. We can create circuits
by pushing the legs of components into the right holes, and we can dis-
assemble circuits and re-use the components and breadboard by simply
pulling the components off the breadboard.

Figure 18.2 shows an example of a simple circuit schematics that lights
up an LED and how this can be mapped to a breadboard. The components
in the circuit are a battery, a resistor, and the LED. Note how, for instance,
the resistor and the LED are connected by each having one leg in a hole

133

134 CHAPTER 18. MAKING CIRCUITS

Figure 18.1: A small breadboard (left). The horizontal rows of five adjacent
pinholes are each connected by a conducting rail; so are the two columns
on the left and right of the board, labeled + and –. You should use these
to supply power to your circuit. (right)

that belongs to the same group of five.
Mapping abstract circuit diagrams to a breadboard layout is a graph

mapping problem that requires some thinking and needs to be practiced.
Electronics CAD tools such as Fritzing can help you find errors. Be fo-
cussed and careful when building up the circuit. A mistake is easily made
and takes time to discover, and in the worst case, an incorrect circuit can
damage things, or worse (a short-circuited battery can explode, for in-
stance – see the safety sections).

There are many places on the Web where you can see examples of
such mappings, such as the Arduino example pages1. You’ll find matching
schematics like those in Figure 18.2 there.

18.1.1 The Soldering Practice Kit on a Breadboard
Let us have a look at the components of the soldering practice kit and build
up the circuit on a breadboard.

The central component of the circuit is the 555 timer IC. This is one
of the most famous integrated circuits – a classic. In the configuration
we are using it, the astable configuration2, it creates a precisely timed
rectangular wave circuit. Even though this is an analog IC, what it does
here is create essentially a digital signal – it switches its output between

1See e.g. https://docs.arduino.cc/built-in-examples/basics/Blink.
2https://en.wikipedia.org/wiki/555_timer_IC#Astable

https://docs.arduino.cc/built-in-examples/basics/Blink
https://en.wikipedia.org/wiki/555_timer_IC#Astable

18.1. BREADBOARDS 135

Figure 18.2: Schematics and breadboard view of an LED circuit. The as-
sumption here is that pin 13 of the microcontroller board is permanently
set to HIGH.

Figure 18.3: Schematics of the circuit of the soldering practice kit (top)
and a corresponding breadboard view created using Fritzing (bottom).

136 CHAPTER 18. MAKING CIRCUITS

0 and 1 and back (very) roughly once a second3. It does this without a
crystal but by discharging a capacitor (which functions like a very small
rechargable battery here) using a resistor. The delays between switching
can be set by picking the right resistors and capacitors.

In addition to the components that constitute the core astable 555 cir-
cuit, we have two LEDs (plus their protective resistors) which alternately
light up, and a Piezo buzzer that makes a clicking sound on each switch.

You do not need to understand how this circuit works4 – in fact, its
operation is relatively complex for such a small circuit – but try to prototype
it on the breadboard.

Note that the polarity (the orientation of a component in the circuit,
relative to + and GND) does not matter for resistors or the small ceramic
capacitor (the tiny lentil-shaped component), but it does matter for LEDs
(the long leg is the anode – the leg closer to the positive pole of the power
supply) and for electrolytic capacitors (the two black cylindrical elements;
here the cathode is marked with a white strip of paint on the black cylinder,
also marked “-”; this leg is oriented towards GND of the power supply). The
Piezo buzzer has its + leg marked on the top of the housing. The 555 IC is
in a DIP housing. The “top” end of the IC has a small semi-circular cutout
on the top of its housing. Relative to that, pin 1 is on the top left and the
remaining pins are numbered counterclockwise, so pin 4 is at the bottom
left, pin 5 is on the bottom right, and pin 8 is on the top right. Note how
the pins in the schematics of Figure 18.3 are positioned very differently:
there, pins typically connected to the plus pole of the battery or power
supply are placed at the top of the box representing the IC, pins typically
connected to GND are at the bottom, “inputs” at the left, and “outputs” at
the right.

Electrolytic capacitors have their rating in Farad (or, more typically, µF ,
microFarad) printed on explicitly. The resistance of resistors is coded via
three colored rings (there is a fourth ring in silver or gold color that you can
ignore). Find a legend for the color coding in Figure 18.4. For instance, A
470Ω resistor is marked yellow-violet-brown. Alternatively, if you are color-
blind like me, you can use a multimeter to check a resistance.

One way to build up the circuit on a breadboard is shown in Figure 18.3.
Supply the circuit with 5V. One way to do this is to connect it to the 5V

3If you want to know the exact frequency, you can calculate it here: https://
ohmslawcalculator.com/555-astable-calculator.

4But if you want to, there are excellent youtube videos.

https://ohmslawcalculator.com/555-astable-calculator
https://ohmslawcalculator.com/555-astable-calculator

18.2. SOLDERING 137

Figure 18.4: Resistor color codes. There are also 5- and 6-band versions,
see the Web.

Figure 18.5: A protoboard for making ad-hoc soldered circuits (left) and
the PCB of the soldering practice kit, shown recto (center) and verso (right).

output and GND of the Arduino UNO.

18.2 Soldering
Sometimes, however, you want to build permanent circuits, either on pro-
toboard or printed circuit board. Soldered connections are more reliable
and have fewer contact problems.

Sometimes, you will receive an electronics board for which the only way
to connect other electronics to it is by soldering. Creating a soldered circuit
will also make you feel a sense of achievement; such a finished electronics
product is beautiful. Finally, as an engineer from EPFL you should be able
to solder. It will come in handy one day.

138 CHAPTER 18. MAKING CIRCUITS

Figure 18.6: How to solder.

Try to heat up both parts that you want to solder together and only feed
solder wire once they are hot.

If you solder a wire or leg of a component to a through-hole/pad on a
printed circuit board or protoboard (with a copper surface ring around the
hole), heat the solder until it forms a concave conical surface (best seen in
the second solder joint from the right in the picture below). If it forms a
pearl, the board surface is not hot enough and the solder has not bonded
yet. You have what is called a cold solder joint. Keep heating until the
pearl “pops” and you get the concave cone surface.

Speaking of pearls, I hope you understand that the goal of soldering is
not to make a ball at the end of a piece of wire so that the wire end doesn’t
fall out of the hole. We want to create a solid metal bond between the
wire and the through-hole of close to zero resistance. A wire just pushed
through the through-hole and touching a corner of the copper surface
is not a reliable connection. We don’t want the electrical connection to
possibly be interrupted when we touch the wire. Do this properly or you
will waste a lot of time debugging.

Metals conduct heat very well, and spread it out away from the solder
point. As a consequence,

• it can be hard to solder stuff to large, massive metal pieces.

• some components can be damaged by the heat while soldering. This
includes ICs, batteries, and magnets. (Permanent magnets get de-
stroyed at about 80 degrees Celsius, and motors contain them. Keep
that in mind when soldering wires to your motor. You need to succeed
with your soldering job relatively quickly, before the heat spreads too

18.2. SOLDERING 139

Figure 18.7: Found this on the Web. Regarding the fourth solder point
from the right, not quite sure what I am seeing, but it doesn’t look ok to
me. The second from the right is nice.

much into the motor.) Try to get your solder connection done in 5 sec-
onds or so. If it takes much longer for the solder to melt, something
is probably wrong (the soldering tip is not hot enough).

Solder wire is not pure metal. It also contains chemicals (“rosin flux”)
that are there to help you succeed in making a good electrical connection
(this includes an acid to remove oxidation from metal surfaces).

Try not to inhale the smoke while soldering, and work in a well-ventilated
place.

Ideally, the surface of a finished solder joint should be shiny. If it is
cloudy, there is probably still too much flux there, keep heating. This
should only take a few seconds. The cloudiness does not always go away,
though.

The materials in the solder wire and the flux are chosen to make sol-
dering easy. Particularly the surface tension properties of the solder help
you in your job. The solder has a tendency to appear intelligent, going
exactly where you want it. For that reason, soldering can be very satis-
fying. Sometimes, however, it seems to have a mind of its own, refusing
to do what you want. For example, one way to create a connection be-
tween two pads/through-holes on a protoboard is using solder, but to do
this you need to create a connection across an uncoppered surface. This
can be tricky, with the solder popping back to the coppered places and
accumulating there.

When you solder a wire to a through-hole, make sure to cut the over-
hang of wires. “Angel hair” of stranded copper wire touching all kinds

140 CHAPTER 18. MAKING CIRCUITS

of places can cause terrible situations, from your circuits not working to
short-circuits, fires, and explosions.

Sometimes, the solder does not seem to want to melt, or bond to the
metal items you want to connect – the soldering iron does not seem to get
hot enough. This may have multiple causes. A common cause is that the
tip of the soldering iron is covered by soot – charred flux. Have a wet piece
of paper or sponge to wipe the tip of the soldering iron until it is shiny and
silvery again.

IMPORTANT: Learn to solder well, and to create good electrical connec-
tions. It will save you a ton of time debugging the things you make.

18.2.1 Soldering the Practice Kit

Generally speaking, it is advisable to solder heat-sensitive components
last. This usually applies most to ICs and least to resistors, but here we do
not solder the 555 timer IC onto the PCB at all since the kit comes with an
IC socket. This socket is soldered onto the PCB and the IC is pushed into
its socket as the very final step after all the soldering has been completed.

Observe the polarities as discussed in Section 18.1.1. The IC socket has
a semicircular cutout like the IC. Place the components into their places on
the top side of the PCB. This PCB has drawings of the components painted
on its front side, with enough information to clarify polarities. Push the
legs of the component you want to solder on next through the correct holes
from the top side. Push the component all the way down to the PCB surface
and the legs all the way in. For a component with long legs, bend at least
one leg over by 90 degrees, so the component cannot fall off the PCB when
you turn it around to solder. Solder on the back side of the PCB, where
there is a coppered ring around each hole to which the solder will bond.
Solder two jumper cables with male connectors to the 5V +/- holes on the
PCB. Again, do not solder the IC – solder the socket and push the IC into
the socket without damaging its legs in the very end. Power your circuit
and enjoy the impressive light and sound show.

If the explanations are not clear, search for videos on Youtube or ask a
TA.

18.3. MAKING PCBS 141

18.3 Making PCBs
There are various methods for making “printed” circuit boards, including
some that do not require any expensive equipment, and which you can
follow at home. However, they require chemicals such as iron chloride,
which are caustic and cause hard-to-remove stains. You also mustn’t flush
used iron chloride solution in the toilet, so there is an additional problem
of handling spent iron chloride solution. We don’t use this approach and
don’t make our own PCBs in DLLEL. If you are interested in making PCBs
at home for private purposes, there are many good tutorials on Youtube.

Our method for making PCBs is to design them with CAD software like
Fritzing and then outsource their fabrication. The problem here is ship-
ping – you may be waiting quite long for the fabricated boards to arrive,
and, often, you have to go through multiple prototypes. For this reason,
we haven’t had any PCBs fabricated for this course yet. We have worked
with protoboards, which are a less elegant solution, but cause no forced
waiting times.

18.4 Recommended Videos
https://www.youtube.com/watch?v=3jAw41LRBxU
HackMakeMod
“HOW TO SOLDER! (Beginner’s Guide)”

https://www.youtube.com/watch?v=3jAw41LRBxU

142 CHAPTER 18. MAKING CIRCUITS

Chapter 19

Supplying Power

For safety reasons, we restrict ourselves to using only direct current (DC)
power sources supplying voltages not exceeding 12V in this course. This
is no real restriction given the kinds of projects the course is designed
for, and is sufficient to drive all relevant kinds of electronic components
including microcontrollers, sensors, and actuators. We will use two types
of power sources, mains power supplies (PSUs) and batteries.

The key design choices that you have to make involve (1) choosing power
sources that can supply the currents needed while satisfying your weight,
volume, and mobility constraints, and (2) deciding on how to best solve the
problem of supplying the multiple different voltages that your components
may require.

The following table shows typical voltage and current ranges for vari-
ous electronic components. Note that these are rough bounds that may
be off in your case. You must check the specifications of each component
you consider using before including it in your design. The ranges refer to
families of components: Do not assume that an individual component can
be powered by a voltage in as large a range. Many components, including
compute units (microcontrollers) and motors, draw vastly different cur-
rents depending on whether they are in a high-load scenario or idling.
Steppers apply a current to lock the shaft while not rotating and thus are
constantly under load while powered.

143

144 CHAPTER 19. SUPPLYING POWER

component voltage (V) idle current (A) load current (A)
Microcontroller 5− 10 ≈ 0.05 ≈ 0.5
Small sensor 3.3 or 5 – > 0.02
Small servo (SG90) 5− 6 – ≈ 0.25
Small brushed motor 3− 8 0.1 ≈ 1
Bipolar stepper 12 – ≈ 1.5
Brushless motor 12− 60 < 0.5 30− 100

Remember that you are usually connecting your consumers to your
power supply in parallel. For a rough calculation of your current needs,
add up the currents of your consumers (see Chapter 17).

19.1 Mains Power Supply Units (PSUs)
PSUs are power supplies that connect to 230V AC mains power via a cable,
so their are not suitable for non-stationary things.

Figure 19.1: Three 12V mains power supplies. The kind on the right is an
unenclosed power supply that is forbidden in our course.

We restrict ourselves to fully enclosed PSUs with no more than 12V out-
put. These typically supply currents up to less than 10A, which is typically
not sufficient for brushless motors, but for all other kinds of components
we use. We can use the lab bench power supplies in DLLEL; these supply
up to 3A. Open PSUs such as the one in Figure 19.1 (right) are absolutely
forbidden and will kill you if you touch them at the wrong place. Take the
rightmost PSU in Figure 19.1, for instance. It is connected to the mains
power outlet by a cable whose crimped end is connected to one of its front
connectors by a clamp connection. Touch its connector with a finger and
touch the any other metal surface of the power supply (which are con-
nected to ground for “safety”) or be badly isolated from physical ground,
and 230V AC will flow through your body. You will probably die.

19.2. BATTERIES 145

Figure 19.2: DC power connector and port.

You are absolutely forbidden from opening the enclosure of a PSU. This
is mortally dangerous even if the PSU is disconnected from the wall plug –
the internal capacitors can hold a dangerous charge for a long time! Since
PSUs keep your thing connected to a wall plug by wire, they are for non-
mobile projects such as 3d printers, plotters, robot arms, etc.

There are two kinds of PSUs: Isolating power supplies based on trans-
formers and so-called switching-mode PSUs. The PSUs that we will use are
typically switching mode power supplies, and are non-isolating – they have
common ground with mains power. This includes the PSU of your laptop.
You cannot put switching-mode PSUs in series to obtain higher voltages
as this would short-circuit them. Transformer-based isolated PSUs can be
put in series, but these are relatively uncommon these days.

You will need a DC port (see Figure 19.2 to connect your thing to the
PSU.

19.2 Batteries
We use non-rechargeable (alkaline) batteries, for low-current situations
and (re-chargeable) LIPOs for high-current applications. LIPOs asre cov-
ered in a chapter of their own – Chapter 20.

The batteries we usually use include 9V batteries, AA, and AAA bat-
teries. Each AA or AAA battery offers a voltage of about 1.5V. We have
battery boxes for putting them in series, to produce power sources with
4 ∗ 1.5V = 6V , 6 ∗ 1.5V = 9V , etc.

Non-rechargeable batteries are for small mobile projects that do not
consume large currents – such as small autonomous vehicles – so we do
not create too much battery waste. AA and AAA can be used to supply
about one to two Amperes, which is enough for a couple of small brushed

146 CHAPTER 19. SUPPLYING POWER

Figure 19.3: A voltage divider.

motors.
Drawing too large a current from a battery damages it. As a conse-

quence, batteries appear empty more quickly than your calculations would
suggest.

9V batteries are unsuitable for use with actuators. They are built from
four tiny 1.5V batteries and cannot supply enough current for driving most
actuators, and will die very quickly even for very small actuators. 9V bat-
teries are well-suited for powering microcontrollers and small sensors.

Larger currents can be sustained when batteries are connected in par-
allel, but this is impractical for multiple reasons, including weight and the
problem that batteries are chemically slightly different, causing them to
discharge at different speeds, which causes batteries connected in parallel
to lose charge as they try to keep each other at equal voltage.

If you need a rechargeable solution, we use LIPOs. We do not use
rechargeable AA or AAA batteries. See Chapter 20 for more on LIPOs.
These are for mobile applications that require higher currents than what
alkaline batteries can provide.

19.3 Voltage Conversion

Sometimes we do not have a power supply available at the voltage a compo-
nent needs. In that case, we can use a power supply with a higher voltage

19.3. VOLTAGE CONVERSION 147

and convert it down to the desired voltage.1

One simple way to reduce a voltage is using a voltage divider2. It re-
quires just two resistors of correctly chosen resistance, to be arranged in
your circuit as shown in Figure 19.3. To obtain a desired voltage Vout from
a given voltage Vin, choose resistances Z1 and Z2 such that

Vout =
Z2

Z1 + Z2

∗ Vin

This formula follows from Kirchhoff’s laws and Ohm’s law (see Section 17.2.)
Thus, if we pick Z1 and Z2 to be the same, Vout =

Vin

2
. Note that this gives

you one degree of freedom in choosing your resistances – pick, say, Z1 arbi-
trarily and calculate Z2 from Vin, Vout, and Z1. Of course, a high Z1 severely
limits the current that can be provided to the consumer, and a low Z1

means wasting a lot of power. (See Example 17.2.1 on how to calculate
this; Z1 and Z2 correspond to R1 and R2 there, and R3 corresponds to the
consumer using Vout.)

We do not want to use voltage dividers to drive large currents. However,
one strong point of voltage dividers is that they aren’t just relevant for
supplying power: Vin does not need to remain at the same level but can be
a (DC) signal: We can use the voltage divider to reduce its logic level (see
Chapter 23).

There are also other solutions for voltage conversion such as trans-
formers (heavy, voluminous, and expensive), buck converters, and voltage
regulators. For instance, the buck converter LM2596 shown in Figure 19.4
supports an input voltage of 3.2-40V, an output voltage of 1.25-35V (but
less than input voltage), and the maximum output current is 3A, at a price
of about CHF 3. The output voltage is set with a little potentiometer – the
gold-colored screw on the blue box. Use a multimeter to set the desired
output voltage before connecting the output of the buck converter to con-
sumers.

Voltage regulators are relatively small components (in packages similar
to MOSFETs). The LM7805 is an example of a voltage regulator which
reduces voltages to 5V, see Figure 19.4). Voltage regulators turn the excess
power into heat and are very inefficient. They are not to be used for large-
wattage or battery-driven applications.

1It is possible to convert a voltage up using transformers and boost converters, but
this is usually less practical for us, so we don’t discuss this option further here.

2See also https://en.wikipedia.org/wiki/Voltage_divider.

https://en.wikipedia.org/wiki/Voltage_divider

148 CHAPTER 19. SUPPLYING POWER

Figure 19.4: An LM2596 buck converter (left) and the LM7805 voltage
regulator (right). Not to scale: The voltage regulator is much smaller than
the buck converter.

19.4 Supplying Multiple Voltages

If you need different voltages for different consumers, you can use multiple
power sources, but usually the better solution is to use a single power
source and to use voltage conversion to get the voltages you need.

If you use multiple power sources, you will typically need to connect all
their ground lines (have a common ground), see Figure 19.5. Among other
things, this ensures that the digital signals from the microcontroller are
understood by all components in your system: 0/LOW is “0V”, GROUND.
(See also Chapter 17.)

Also note that some components, including microcontroller boards such
as the Arduino Uno and some motor driver boards like the L298N (see
Chapter 35), have on-board voltage regulators that can output lower volt-
ages than they are provided with to power other components. For example,
an Arduino Uno can be powered by up to 10V via its DC connector or Vin
pin and can output 3.3 and 5V at the respective pins, which can be used
to power certain low-current components. The L298N can be powered by
up to 12V and outputs 5V at a pin, by which a microcontroller can be
powered.

The typical way to power multiple consumers by a single power supply
is in parallel. This will still be a single electronic circuit and consumers
can affect and interfere with each other. Certain components, partic-
ularly those with coils (which includes all motors) and cheap switching

19.5. DESIGNING YOUR POWER SUPPLYING SOLUTION 149

Figure 19.5: Here, a motor is driven using a 9V power supply (and a
L298N motor driver). The microcontroller is driven by a separate power
supply, but the ground lines of the 9V supply and the microcontroller are
connected (see the black lines). Without this, the PWM signals from the
microcontroller setting motor speed would not have a meaningful ground
reference, so without common ground the circuit would not work. By the
way, this 9V battery will not live long. Also, the L298N can output 5V to
power your microcontroller, even though it is not done in this figure.

mode power supplies (which includes buck converters), can produce volt-
age spikes that negatively affect the operation of other consumers. This is
an important pitfall. Particularly stepper motor drivers can work highly
erratically if other components in your thing create voltage spikes. If you
believe that you are dealing with such a scenario, talk to an expert. Some
voltage spikes can be filtered out by placing the right kinds of capacitors
in parallel with your consumers.

19.5 Designing your Power Supplying Solution

Is your thing stationary (use a PSU) or mobile (use batteries)?
What are your consumers? Which voltages and currents do they re-

quire? You have to provision for maximum current, but keep in mind that
sometimes max currents of multiple consumers do not need to be added
because they are not active at the same time. An example of this are two-
coil steppers (like the 17HS4401), which use 1.5A per coil, but no more
than 2A concurrently.

150 CHAPTER 19. SUPPLYING POWER

Actuators have current peaks on acceleration and create voltage spikes
particularly when shut down (back-EMF).

If possible, if you have multiple consumers with different voltage re-
quirements, use buck converters or voltage regulators with a single power
supply, rather than multiple power supplies. This results in a cheaper
and more compact thing. However, you may need to experiment with and
turn your power supplying solution – your buck converters may provide
unclean power with voltage spikes that affect your electronic components.

19.6 Cabling
You power cables need to be thick enough for the currents you are going
to encounter. All wires have internal resistance3, which at once wastes
energy, reduces the voltages we want to supply, and, most critically in the
context of this course, produces heat. An under-dimensioned power cable
can produce a fire and, subsequently, once the insulation is burnt off, a
short-circuit.

To calculate the required cross-section A of a copper cable (in m2, taking
into account just the copper, not the insulating material) needed, we use
the formula

A =
2 ∗ 2.22 ∗ 10−8 ∗ I ∗ L

V
where L is the length of the cable in meters, I is the current in Amperes,
and V is the desired (upper bound on) voltage drop (in volts). Here, 2.22 ∗
10−8Ω/m is the resistivity constant4 for copper wire; for other materials it
is different. The gauge of wire is measured in mm2 in Europe, so you need
to multiply the result of your computation by 106. As for the voltage drop,
bounding it to 3% is usual. Keep in mind that the voltage drop isn’t just a
concern because of less voltage being available to our consumers, but also
because of the heat being generated.

Example 19.6.1 Suppose we need a cable of length 1m for 12V and 60A,
and we want a voltage drop of (no more than) 3%, i.e., 12 ∗ 0.03 = 0.36V .

3They act as resistors, but they also act as capacitors. This becomes a problem when
we care about the quality of our signals – particularly in audio systems – because cables
dampen or filter signals. Furthermore, when we are dealing with large currents we have
to worry about ground loops.

4It’s actually not a constant, and depends on things such as temperature. We assume
room temperature here. If the wire gets really hot, this becomes incorrect.

19.6. CABLING 151

Then the cross-section area of the cable needs to be A = 0.0444∗60∗1/.36 =
7.4mm2.

This cable will produce 0.36V ∗ 60A = 21.6W of heat across its length.
While this is quite a lot on absolute terms, over a meter of length, and
given the considerable girth of the cable, radiating off this heat should not
be a big problem.

A few observations are in order here. First of all, 7.4mm2 is a lot, and
cables that thick are incommon, expensive, and unwieldy (you may have
problems fitting it into your thing and bending it as needed – the cable may
rather want to break your thing than bend). You may also have problems
soldering the cable to connectors or a board because these components
may not be meant for cables as thick as this. (Even though they can handle
the current!)

If our voltage and current are givens, the quantities we can possible
adapt are cable length and acceptable voltage drop. Increasing the voltage
drop increases heat generated, up to poentially unsafe levels. As you can
see in the formula, decreasing the length of the cable by half does the
same to the required cable cross-section. Keeping your power cables as
short as possible is highly recommended (as long as it does not lead to
unsafe choices elsewhere in your design). 5

If power losses are a minor concern for you, but you worry about your
cables overheating, and you want to minimize their cross-sections, also
consider whether your calculated peak currents will be sustained for ex-
tended periods of time. If your current draw is much lower on average, and
there is sufficient time between short peaks for the cables to cool down,
using a smaller cable gauge is reasonable.

Finally, within reason, you may under-dimension your cables for the
sake of an experiment if the right cable gauge is not readily available. But
in this case you need to remain present at all times while your experiment
is receiving power, and you need to take safety precautions, such as en-

5This is also why very high voltages (380000V and 220000V in Switzerland, see https:
//www.swissgrid.ch/en/home/operation/power-grid/swiss-power-grid.html) are used
in long-distance power transmission systems, and voltages are specifically transformed
up at the power plants and down closer to the consumers. This minimizes both cable cost
and weight, which are significant concerns once thousands of kilometers of cable need
to be suspended from masts. The thicknesses of the cables is primarily governed by the
desire to minimize power losses (voltage drops) and achieve the required tensile strengths
of the cables to space out masts generously; voltage and current only figure indirectly.

https://www.swissgrid.ch/en/home/operation/power-grid/swiss-power-grid.html
https://www.swissgrid.ch/en/home/operation/power-grid/swiss-power-grid.html

152 CHAPTER 19. SUPPLYING POWER

suring that a burn-off of insulation does not cause a short-circuit (keep
cables apart). In particular, jumper wires are intended for signals, not for
supplying large currents. Using them to supply up to about 2A (small mo-
tors and steppers) for the sake of a brief experiment is ok if you respect
the rules just mentioned. If you encounter a smell or smoke, turn off your
thing immediately.

The cable cross-sections we have most readily available, in addition to
jumper cables, are 0.7mm2, 1.5mm2, and 2.5mm2. We expect that you en-
counter currents in excess of 5A only when working with brushless motors
or large numbers of steppers.

You do not need to include cables of any gauge in your bill of materials;
however, if the cables you need are too thick to be practical, we will ask
you to redesign your thing to work with more reasonable cable gauges.

19.7 Connectors (Plugs)

Now that you have determined the correct gauges for your power cables,
we have to look at making connections.

Keep in mind that any connector is a potential source of failure and,
particularly if it hasn’t been soldered really well to its cable, adds to the
voltage drop. A well-done solder connection is a better electric connection
that one achieved by connectors. On the other hand, we need to be able to
separate your thing from its power source (without cutting wires), so some
connectors are unavoidable.

If you receive a component (such as a PSU, a battery, or a motor) that
comes with cables with connectors, do not remove/replace the connec-
tors unless granted explicit permission by the course staff. Under no
condition may you remove, replace, or alter any connectors coming
with a LIPO battery. Any statement to the countrary, even by staff, is
invalid!

As for which types of connectors to choose, alas, threre are many, and
different connectors are intended for different voltages and currents. By
default, we use XT plugs (of which there are three kinds – XT30/60/90 –
for different currents) for power supplies.

Female connectors always come with the power supplying side of a cir-
cuit, and male connectors with the consumer side!

As a rule, you need to buy/add to your bill of materials the connectors

19.8. RECOMMENDED VIDEOS 153

(plugs) you will need, as these might be quite specific to the other compo-
nents that you are ordering, and there are just too many different types to
keep them all in stock.

19.8 Recommended Videos
https://www.youtube.com/watch?v=IT19dg73nKU
DroneBot Workshop
“Power For Your Electronics Projects - Voltage Regulators and
Converters”

https://www.youtube.com/watch?v=IT19dg73nKU

154 CHAPTER 19. SUPPLYING POWER

Chapter 20

Lithium-Polymer (LIPO) Batteries

20.1 LIPOs are Dangerous

LIPO batteries are rechargeable and can supply extremely large currents
(more than 100A for some LIPOs).1 But they are by far the most dan-
gerous kind of component you may encounter in this course, in practice.
Unfortunately, for some applications (particularly those involving power-
ful motors), they are unavoidable and thus permitted in the course. If you
want to use them, you will have to read, understand, and respect all our
instructions (starting with those in Chapter 9 on safety). LIPOs have very
high power density – they are small and light considering the charge they
can hold and the power they can supply. This is at once their greatest
feature and their biggest downside.

If you discharge LIPOs too far or overcharge them, you damage or de-
stroy them. If you create a short-circuit, they will likely explode2 in a
large fireball spewing toxic chemicals and potentially causing you seri-
ous burns. There are plenty of videos on Youtube demonstrating this – we
link to one in the end of Chapter 9. The smoke/steam released by a LIPO
in an accident contains Lithium, which is toxic.3

To put things into context, a standard measure for destructive energy

1You can supply even more by putting multiple LIPOs in parallel. Never do this without
expert advice and supervision. If these LIPOs are even slightly differently charged, they
will try to spontaneously equalize their voltages, creating a short-circuit situation.

2This is not an explosion – a detonation – in the technical sense that a shock wave is
travelling faster than the speed of sound; still it is very dangerous.

3https://en.wikipedia.org/wiki/Lithium_toxicity

155

https://en.wikipedia.org/wiki/Lithium_toxicity

156 CHAPTER 20. LITHIUM-POLYMER (LIPO) BATTERIES

is tons TNT-equivalent. For example, the explosive energy released by nu-
clear weapons is commonly indicated in kilotons or megatons TNT-equivalent.
TNT is a high explosive mainly used in military applications. One gram of
TNT releases 4184 Joules of energy on explosion. The rightmost LIPO in
Figure 20.1 is rated as 5.5Ah or rougly 3600s ∗ 5.5Ah ∗ 11.1V = 219780J, or
53 grams TNT-equivalent. At a mass of 389g, the energy density of the
LIPO with all its inert packaging contributing to weight is more than one-
eighth of that of TNT. For another comparison, the muzzle energy of a .357
Magnum bullet is 790J, about one-300th of the energy rating of the LIPO.4

These calculations assume using the 5.5Ah available in a discharge to
about 10V. A short-circuit can discharge the LIPO very quickly well below
that, releasing even more energy. Even an “empty” LIPO at below 3.3V
and an over-discharged and thus destroyed LIPO at below 3V per cell is
dangerous when short-circuited.

Your mobile phone and your laptop contain LIPOs. Do not conclude
from the fact that you are comfortable with these devices that we are being
over-cautious. These devices have been expertly designed by professional
electrical engineers. The same cannot typically be said for your thing. LI-
POs are no joking matter for us. No students have been physically harmed
by LIPOs in this course yet, and it must remain so.

20.2 LIPO Ratings
The basic unit a LIPO battery is built from is the LIPO cell. A LIPO cell sup-
plies a nominal 3.7V; 4.2V when fully charged. You should not discharge
it below 3.3V; below that it will take damage and will generally be unable
to take a charge again. Thus, LIPO batteries need to be protected from
a complete discharge. LIPO batteries are built from multiple LIPO cells
connected in series to achieve the voltage necessary for your application.

Each LIPO battery has at least three important indications:

• an xS rating (such as 2S or 3S) which indicates the number of cells
it is constructed from and thus its nominal voltage,

• a maximum charge rating in mAh (milliAmpere-hours), indicating the
work it can do, and

4See https://en.wikipedia.org/wiki/.357_Magnum.

https://en.wikipedia.org/wiki/.357_Magnum

20.3. RECHARGING A LIPO 157

• a yC rating (such as 25C or 40C) that indicates the maximum current
it can safely supply. Using the LIPO in a high-current scenario may
require take steps to ensure heat dissipation/cooling.

The number of cells in series is indicated on the battery by an xS indi-
cation, meaning x cells in series. For example, a 2S LIPO offers 2 ∗ 3.7V =
7.4V nominally and 2 ∗ 4.2V = 8.4V when fully charged. A 3S LIPO offers
3 ∗ 3.7V = 11.1V nominally and 3 ∗ 4.2V = 12.6V when fully charged. Li-
Pos need balancing chargers that can charge each cell individually. For
this reason, multi-cell LIPOs have, in addition to the main two-wire power
plug (+ and GND) another xh2.54 plug with x + 1 wires for an xS battery.
(This gets plugged into the charger and remains unconnected when using
– discharging – the battery.)

A LIPO with a yC rating and a z mAh rating can safely supply y ∗ z/1000
A. So a 5000mAh 25C LiPo can supply 125A. The maximum discharg-
ing current (for short current spikes) is indicated on the batteries and is,
usually, two times the continuous current computable from the C-rating.

If you want to combine multiple LIPO battery packs, either in series or
parallel, you must first get expert help before you put anything into even
experimental operation. Doing this can cause serious damage if you con-
nect them in parallel and their voltages/charging statuses are different.
Even slightly different voltages can cause substantial current flows!

While the plugs of the balancing wires are standardized (xh2.54), the
power plugs of the batteries are not standardized. Make sure you have
matching plugs on your charger and for your thing! Our favorite connec-
tors for this are XT60 and XT90.

Do not get fooled by pictures, LIPO batteries differ vastly in size and
weight – make sure you take the right dimensions for your 3D design!

20.3 Recharging a LIPO
If you need a LIPO, you also need a fitting charger. LIPOs need to be
recharged as soon as their voltage drops below about 3.3V, not when they
are completely empty. Otherwise, the LIPO will be impossible to re-charge.
LIPOs must not the charged beyond 4.2V, otherwise they are damaged,
too. A LIPO charging station ensures that no overcharge happens.

In multi-cell LIPOs, the cells are connected in series. It is not safe to
recharge them by just connecting them to a power source with the right

158 CHAPTER 20. LITHIUM-POLYMER (LIPO) BATTERIES

voltage 2S 7.4V 3S 11.1V 3S 11.1V
charge 1000 mAh 1000 mAh 5500mAh
current 25C (25A) 25C (25A) 20C (110A)
weight 71g 104g 389g
dimensions 71x31x16mm 75x31x22mm 143x44x35mm
connector BEC BEC XT90
price CHF 11 CHF 17 CHF 52

Figure 20.1: Three LIPOs (all Conrad Energy Softcase).

voltage via their (usually red) + and (usually black) -/GND cables (their
“thick” cables); one must ensure that all the cells are charged to equal
voltages, otherwise the LIPOs get damaged over time. The cells of a LIPO
are all chemically slightly different, so this does not happen automatically
– cell voltages need to remain balanced while charging. For that reason,
multi-cell LIPOs have additional thin balancing cables: usually, k+1 for a
k-cell LIPO connected to a common white JST-xh2.54 plug. You can see
these in the three pictures in Figure 20.1. By the way, the two main power
cables (red and black, usually thicker cables) are usually also leading to
a plug. There are many different standards. We try, for larger LIPOs, to
stick with XT60/90 plugs – these are yellow (see the rightmost picture in
Figure 20.1).

When we provide you with LIPOs, we also provide you with LIPO pro-
tection circuits (aka battery management systems (BMS)), which usually
handle all of the following, but make sure to read their datasheets and
verify that they indeed do all of this:

• Overcharge protection and balanced charging.

• Overdischarge protection.

• Discharge current limiting, and thus a short-circuit protection. (But
even if they do have this, you must not rely on it and take measures

20.4. LIPO PROTECTION CIRCUIT SETUP 159

Figure 20.2: A LIPO protection board for 3S LIPOs and the wiring diagram.

to avoid short-circuits).

You will have to solder cables and plugs to your LIPO protection circuit.

20.4 LIPO Protection Circuit Setup

Figure 20.2 shows one of the LIPO protection boards we have in stock. The
board is for 3S LIPOs and maximum currents of 60A. For sustained high
currents, you should mount the board to a heat sink such as a plate of
aluminium cut in the machine shop and touching the MOSFETs on the
board, ideally using thermally conductive grease or glue to leave no air
gaps between the top-sides of the MOSFETs and the metal plate.

While the circuit diagram shows a matrix of three cells in series with
two cells in parallel (the battery symbol represents a since LIPO cell), we
will use this board with a single 3S LIPO. This LIPO has two thick power
cables and a four-wire xh2.54 plug. These four wires are connected to
the 0, 4.2, 8.4, and 12.6V levels of the LIPO, respectively; the thick wires
are connected to 0 and 12.6V, respectively. As you can see in the circuit
diagram, if we think of the three cells of the LIPO connected in series from
ground-most first cell (labeled group 1 in the diagram) to the 12.6V-side
third cell (labeled group 3 in the diagram), the 4.2V line connects to the
+ pole of the first and the - pole of the second cell, while the 8.4V line
connects to the + pole of the second and thus the - pole of the third cell.
You need to solder wires and plugs to the board:

160 CHAPTER 20. LITHIUM-POLYMER (LIPO) BATTERIES

Figure 20.3: XT60 plugs, female on the left and male on the right.

• The 0V and 12.6V contacts of the board (shown in the bottom-left and
top-right corners of the board in the wiring diagram) need to connect
to the black and red cables of the LIPO, respectively. Solder a male
XT60 or XT90 plug via suitably thick cables to the contacts on the
board. The plug needs to fit the (female) plug on the LIPO. Remember
the convention: The power source side of a connection always has
a female plug and the consumer side always has a male plug.
This is a safety feature – the contacts of a female plug are harder to
unintentionally short-circuit.

• The 4.2V and 8.4V contacts of the board (shown top-left and bottom-
right in the wiring diagram) need to connect to the 4.2V and 8.4V
pins of the xh2.54 plug of the LIPO, respectively. Check which is
which using a multimeter, relative to GND – the black cable. Solder
an appropriate xh2.54 plug via suitable cables to these board con-
tacts. The currents flowing through these cables aren’t large, though
jumper cables are just a little too thin.

• The + and - charging contacts of the board (shown left in the wiring
diagram) need to connect to the mains power supply. The charging
voltage has to be between 12.6 and 13V. The right connector to be
soldered via suitably thick cables to the board contacts depends on
the power supply.

• Solder, via thick cables, the female version of the same kind of (XT60
or XT90) connector that you have on your LIPO to the load + and -
contacts of the board (shown right in the circuit diagram). Your thing
will connect to this plug via a matching male plug.

If you have received a different LIPO protection board (usually because
your LIPO isn’t 3S), search aliexpress.com for “LIPO protection board” and

20.5. RULES FOR USING LIPOS 161

compare images until you find your board. There will be circuit diagrams
and instructions. The board will be similar to the one shown here with a
different number of contacts but analogous wiring. In case of doubt, talk
to us.

Getting the wiring wrong will have catastrophic consequences. You
must show your board with soldered cables to Sylvain Hauser, Simon Lü-
tolf, or Christoph and get their feedback before you may connect the LIPO
to the board for the first time. Go-aheads are not to be sought from student
assistants and are invalid if given!

The main electronic components visible on the LIPO protection board
are MOSFETs. These are particularly sensitive to electrostatic discharges
from your body, so please take extra care not to touch them or any metal
contacts on the board!

20.5 Rules for using LIPOs
Here are rules that you must adhere to when using LIPOs (do not just read
this, read the entire chapter):

• Connect your LIPO to its protection board and only charge and dis-
charge (=use) it through the board. See instructions in the previous
section.

• Make extra sure that there are no short-circuits involving a circuit
with a LIPO in it.

• Design your thing in a way that your LIPO is easily accessible from
the outside of the thing. Do not fully enclose it to allow heat to radiate
away and to avoid a true explosion due to the rapid build-up of hot
gas in an enclosed space in case something goes wrong. If you are
drawing high currents by design, you may need to take steps in your
design to keep the LIPO cool. Discuss this with the teaching staff.

• Never try out whether our warnings are justified. Never intention-
ally create a short-circuit “for a moment”. You may mean to create
a contact for a moment, but because of the intense current flow and
the fact that the greatest heat generation will be happening where
you make contact (because resistance is still highest there), the two
metal surfaces you made touch will probably be welded together and

162 CHAPTER 20. LITHIUM-POLYMER (LIPO) BATTERIES

you will not be able to separate them. We are talking of true welding
here. The heat melts even steel and no solder (tin) is required.

• Do not design your thing with a switch between LIPO and LIPO protec-
tion circuit. Switches there do not survive for long (for reasons related
to the previous bullet point and power spikes that can arise due to
the switching action – switching large currents can produce too much
heat in the switch). You should switch big consumers – mainly motor
drivers – off via their input signal lines from the microcontroller.

• At the end of a work session, disconnect the LIPO from your thing
by unplugging it while big consumers do not draw current. Depend-
ing on your design, even if your thing is “off”, there may be a small
leakage current from the LIPO through your thing, eventually over-
discharging the LIPO if it remains connected to the thing for extended
time periods.

• Have a team member be close to your thing and monitor it at all times
while the LIPO is connected.

• Never unplug a LIPO by pulling on cables. Always hold the plas-
tic plugs – the male and female half of the connector and pull them
apart. This can be uncomfortable and even hurt your fingers a little
since quite a bit of force may be necessary to unplug the LIPO, while
the plastic plugs are quite small with sharp-ish edges. But this is
unfortunately unavoidable. If you rip the plug off the cable, the like-
lihood of cable ends touching and a short-circuit happening is very
high.
Generally speaking, independently of whether your thing involves LI-
POs, pulling on cables is to be avoided since it may break cables in-
ternally, leading to hard-to-debug issues, wasting your time.

• Do not use a LIPO that has expanded in volume. It must be replaced.
Slight volume expansion over extended time periods is somewhat nor-
mal. If you can see the LIPO expanding, that is never safe. In case of
doubt, talk to an expert.

• Never bend, cut, or stab a LIPO.5 If the skin of the LIPO is damaged,
notify us and do not use it. Piercing a LIPO usually leads to an im-

5This is another reason why we do not allow drones in the course.

20.6. WHAT TO DO IN CASE OF AN ACCIDENT 163

mediate and intense release of toxic steam. Never work with power
tools such as drills close to a LIPO.

You will receive no sympathy from the DLLEL or course staff if we find
you to not respect and follow these rules. This is just too serious. You are
putting yourself and your colleagues at risk of serious harm, and you may
make it impossible for us to offer this course in this form – where students
can build mobile things – in the future. If we see you violate these rules,
we will take away your LIPOs, even if this means that you cannot continue
the project as planned.

If you are using LIPOs in your project, this chapter is not for reference
but required reading in its entirety. You must know its contents and these
rules, and we will quiz you – that is, every team member – on them before
we give you any LIPOs.

Finally, a non-rule: You may read that, for long-term storage, LIPOs
should be half-charged to maximize their lifetime. This is something you
do not need to worry about for the duration of the course.

20.6 What to do in Case of an Accident
If a LIPO accident is in the process of happening,

1. see if you can safely unplug the LIPO. Never attempt this if it puts you
in harm’s way. If the LIPO pops open and smoke or steam comes out,
remember that it is toxic.

2. if unplugging the LIPO is not a safe option, see if you can use a pliers
to cut one of the two power cables (red or black). Do not attempt this
if it puts you in harm’s way. Never cut both power cables! This would
almost be guaranteed to create a short-circuit there. Preferably cut
the cable away from the LIPO and closer to the plug.

3. Otherwise, step away to a safe distance and alarm others nearby.
Then contact the DLLEL staff and, if none are within reach, call the
campus safety officers/firefighters (115).

In an overcurrent/short-circuit situation, the first thing that usually
happens is that the volume of the LIPO expands. Its outer skin is a soft
plastic bag-style material that can easily deform and is meant to contain

164 CHAPTER 20. LITHIUM-POLYMER (LIPO) BATTERIES

the chemicals making up the battery for as long as possible. If you see
your LIPO expanding, take emergency action. You may have a few seconds
to intervene or get to safety before it pops open and/or fire breaks out.

Chapter 21

Cable Management

Figure 21.1: Electric cabling above a street elsewhere where they don’t read
this manual. The cabling in your project will likely look similar unless you
consciously do something about it.

165

166 CHAPTER 21. CABLE MANAGEMENT

This chapter is not about choosing the right cable gauges or connectors:
for that, see Section 19.6.

There is great temptation to focus all your efforts on the exciting parts
of your project – the microcontrollers, sensors, actuators; the mechanical
structure – and to do your cabling in a chaotic, ad-hoc fashion. So, many
projects tend to have a mess of cables and electronics boards hanging off
of them.1

This is a grave mistake. If you do not put sufficient thinking into your
wiring solution, you will pay for it very dearly. It will probably be the great-
est source of error and frustration, and the greatest time-waster in your
project.

The two main things we have to address are

• Keeping order. By keeping the cables out of the way, you make your
thing look pleasing, easy to work with, extend, and maintain.
It also helps avoiding wrong connections (confusing cables). Wrong
connections will make your thing not work at best and cause death
and destruction in the worst case.

• Avoiding bad/broken connections/cabling.

You do this not just to please us and get a good grade. Proper cable
management throughout the duration of the project will save you much
time debugging. So it is important to do cable management from the start
of your project, not just to beautify your final product.

21.1 Keeping Order
You can achieve order in three ways, all of which you should pursue where
applicable.

• Use consistent color-coding. Some colors are conventionally used for
certain roles, such as black cables for ground lines and red cables for
the + power supply lines. Unfortunately, we will generally not have

1Do not allow electronic components to be attached to your thing solely by cables.
That’s really bad practice and we will penalize this in your grade in the individual project
as well as the team project. Screw-mount your components solidly to your thing.

21.1. KEEPING ORDER 167

enough red and black cables for everyone – jumper cables come in
packs of ten colors with equal numbers of cables in each color.

The least thing you can try to do is consistently substitute certain
colors with certain others (e.g., black with blue), have agreed-upon
conventions in your team, and avoid choices that invite errors, such
are switching the role of red and black cables. Remember, you are
not alone in your team, and your colleagues may assume you have
observed conventions without checking the next time they work on
your thing in your absence. Confusing cables can lead to severe ac-
cidents and damage!

• Have an organized plan for where to route cables through your thing.
This starts with considering cabling when you do your 3D design of
the items to be 3D-printed or laser-cut.

Try to have cables of the right length, not too short as to potentially
damage them, and not to long at to be in the way. When you make
your own cables, make them in the right length, or else use cable
binders and tape to get excess length out of the way.

As a caveat, there are some cables we do not want you to cut, such as
the cables attached to LIPO batteries, brushless motor drivers, and
servos. The reason for this are threefold:

– You may cut them at the wrong length (too short). Once they are
cut, there is no way back. You may still end up changing your
design, requiring longer cables. Soldering extension cables on is
a sub-optimal solution.

– Such cables often come with standardized connectors mounted
well, and your own connection solution may be inferior, causing
connection problems.

– After the end of the semester, we may want to re-use the com-
ponents of your project. (Speaking for the team project,) these
components are not all yours.

In general, if an electronic component such as a servo that we pro-
vide you with has a cable attached that you want to cut or modify,
make sure to get our permission first, which will only be granted in
exceptional circumstances!

168 CHAPTER 21. CABLE MANAGEMENT

• Make your own circuit boards (using protoboards or even custom
printed circuit boards) to route connections in the plane of the board
rather than to have the cables float in the third dimension. This can
also solve the problem of connectors being unreliable and cable con-
nections detaching.
In some cases, there are integated components that reduce the amount
of cabling you’d have in your home-grown solution – an example is the
Arduino CNC Shields to drive up to four stepper motors, operate limit
switches, etc.

21.2 Avoiding Broken Cables
Bad cable connections (that conduct badly or intermittently) and broken
cables are extremely hard to debug. Cables often break internally (the
metal wires but not the plastic sheathing), in ways invisible to the eye. It
can occur anywhere along the length of the cable. A broken cable often is
not consistently dead but may conduct at times (when the ends of the wires
at the point of break touch) and become non-conductive by just touching
or slightly bending the cable.

To increase the lifetime of cables, avoid friction and pinching. Kinking
a cable always damages it. In a thing with moving parts, make sure to
optimize your design to minimize the risk of actively damaging your cables.
For moving things, don’t let your cables touch the ground. For things with
joints (such as robot arms and biologically-inspired robots), make sure
not to pinch cables and ensure that the cables do not get pulled on in any
articulation of your thing.

Generally speaking, your cables age every time you bend them, and
some bending is unavoidable in many projects. Try to minimize the fre-
quency and speed of bending. Cable sleeves (see the Prusa printers, or
search the Web for images) can increase the lifetime of cables by distribut-
ing the bending over a greater length of cable and so making the bending
less extreme locally.

Chapter 22

Debugging Electronic Circuits

In some ways, debugging circuits is not fundamentally different from de-
bugging software. The same kind of analytical thinking is required to iso-
late possible causes and track down a problem. As a computer scientist,
you are well trained in this. Don’t forget about what you already know
about debugging software when trying to debug circuits! Sit down and
think, and then go about debugging methodically. Don’t do random stuff.

This chapter is not about original electronics designs. From time to
time, an electronics expert takes the course and we allow them to go
beyond the usual, but for most of us, electronics work means following
recipes and gluing several recipes together into a single circuit by con-
necting multiple consumers to a power source in parallel and using a sin-
gle microcontroller to control everything else by connecting the microcon-
troller to the signal lines of various other components. This chapter is
about debugging problems arising when you do this more humble kind of
electronics work.

22.1 Be Organized

Clean up your workbench before doing electronics work. Don’t have con-
ductive items such as screws lie around where they may touch the elec-
tronics you are debugging. You just need to be a bit unlucky and you are
dealing with short-circuit with all its nasty consequences.

You may be working as a team, and you may feel that you are time-
pressed, and that is why you don’t want to maintain an orderly workspace,

169

170 CHAPTER 22. DEBUGGING ELECTRONIC CIRCUITS

but working on a pile of miscellaneous electronic components, cables, 3D-
printed parts, clothes, laptops, and paper notes is a recipe for mistakes
and even accidents.

Sometimes you need to do experiments. It may, for example, involve
trying out different sets of electronic components. Say you want to test
the theory that (at least) one1 of your electronic components is faulty, and
you have replacements to try for each of them. There are lots of combi-
nations, and they are easy to confuse. If you are badly organized, you are
likely to waste your time re-trying the same combinations and will miss the
combination you are looking for and which provides your answer. In the
experimental sciences, proper labeling and bookkeeping in lab notebooks
is mandatory. It is recommended for you to do the same.

22.2 Debugging Checklist
If something isn’t working the way it should, the reason is probably one of
the following.

• It shouldn’t work in the first place. The behavior you expect isn’t what
you should expect. Maybe you have misunderstood the function of an
electronic component or a circuit recipe that you are implementing?

• Software bugs (if a microcontroller is involved in your circuit). Check
your code. Use serial output to send messages to your laptop telling
you what your code is currently doing. (See Chapter 27.)

• Hardware/software interface bugs: Are you sending signals to the
right pins? Are you reading from the right pins? Might you be con-
fusing MCU IC pin numbers and microcontroller board pin numbers?
Do you have the right pinout diagram in front of you, for the right mi-
crocontroller board? Maybe the board/IC in front of you is oriented
differently from the diagram?

• Misinterpretation of the blueprint. Are you reading your circuit schemat-
ics correctly? A couple of pitfalls:

– Where lines are crossing in the schematics drawing, this could
either be a place where lines are to be connected or they might be

1Probably exactly one – Occam’s Razor.

22.2. DEBUGGING CHECKLIST 171

intended to cross without connection (a “bridge”). Usually, con-
nections are a indicated by a black dot at the crossing point, but
not everyone adheres to this convention. Make sure you are inter-
preting line crossings in your circuit diagram correctly. Try to un-
derstand the circuit’s function. If that’s too hard, you may need
to look for similar diagrams or ask for someone expert enough to
understand the function of the circuit for advice.

– Remember that connections to ICs in schematics by convention
are usually roughly reflecting signal flow from left to right and
current flow from top to bottom. IC pin numbers will be indicated
in the schematics but will not be arranged clockwise from top left
in the schematics as they are on the actual IC (see Chapters 17
and 18).

• Wiring mistakes. Check your schematics and eyeball your implemen-
tation very carefully. Particularly circuits on breadboards are treach-
erous. It is sometimes very hard to see which hole you put a pin
in. Use magnification (a loupe) if necessary. For circuits on bread-
boards, if the circuit is complicated enough, it is often faster to just
pull everything off the breadboard and start the circuit anew, rather
than to try to find the bug. Overly long wires make debugging extra
hard, and not following wiring (color) conventions invites bugs. (See
Chapter 21.)

• Orienting a component incorrectly. This mistake is particularly easily
made for directional components with two legs, such as diodes and
(certain) capacitors. Did you put them into your circuit the wrong
way around? (Putting electrolytic capacitors into a circuit the wrong
way round and powering it up may result in the capacitor being dam-
aged. Diodes put into a circuit the wrong way round usually does not
damage them when powered up.)

• Using the wrong component. Did you mix up some resistors (the
resistances matter), or use a capacitor with the wrong capacitance
(Farad rating)? Did you pick the wrong kind of transistor? (You can’t
use NPN and PNP transistors interchangeably, for instance.) Is your
motor driver well matched to your motor?

• Broken cables. The copper strands inside your wire have limited elas-

172 CHAPTER 22. DEBUGGING ELECTRONIC CIRCUITS

ticity and tensile strength, and they usually break2 before the plastic
insulation material covering them breaks, so you won’t recognize that
a wire is broken by looking at it. (But you can check by taking the
wire out of the circuit and measuring its end-to-end resistance with
a multimeter. Broken cables are a big time sink, so it is best not to
break them in the first place. See Chapter 21 on cable management.

• Bad solder connections. See Chapter 18 on soldering.

• Loose contacts. Sometimes a plug makes intermittent connection,
leading to erratic behaviour of your circuit. Is a connector damaged
or does it feel loose? (That is, do you feel very little friction as you
connect and disconnect?) Are the metal surfaces in the connectors
that are intended to make the electrical connection corroded, covered
by isolating material (such as paint), or bent out of place?
I have seen students make long chains of cable connections from the
cables they have so they save walking a few steps to get a cable with
the right connectors and of sufficient length. Every connection is a
possible reason for failure, so minimize them.

• Broken components (such as microcontrollers). It happens. Some-
times they come out of the factory not working, and sometimes you
make a mistake and fry them. Stepper motor drivers are infamously
easy to kill. Eliminate more basic bug theories and then try out a
new component as replacement.
Be aware that a component being faulty does not necessary mean that
it is “dead” and does not work at all, but it may work intermittently,
might show strange behavior, or just some of its features don’t work.
For a microcontroller, note that you can destroy a single pin (e.g. by
running too large a current through it), with the rest of the microcon-
troller working normally. This is a scenario that is particularly hard
to debug because you usually do not suspect this has happened until
all other options have been exhausted.
The Arduino Uno is meant for inexperienced people and has special
provisions to protect itself, and its pins are not easily destroyed. But
it can happen! Again, such problems may be hard to debug. So it

2This happens through metal fatigue; frequent bending, repeated over time, is suffi-
cient for wires to break.

22.3. MEASUREMENT USING MULTIMETERS 173

is extra important that you do everything to avoid damaging your
components in the first place. Protect them from electrostatic shock,
and be careful not to wire them up incorrectly (such as by creating a
short circuit, or by confusing VCC and Ground). Prevention here is
much better than debugging!

Be aware that broken motor drivers can be outright evil. They may not
be “dead” but act outside of specification; for example, they may pass
through back-EMF, damaging other electronics. (Use a USB isolator
to protect your laptop in case you use any motor bigger than tiny.3)

• Nasty interference of components or circuit recipes. Sometimes glu-
ing together two recipes just isn’t possible. Knowing this in advance is
probably beyond your means, but we hint at known scenarios (such
as buck converters producing voltage spikes that stepper drivers can’t
handle) in the technical chapters of this manual. If you have ex-
hausted the above bug theories and can’t find a relevant remark about
interferences in the manual, talk to an expert.

22.3 Measurement using Multimeters
If a microcontroller is involved, and you trust your programming, some
debugging can be done by reading out pins and events and printing them to
the serial monitor. As a computer scientist, you are probably comfortable
doing this, so please do it where applicable.

An alternative is to measure quantities such as voltages, resistances,
and currents using multimeters, and waveforms using oscilloscopes.

Remember, for resistance measurements, your circuit must not be un-
der power. For voltage measurements, informally speaking, you put your
multimeter in parallel to the circuit, and for current measurements, you
put it in series with your circuit. You cannot measure both voltages and
currents in a circuit at the same time using two multimeters: the mea-
surements interfere.

Here are the typical ways of using a multimeter:

• Measuring the resistance of a resistor. If you don’t like to read the
color marking or are color blind, you can use a multimeter. Remember

3Small servos like the SG90 and 28BYJ-48 should be save.

174 CHAPTER 22. DEBUGGING ELECTRONIC CIRCUITS

Kirchhoff’s laws. If you want to measure the rating of a resistor, take it
out of the circuit, otherwise you measure resistance across all paths
in the circuit. Also be aware that the multimeter applies a small
current when measuring resistance.

• Look for a short-circuit by measuring resistance. Remove the power
source – important: we assume there is only one – from the circuit
and replace it by the two probes of the multimeter, and measure resis-
tance. If there is a short-circuit, you will measure a resistance close
to zero. The directionality of the probes matters: The + (red) probe of
the multimeter connects to where the + pole of your power source was
connected, and the - (black) probe connects to the connection point
of -/GND of the power source before it was removed. Don’t get this
directionality wrong, or otherwise, in the presence of certain compo-
nents such as diodes, the measurement would indicate that you are
safe even when there is a short-circuit. Be careful, this is not an ex-
haustive method for eliminating short circuits, particularly if you do
not understand what you are doing! Also, make sure you know what
your multimeter’s reaction to a short circuit and to no connection (in-
finite resistance) is. In both cases, there may be no numerical Ohm
reading on your multimeter’s display.

• Measuring voltages. You do this while the circuit is receiving power,
by touching to points in your circuit with the probes of your multime-
ter. Make sure you touch metal. This measures the voltage between
two points in the circuit. Mind the directionality of the voltage (indi-
cated by the sign to the number displayed). Remember that you will
not get a useful reading on signal lines that switch rapidly. (For this
you need an oscilloscope.) Also, if you want to check the charge of
a battery with a multimeter, you either need one that has a special
battery testing mode, or you need a load attached to the battery. Oth-
erwise, the voltage reading from your multimeter will be unreliable.

• To measure current, the current will have to flow through the multi-
meter. There are usually multiple current ranges to choose from, and
if you don’t know what you are doing, you will damage the multimeter
(at least burn its fuses). Other than to satisfy our curiosity, we have
no real need to measure current in this course. So I suggest not to
do it.

22.4. OSCILLOSCOPES 175

22.4 Oscilloscopes
Using oscilloscopes effectively requires a good deal of electronics knowl-
edge. Moreover, they are powerful tools with many functions, and one
does not get around reading the oscilloscope’s manual. Finally, you can
do a lot of damage by incorrectly using an oscilloscope.

There is a short-circuiting trap!4 If you have a USB connection from
your microcontroller to your computer and the computer is connected to
its (switching-mode) power supply (i.e., not running off battery), you may
destroy your computer or at least its USB port in addition to the oscillo-
scope if you do measurements in your circuit with the oscilloscope.

Just imagine your laptop’s power supply is plugged into a mains outlet,
you have an Arduino connected to your laptop via USB, there is circuit on
a breadboard receiving power from the Arduino’s 5V and ground pins. A
very typical scenario. Now you take the two probes of the oscilloscope and
start measuring signals in the circuit. These will be interesting (voltage)
waveforms, otherwise you wouldn’t need the oscilloscope in the first place.
There are components (such as amplifiers) around that are responsible for
this waveform, and this often involves floating ground, voltage potentials
above and below it, etc. It may be hard to tell (unless you know what you
are doing or measure it) which places in your circuit are at the Arduino’s
ground potential. We will care about the signal of voltages of one point
relative to another one, right? So we can just touch any two points in the
circuit and see a signal in the oscilloscope, right? One of the oscilloscope’s
probes has a low-impedance connection to ground, and if you touch any-
thing in that circuit that has another potential, you have a short circuit
through the oscilloscope, the mains power line, your laptop, the USB port,
and the Arduino, and you will destroy any or all of them. What actually
happens depends. If you are unlucky, this can get very expensive. Don’t
do it.

This specific example problem would be solved by an isolating power
supply (your laptop doesn’t have one, it uses a switching-mode power sup-
ply), a USB isolator, or special isolating oscilloscope probes (expensive).
But there are other pitfalls.

I advise against using an oscilloscope. You should rarely, if ever, have
a true need to use one in this course.

4See EEVBlog https://www.youtube.com/watch?v=xaELqAo4kkQ.

https://www.youtube.com/watch?v=xaELqAo4kkQ

176 CHAPTER 22. DEBUGGING ELECTRONIC CIRCUITS

If you want to use an oscilloscope, you must first have thoroughly
understood all that is said in Chapter 17. Moreover, you must do this
under the constant supervision of DLLEL staff. Make sure you clearly
inform them of your limited background in electronics before starting.

Part IV

Microcontrollers and
Programming

177

Chapter 23

Digital Signals

As we build up to using microcontrollers, we need to get comfortable with
the relationship between general electric circuits and digital electronics.
As computer scientists, we are used to working only with digital electron-
ics, and we may forget that this is not all there is. We may also work with
the intuition that the flow of information and causation through logic gates
corresponds to the flow of current. However, in reality, the connection be-
tween current flow and reading and writing data is tenuous at best.

Looking at it low-level, in electric circuits, there is no notion of reading
and writing (data); there is only the circuit and, if we like, the flow of
current. In digital circuits, there is a higher-level abstraction of the flow
of information, but how does this translate to electronic circuits in which
only a part has a supposedly digital interpretation?

In general, our thing will involve digital and analog signals, and wires
that are best not thought of as carrying signals at all. Microcontrollers
are designed to interface with electronic circuitry that isn’t necessarily
digital. Some of a microcontroller’s connection pins are labeled digital,
others analog, and some neither. And yet we may use a digital pin to
power an LED. Let us get a bit more comfortable with this.

23.1 Logic Levels and Logic Gates

You certainly know from an earlier course that, on an abstract level, the
logic circuitry of computers is built from logical gates such as AND- OR-
and NOT-gates, which can all be constructed from a single kind of gate, the

179

180 CHAPTER 23. DIGITAL SIGNALS

Figure 23.1: A fan-in two NAND gate in CMOS technology (left) and using
bipolar junction transistors (right).

NAND-gate.1 From these we can build larger units such as adders and even
entire CPUs. Let us look at how NAND-gates are built up from transistors
(and resistors) using two different families of transistors, MOSFETs2 and
binary junction transistors (BJTs). These fan-in two gates have more than
the three connections by which they are usually shown in logical circuit
diagrams. The currents from the input gates A and B do not flow to the
output gate (labeled Y and Out, respectively). The NAND gates of these two
technologies are incompatible with each other and cannot be used together
in logic circuits without suitable translation technology.

Still, when we connect digital components (of compatible technology),
the higher-level view of information flow is valid. This is achieved by their
compatible design, by connecting them in ways valid under this design,
and conventions regarding the meaning of voltage levels (logic levels). If we
violate any of these, the information flow abstraction breaks down. Even
if we agree that high voltage corresponds to high logic level, connecting an
LED to the output of such a logic gate that would compute logic HIGH in
a digital circuit does not necessarily – depending on technology – light up
the LED.

When we get to microcontrollers in later chapters, we see that they offer
a number of digital and other pins to which we can, but do not have to3,

1NOT(A) := NAND(A, A); AND(A, B) := NOT(NAND(A, B)); OR(A, B) := NAND(NOT(A),
NOT(B)).

2Note that the CMOS transistor uses two each of two types of transistor – p-type and
n-type. See https://en.wikipedia.org/wiki/CMOS for more.

3So leaving such a pin unconnected does not lead to an open and incomplete circuit;

https://en.wikipedia.org/wiki/CMOS

23.2. LOGIC-LEVEL CONVERSION 181

connect other digital components. These pins usually can be configured
to send or receive digital signals. This isn’t obvious functionality, digital
pins of other components (such as sensors) that we connect to these mi-
crocontroller pins usually have dedicated input or output roles, as have
the input and output lines of our NAND-gates.

How such GPIO ports are implemented is beyond the scope of this man-
ual4, and, in fact, what works and doesn’t depends on the microcontroller.
For example, the Arduino Uno, which has been designed for learners and
even children, is designed particular robustly, and may survive abuse that
may damage another microcontroller. It is recommended to implement
proven recipes that you find online.

23.2 Logic-level Conversion
As mentioned, each digital electronics component follows some convention
for which voltage range corresponds to HIGH/1/true and which voltage
corresponds to LOW/0/false. We are talking of a range, not an exact volt-
age, because nothing, starting from the power supplies, is exact in prac-
tical electronics. Still, LOW means close to 0V, and HIGH usually means
one of two things: close to 3.3V or close to 5V. It is essential to know with
which logic level your component (such as a microcontroller, sensor, or
motor driver) works. You can find that in the component’s datasheet.

The trend is to go to components with lower logic level, since this is
connected to energy savings.

Some mix of logic levels may also be possible. For example, the Arduino
Uno internally works at 5V logic level, and outputs 5V HIGH signals, but
has both 3.3V and 5V Vout pins and reads digital signals with a range
from below 3.3V to 5V for logical HIGH: Thus it can read from both digital
components that use 3.3V logic and components that use 5V logic. The
Uno can read from components with 3.3V logic level, but to write to them,
we need conversion of 5V signals to 3.3V signals.

If you want to connect two components that operate at different logic
levels, you need to perform logic-level conversion. There are two main
ways of doing it – using a voltage divider or a special logic-level conversion
board. Note that a voltage divider only needs two resistors of appropriate

see https://en.wikipedia.org/wiki/Three-state_logic.
4See https://en.wikipedia.org/wiki/General-purpose_input/output.

https://en.wikipedia.org/wiki/Three-state_logic
https://en.wikipedia.org/wiki/General-purpose_input/output

182 CHAPTER 23. DIGITAL SIGNALS

(a) (b)

Figure 23.2: Using a pull-down resistor to make reading a switch work
(23.2a) and a bad logic gate (23.2b). Power supplies are not shown.

resistance to build up the voltage divider circuit, but it will only allow
logic-level conversion in a single direction. Voltage dividers are covered
in Section 19.3. For instance, to translate a signal from 5V to 3.3V, you
connect your signal source to Vin of the voltage divider, your 3.3V level
receiving component to Vout, and choose Z1 = 1kΩ and Z2 = 2kΩ.

23.3 “No Connection” is Different from Digital
Zero

A mistake that computer scientists often make is believing that tertium
non datur, that any digital read results in zero or one on a digital signal
line. This is not true. Usually, a digital signal line is considered to have
value 0 when the signal line is at ground potential (0V to GND). An open
connection as in Figure 17.4b is not the same as if this wire is connected to
ground – the digital value is undefined, rather than 0, and a digital input
pin on your microcontroller will read a random value.

This has many consequences for you, and if you don’t respect this, you
will have bugs.

Take for instance a push button or switch that opens or closes a circuit.
You can’t just wire this button up with your microcontroller, because the
read will be nonsense when the switch is open. Figure 23.2a shows the

23.3. “NO CONNECTION” IS DIFFERENT FROM DIGITAL ZERO 183

Figure 23.3: A pull-up resistor circuit (left) and a pull-down resistor circuit
(right) for reading out the state of a switch.

solution to this, using a so-called pull-down resistor5. When the switch
is open, the I/O pin of the microcontroller (here pin 8) reads 0 because
of the connection to ground. When the switch is closed, the I/O pin is
directly connected to 5V and reads 1. There is no short-circuit from 5V to
ground because of the resistor. 10kΩ as shown is an appropriate value for
this resistor. If we removed the connection to ground via the resistor, the
I/O pin would read a random value when the switch is open. Figure 23.3
shows pull-up and pull-down circuitry next to each other. Use the former
to get default-HIGH and the latter to get default-LOW (when the switch
is open). So, if you want your button/switch to turn the input pin from
(default) LOW to HIGH, you need a pull-down resistor.

A somewhat related issue is demonstrated in Figure 23.2b. Suppose
we write digital values to pins 7 and 8 and read pin 9. If at least one of 7
and 8 is 1, then pin 9 reads one, and otherwise it reads 0, right? So this is
a logic OR gate, right? Wrong. If, for instance, pin 7 has value 1 and pin 8
has value 0, we short-circuit these two pins. What really happens is a bit
more complicated because of the the electronics of digital read/write pins,
but in any case, you do not get a logic gate as simply as that. Of course,
you will probably never want to build a logic gate like this because you can
very conveniently do such calculations inside the microcontroller.

If you connect two digital output pins of your microcontroller by a direct
wire connection, you do not “OR” or “SUM” the signals. Instead, if you set

5There are also pull-up resistors between your I/O pin and the logic-level voltage (3.3
or 5V), which give you a logical 1 as default.

184 CHAPTER 23. DIGITAL SIGNALS

one output to 1 and another to 0, you essentially create a short-circuit.

23.4 Pulse Width Modulation (PWM)

Figure 23.4: PWM signals with various duty cycles (but equal frequency),
and the analogWrite() commands to generate them (in Arduino IDE pro-
grams).

Pulse Width Modulation (PWM) signals are digital signals that are achie-
ved by rapidly switching between high and low voltage levels. There are two
main parameters to a PWM signal: the frequency of HIGH-LOW cycles and
the duty cycle, which is the fraction of time during which the signal is at
HIGH potential. For illustration, Figure 23.4 shows graphs of PWM signals
with different duty cycles.

PWM signals can serve multiple purposes. Some components (such as
stepper motor drivers) interpret PWM signals as the square wave signals
that they are, and switch components on and off rapidly. PWM signals can
also simulate analog output, as components that react more slowly can be
viewed as observing a smoothed, averaged version of the square wave –
essentially a constant signal at the voltage that is the voltage of logical

23.4. PULSE WIDTH MODULATION (PWM) 185

HIGH times the duty cycle (the fraction of time during which the signal is
a HIGH level) of the PWM signal. So, for example, a PWM signal with 50%
duty cycle and a 5V logic level will behave like a constant 2.5V voltage to
some components. This can be used, for instance, to dim the light of an
LED.

186 CHAPTER 23. DIGITAL SIGNALS

Chapter 24

Microcontrollers

A microcontroller (aka microcontroller unit, MCU) is a small, highly inte-
grated, programmable computing unit. It is usually realized as a single
chip that includes at least one processor core, memory, and hardware
support for a potentially large number of different forms of I/O, from very
low-level I/O through which the MCU becomes part of basic electronic cir-
cuits (GPIO pins), to protocol standards of various levels of sophistication
(in particular, I2C, SPI, and CAN) by which the MCU can relatively directly
connect to complex devices.

MCUs are designed for embedded applications, where they directly in-
teract with and control electronic components other than those usually
seen with computers (such as keyboards, mice, and screens). In contem-
porary computers, practically the only way to interface with (say, home-
grown) peripherals is through USB-ports. If we want our computer to
interact through USB with an electronic circuit of our making, we need
translation from the USB protocol and protection of the computer from
various mistakes we may be making. The best way to do this today is,
actually, through an MCU development board with a USB port, such as an
Arduino Uno. MCUs make interfacing with electronics, even very low-level
components such as resistors, capacitors, diodes, and transistors, easy.

Compared to the computers we are used to today, MCUs often have
very limited processing power and memory (typically, no more than about
250 MHz clock speed and no more than a few MB of RAM). This is not
because MCUs are outdated or have received limited industrial interest –
quite the opposite. In an industrial context, we attempt to match MCUs as
precisely as possible to their use. They often are part of mass-produced

187

188 CHAPTER 24. MICROCONTROLLERS

products, which are to be produced as cheaply as possible, using MCUs
whose capabilities are precisely matched to the needs of the application,
wasting no complexity and no money.1 MCUs are often used in low-power
applications, where it is important for the power consumption of the MCU
to be minimal. Finally, the typical use cases of MCUs are just very different
from those of (personal) computers with their general-purpose operating
systems. If we, for instance, had to generate a precisely timed signal, we
would find this easy to do with even low-end MCUs, but impossible to do
with even the most highly specced gaming PCs or cloud servers.

Unlike computers, MCUs typically do not run an operating system, al-
lowing the program code direct access to all resources. In technical appli-
cations, MCU code often has to satisfy stringent real-time requirements,
where taking just a little too long to complete a computation and to trigger
an action could cause a major catastrophe, like a nuclear reactor melting
down. Using general-purpose operating systems such as Unix or Microsoft
Windows in such a context would be criminal folly. Industrial MCUs like
those of the STM32 family come with software development environments
that help you develop precisely timed software (as well as allowing you to
calculate precise power consumption). There are real-time operating sys-
tems (RTOS) specially for MCUs and time-critical applications that can
give hard real-time guarantees even with multiple threads running con-
currently, but they are beyond the scope of this manual.2

In a learning environment, we usually do not work with a microcon-
troller IC directly, but with a microcontroller board that mounts the IC
and provides IO ports, limited protection against mis-use, and (often mul-
tiple) easy ways to supply power to the MCU. It is important to remember,
though, that the very point of MCUs is to be as complete as possible in as
small, cheap, and power-saving a package as possible. The MCU IC pro-
vides all the functionality you need in a completed product that makes use
of MCUs. The board – which for that reason is usually called a develop-
ment board or an evaluation board in a professional context – is really just
there to provide additional protections and to supply power while the prod-
uct isn’t ready and the PCB on which the MCU with other product-specific
components will go isn’t ready.

General-purpose IO (GPIO) ports (pins) turn the MCU into just an elec-

1There are MCUs that cost just a few cents when bought in large numbers – though
not those we will use.

2Though not beyond the scope of this course, if a team were interested in this.

24.1. RECOMMENDED VIDEOS 189

tronic component like many others, to be made part of electronic circuits.
They enable communication between the MCU and other devices, such
as sensors and actuators. We distinguish digital and analog IO. Digital
pins are used to send or receive digital signals. These pins can be con-
figured as either inputs or outputs. Typical uses are to interface with de-
vices that support digital communication protocols, which includes other
MCUs, sensors, and motor drivers. Analog (input) pins, on the other hand,
are used to read analog signals, which are digitized as multi-bit numbers
(the resolution depending on the analog-to-digital converters inside the
MCU). These signals may represent physical phenomena such as temper-
ature, distance, or frequency, depending on the source of the signal, and
are typically read from sensors.

MCUs usually have pins that can “output” PWM signals (see Section 23.4),
with the frequency and duty cycle parameters set by the program code.
This is achieved with hardware support, that is, the is no code doing the
on-off switching running in the core, but the MCU contains a separate
hardware component that generates the signal.

Using PWM to simulate analog output isn’t perfect, and for some appli-
cations it is not good enough. For that purpose, some MCUs have digital-
to-analog converters (DAC) to produce true analog signals.

MCUs are designed to interact and exchange data with other compo-
nents, such as sensors. For this purpose, a number of interface standards
and protocols are used in the industry, such as SPI, I2C, and CAN. Other
standard communications methods and interfaces include USB, UART,
Wifi, and Bluetooth.3 MCUs often have native hardware support for several
of these (see Figure 25.1), so using these in microcontroller applications is
easy and does not take compute cycles aware from the programmed tasks.

24.1 Recommended Videos
https://www.youtube.com/watch?v=F321087yYy4
DigiKey
“Introduction to RTOS Part 1 - What is a Real-Time Operating
System (RTOS)? | Digi-Key Electronics”

3See Chapter 28 for more on using these interfacing standards and protocols.

https://www.youtube.com/watch?v=F321087yYy4

190 CHAPTER 24. MICROCONTROLLERS

Chapter 25

Choosing a Microcontroller

This chapter acts as a guide to picking, based on the needs of your project,
one of the microcontroller boards available to us in the course. In the
following, we concisely present these models. This chapter cannot cover all
the details of their specifications. Please search the Web for the datasheet
and documentation of the MCU you want to use, and look out for versions,
as some microcontroller boards have multiple revisions.

25.1 Microcontroller Families
There are many different models of MCUs available on the market, each
with their own features and capabilities. For projects like ours, evalua-
tion/development boards are convenient. These act as breakout boards,
allowing solderless connections to the legs of the MCU IC via Dupont-style
connectors, but usually also add

• protection circuitry, which increase the survivability of the MCU un-
der mis-use,

• voltage conversion circuitry, to make it easier to supply power, and

• a programming interface, usually with a USB port.

Manufacturers usually produce multiple versions for their MCUs, which
share many abstractions (such as their machine language and memory
model) but which differ in their features (such as which forms of I/O they
provide hardware support for). If there are multiple MCU models in a

191

192 CHAPTER 25. CHOOSING A MICROCONTROLLER

family, this often does not mean that one is best or newest-generation:
You may have to pick one based on trading off features you don’t need for
others you do.

Among the most popular MCU families, we have (1) those of the Atmel
AVR family, (2) the ESP32 family, made by Expressif Systems, and (3) the
STM32 family, made by ST Microelectronics (a company headquartered in
Switzerland). The ESP8266 is a predecessor model of the ESP32 family.

• The Atmel AVR family originated as a student project in Norway, and
are generally the least competitive family in terms of their features and
performance statistics, but they are used in Arduino boards such as
the Arduino Uno and the Arduino Mega, and are popular for being
popular. They are the most widely used MCUs in maker projects, and
information on them is most widely available.

• ESP(8266 and -32) are designed for IOT (Internet of Things) applica-
tions, and usually have Wifi and Bluetooth support. They also have
relatively high computational power.

• The STM32 family are best suited for technical, industrial applica-
tions. They are not intended for hobbyist, and their features and na-
tive tool chain (including the STMCubeIDE) exude reliability and have
features that are indispensable for low-level technical uses. They usu-
ally have large numbers of supported I/O interfaces (including mul-
tiple I2C, SPI, UART, and CAN ports), multiple ADC and DAC ports,
and many timers. The hardware is internally highly configurable,
and they have a very sophisticated infrastructure for precise timing
of every aspect of the MCU’s operation.

All of the MCUs available to us for this course, and covered in this
chapter, can be programmed with the Arduino IDE, though to have access
to certain advanced features, you may need to use a family’s native IDE.
This is particularly true for the STM32 family.

25.2 Microcontroller Comparison Chart
When choosing a microcontroller, you have to ask yourself which features
are most important to you. Each microcontroller board has its advantages

25.2. MICROCONTROLLER COMPARISON CHART 193

B
oa

rd
na

m
e

A
rd

u
in

o
A

rd
u

in
o

N
od

eM
C

U
W

em
os

A
I-

Th
in

ke
r

S
TM

32
S

TM
32

U
no

R
3

M
eg

a
25

60
E

SP
82

66
D

1
R

32
E

SP
32

-C
A

M
B

lu
e

Pi
ll

N
u

cl
eo

64
(c

lo
ne

)
(c

lo
ne

)
F4

01
R

E
M

C
U

fa
m

ily
A

tm
el

AV
R

A
tm

el
AV

R
–

E
SP

32
E

SP
32

S
TM

32
S

TM
32

M
C

U
AT

m
eg

a3
28

P
AT

m
eg

a2
56

0
E

SP
82

66
*-

W
R

O
O

M
*-

S
*F

10
3C

8T
6

*F
40

1R
E

T6
C

or
es

1
1

1
2

2
1

1
W

or
d

le
n

(b
it

s)
8

8
32

32
32

32
32

Sp
ee

d
(M

H
z)

16
16

80
80

-2
40

16
0

72
84

Fl
as

h
M

em
(K

B
)

32
25

6
40

00
44

8
40

00
64

51
2

SR
A

M
(K

B
)

2
8

64
45

20
45

00
20

96
E

E
PR

O
M

(K
B

)
1

4
-

-
-

-
-

V
in

(V
)

7-
12

or
U

SB
7-

12
or

U
SB

4.
5-

10
9-

24
or

U
SB

5
5

7-
12

Vo
u

t
(V

)
3.

3
an

d
5

3.
3

an
d

5
3.

3
3.

3
an

d
5

V
in

3.
3

an
d

5
3.

3
an

d
5

Lo
gi

c
H

IG
H

(V
)

5
(r

ea
d

>3
)

5
(r

ea
d

>3
)

3.
3

3.
3

3.
3

3.
3

3.
3

D
ig

it
al

I/
O

pi
ns

12
/1

4
54

17
1/

8
29

50
PW

M
pi

ns
6

15
4

16
1/

8
15

>2
2

In
te

rr
u

pt
pi

ns
2

?
17

al
lG

PI
O

0/
7

al
lG

PI
O

al
lG

PI
O

A
na

lo
g

in
pi

ns
6(

@
10

bi
t)

16
(@

10
bi

t)
1

18
(@

12
bi

t)
0/

7
10

16
(@

12
bi

t)
U

SB
po

rt
ty

pe
U

SB
-b

U
SB

-b
m

ic
ro

-U
SB

m
ic

ro
-U

SB
–

m
ic

ro
-U

SB
m

in
i-

U
SB

U
SB

to
se

ri
al

C
H

34
0

C
H

34
0

C
P2

10
2

C
H

34
0

–
in

M
C

U
S

T-
Li

nk
W

ifi
80

2.
11

–
–

b/
g/

n
b/

g/
n/

e/
i

b/
g/

n
–

–
B

lu
et

oo
th

–
–

–
v4

.2
,B

LE
v4

.2
,B

LE
–

–
U

A
R

T/
TT

L
1x

4x
1x

/2
x

3x
1x

3x
4x

SP
I

1x
1x

1x
3x

–
2x

3x
I2

C
1x

1x
1x

2x
–

2x
3x

C
A

N
-

-
-

-
-

1x
1x

Ti
m

er
s

(@
bi

ts
)

2@
8

(+
1@

16
)

4
1@

23
4@

64
(4

)
4

6@
16

+2
@

32
Si

ze
(m

m
*m

m
)

69
x5

4
10

2x
54

25
x4

9
69

x5
4

27
x4

1
23

x5
3

83
x7

0
O

th
er

–
–

–
2x

D
AC

@
8

ca
m

er
a

–
–

m
ic

ro
-S

D

Fi
gu

re
25

.1
:

M
ic

ro
co

nt
ro

lle
r

co
m

pa
ri

so
n

ch
ar

t

194 CHAPTER 25. CHOOSING A MICROCONTROLLER

and disadvantages. Some features, such as having a camera, are rare and
quickly determine which microcontroller you must choose. Also have a
look at the other electronic components that you want to use in your thing.
How many IO pins of each kind do you need? What is their logic level? Par-
ticularly for sensors, look at their interfaces (such as I2C or SPI). Does the
microcontroller board have sufficiently many GPIO/analog/PWM/interrupt-
enabled pins?

In general, no microcontroller board will satisfy all your needs. Remem-
ber that some features can be achieved by programming. For instance,
there is a library SoftwareSerial that gives you additional TTL serial inter-
faces on normal digital IO pins. Other features and interfaces, such as
Bluetooth or CAN-bus support, are offered by specialized boards. There
are de-multiplexing boards that give you additional IO pins, and boards
that offer additional PWM pins. There is also no reason why you cannot
use multiple (different) microcontroller boards with different strengths and
have them communicate and work together inside your thing.

Figure 25.1 distills many of the relevant specs down into one table. Here
are a few important notes, though. First, this table is meant to give you a
quick overview and cannot replace reading datasheets to be sure. When
you do so, be sure to distinguish among the specs of the microcontroller
IC and the microcontroller board. For instance, the ESP32-CAM has a
very capable MCU (one very similar to the Wemos D1 R32, which provides
many GPIO pins). However, the ESP32-CAM board passes through only
very little of this functionality to its pins – not because it is a bad board
but because most of the MCU’s IO pins are used to communicate with the
on-board camera and micro-SD card reader. Similarly all the ESP boards
use one of its timers for Wifi, and thus this timer is not available for your
uses.

Most of the rows of the tables should be self-explanatory. The flash
memory stores the compiled code; the runtime state of your programs is
stored in SRAM. (So, for instance, the Arduino Uno has only 2KB for vari-
ables and data structures.) Logic HIGH and represents the voltage of logic
level HIGH – for the Arduino Uno, the logic level is 5V, but it understands
logic level 3.3V when reading from other components. USB to serial refers
to the USB protocol chip used on the microcontroller board. In general,
you need to install a USB driver for that chip on your computer.

In order to keep the table readable, some details, quirks, and caveats
are not shown. For instance, the Atmel AVR MCUs have a third kind of

25.3. ATMEL AVR MCU BOARDS 195

memory, EEPROM, which is nonvolatile (persists when the microcontroller
is powered off), but unlike flash memory, you can write it from your mi-
crocontroller program. For another example, the ESP32-CAM spec allows
for 3.3V Vin, but we show only 5V Vin, because supplying 3.3V is known
to cause brownouts on Wifi startup.

The most important kind of limitation that cannot be shown in such
a table is the fact that the pins of microcontroller boards usually have
multiple purposes, and there are constraints on what can be done when.
For instance, on the Arduino Uno, digital pins 0 and 1 are used for TTL
serial communication and directly reflect the serial communication via
USB. If you use them like normal GPIO pins, your thing will malfunction
at times. Where it makes sense, we show the availablity of pins in the form
x/y, where x is the number of pins available without limitations and y is
the number of pins available only at times or with limitations. (See the
following sections for more details.)

Note that the NodeMCU ESP8266 and the STM32 Blue Pill are sub-
stantially smaller than the other boards (see the dimensions in the Fig-
ure 25.1).

25.3 ATMEL AVR MCU Boards

25.3.1 Arduino UNO R3

The Arduino Uno R3 is an open-source design with a large community of
users and developers. Figure 25.2 shows its pinout diagram.

There are multiple ways in which you can supply power to the Arduino
Uno: through the USB cable, the VIN pin (providing the board with a rec-
ommended range of 7 to 12V), and a DC in plug (the black plastic box with
a round plug shown in the top left corner of the board in Figure 25.2). Be
careful when using the VIN pin to supply power – too high a voltage will
damage the board. Once the board receives power, it can also act as a
power source to other low-power components through its GND, 3.3V, and
5V pins. The multiple GND pins of the board are all connected to the same
ground and can be used equivalently. The maximal output current is very
limited and not suitable for powering motors – if you do so, you will damage
the microcontroller board.

We are working with Uno clones. These are, of course, completely le-

196 CHAPTER 25. CHOOSING A MICROCONTROLLER

Figure 25.2: Arduino UNO rev3 pinout.

gal – this is an open-source design meant to be as available as possible.
They are also completely equivalent in behavior and performance to the
board produced by the Arduino company – with one exception. Unlike the
Arduino-branded boards, the clones use a CH340 USB to TTL serial chip,
which may necessitate installing a driver on your computer.

Recently, the Arduino Uno R4 has been released. This is not an im-
proved version of the R3, but a board very similar to the Wemos D1 R32.

25.3.2 Arduino Mega 2560

TODO – for specs and pros and cons, see Figure 25.1.
The Arduino Mega is essentially an Arduino Uno with more IO pins.

25.4. EXPRESSIF MCU BOARDS 197

25.4 Expressif MCU Boards

25.4.1 NodeMCU ESP8266

Figure 25.3: The pinout of the NodeMCU ESP8266.

The pinout of the NodeMCU ESP8266 board is shown in Figure 25.3.
Note that the pin numbers on the board are different from those shown in
the blue GPIO boxes left and right of the board. The latter numbers are
those that you should use in your code. For instance, the pin labeled D5
on the board is addressed as pin 14 in your code.

25.4.2 Wemos D1 R32

TODO: Add pinout diagram.
For specs and pros and cons, see Figure 25.1.
If you like the Arduino Uno but need more computational power and/or

internet connectivity, consider this board.

198 CHAPTER 25. CHOOSING A MICROCONTROLLER

The Wemos D1 R32 looks very much like an Arduino Uno, and Arduino
Uno shields can be mounted on it. However, you cannot run your Uno code
unchanged on it because the pinout is different. (See the Nucleo64 board
for one that is fully compatible with the Arduino Uno R3.)

25.4.3 ESP32-CAM

Figure 25.4: The pinout of the ESP32-CAM.

The ESP32-CAM is a development board based on the ESP32 MCU.
Its main feature is a camera module, which can be configured to capture
images and videos. The camera is an ov2640 with a resolution of 1600
x 1200 (2 megapixels) at 15 frames per second. Additionally, the ESP32-
CAM has built-in Wi-Fi and Bluetooth connectivity, allowing it to wirelessly
connect to the internet and other devices, and a micro-SD card reader and
writer, which for instance can be used to store photos in a surveillance
camera application, of a pre-trained computer vision model.

Its main practical limitation is the small number of available IO pins.
There are ten labeled GPIO pins; however, most have other uses that severely
limit their use as GPIO pins (see Figure 25.5 on when pins can be safely
used). The ESP32-CAM does not have a USB port to connect it directly to

25.4. EXPRESSIF MCU BOARDS 199

Figure 25.5: Safe use of ESP32-CAM IO pins.

a computer. In order to upload code, we need to wire it up with an FTDI
adapter board – a USB-to-serial translator.

Figure 25.6: The setup to upload code from a computer to an ESP32-CAM
using an FTDI adapter.

As shown in Figure 25.6, we connect the ESP32-CAM to USB and the
computer via the FTDI adapter. Be sure not to forget the jumper connection
of GPIO 0 to GND. FTDI adapters have a jumper on board that allows you to
select 3.3V or 5V. Make sure the jumper selects 5V power. Once you have

200 CHAPTER 25. CHOOSING A MICROCONTROLLER

wired up your microcontroller as shown, you can upload your code via the
Arduino IDE as usual once. Once you are done uploading code, you must
remove the jumper cable connection between GPIO 0 and GND and press
the RST button to run your new code.

25.5 STM32 MCU Boards

25.5.1 STM32 Blue Pill

Figure 25.7: The pinout of the Blue Pill.

TODO: For specs and pros and cons, see Figure 25.1.
The Blue Pill has a USB port which is directly connected to the MCU,

without any separate hardware support for running the USB protocol. The
protocol is intended to be run by your MCU. Since the board ships without
any preinstalled program (“firmware”), you first need a separate program-
mer (such as an FTDI USB-to-serial board) to upload USB driver code to
your MCU, before you can subsequently program it via USB.

25.6. RECOMMENDED VIDEOS 201

25.5.2 STM32 Nucleo64 F401RE
TODO: For specs and pros and cons, see Figure 25.1.

This board has a set of female connectors that are fully compatible to
the Arduino Uno R3, allowing you to mount Arduino shields and keep
your Uno code entirely unchanged (up to timing, since the STM32 board
is substantially faster than the Uno). The Nucleo64 board has additional
male pins, making the overall board wider than an Uno, and giving access
to the substantial added features of the STM32F401RET6 MCU.

25.6 Recommended Videos
https://www.youtube.com/watch?v=visj0KE5VtY
DroneBot Workshop
“ESP32 CAM - 10 Dollar Camera for IoT Projects”
https://www.youtube.com/watch?v=hSr557hppwY
DIY Engineers
“ESP32-Cam Complete Guide”
https://www.youtube.com/watch?v=HDRvZ_BYd08
DroneBot Workshop
“Simple ESP32-CAM Object Detection”

25.7 Parts in Stock for CS358
Model CHF
Arduino Uno (clone) 5
Arduino Mega 2560 (clone) 14
NodeMCU ESP8266 V0.9 3
Wemos D1 R32 ESP32 4
AIThinker ESP32-CAM 4
AIThinker ESP32-CAM w. Antenna 13
STM32F103C8T6 “Blue Pill” 3
STM32 Nucleo64 F401RE 15
FTDI USB-to-serial 2

Note that the FTDI board isn’t a microcontroller board but provides USB
connectivity for MCU boards without a USB board (such as the ESP32-

https://www.youtube.com/watch?v=visj0KE5VtY
https://www.youtube.com/watch?v=hSr557hppwY
https://www.youtube.com/watch?v=HDRvZ_BYd08

202 CHAPTER 25. CHOOSING A MICROCONTROLLER

CAM and the Blue Pill) and can be used as a programmer for MCUs not
on an evaluation board.

25.8 MCUs in Disguise
The previous sections of this chapter listed the “general-purpose” micro-
controller boards that you may choose for your projects. There are, how-
ever, a few electronic components available to us, and mentioned in other
chapters, that more or less clandestinely house MCUs to do their work.
This includes some more complex sensors (GPS units, for example) and
brushless motor drivers. Particularly the motor driver MCUs can or even
have to be programmed by you, but usually just for their restricted pur-
pose (such as FOC, see Chapter 40). They usually do not offer sufficiently
many free pins (if any at all) to build your things entirely around them,
without any general-purpose MCU board.

Also note that some of the general-purpose MCU boards covered in this
chapter actually have two MCUs on board1 – the one you program and
another one just to run the USB protocol.

1The STM32 Blue Pill is a notable exception. This is why you can’t program it through
USB unless you first upload USB driver firmware to the main/only MCU using a RX/TX
serial connection.

Chapter 26

Setting up the Arduino IDE

We will use the Arduino IDE for microcontroller programming. It is avail-
able for Mac OS, Microsoft Windows, and Linux. It is very easy to use,
popular, and the easiest to find information for on the internet. It sup-
ports all popular microcontrollers, not just Arduinos. There are alterna-
tives, including Eclipse and Visual Studio Micro, which we ask you not to
use in this course, even if you are familiar with one of them. Download
and install the Arduino IDE from
https://www.arduino.cc/en/software.

We upload code and supply power to the microcontroller via USB. De-
pending on the microcontroller board and your operating system setup on
your computer, you may need to install a special USB driver to work with
your microcontroller.

26.1 For the Arduino Uno

We usually provide you with Arduino Uno clones, which are absolutely le-
gal – the Uno is an open-source hardware design. They are functionally
equivalent to Arduino Unos produced by the Arduino company, with one
exception: You may need to install a CH340 USB driver. This driver will
often be already installed on your computer and you may not need to do
anything. Installing the driver seems more frequently necessary for Win-
dows users than for Mac users.

Search on Google if, on first connecting your Arduino Uno to your laptop
via a USB cable, the USB port that the Uno is connected to does not show

203

https://www.arduino.cc/en/software

204 CHAPTER 26. SETTING UP THE ARDUINO IDE

up among the selectable options in the Arduino IDE. (See the menu item
Tools→Port.)

Linux users may have permissions problems when trying to use USB
with the Arduino IDE. User-level processes may not have (write) access to
certain devices on Linux until you grant it. Many people have encountered
this problem when setting up the IDE on Linux, and there are solution
posts on the Web that you find with Google (search for something like
“Arduino IDE Linux USB problem”).

26.2 For the ESP8266

In the Arduino IDE, open the Files→Preferences menu item and paste the
link
https://arduino.esp8266.com/stable/package_esp8266com_index.json
into the “Additional Board Manager URLs” field. Then install the esp8266
toolchain in Tools→Board→"Boards Manager".

Select Tools→Board→“ESP8266 Boards (version number)”→“NodeMCU
V0.9 (ESP-12 Module)”.

For NodeMCU ESP8266 boards, you need a CP210x USB driver:
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=
downloads, see also
https://cityos-air.readme.io/docs/1-usb-drivers-for-nodemcu-v10.

This one will usually not be installed on your computer yet and you will
have to install it.

26.3 For the ESP32-CAM

Google setting up the ESP32-CAM with the Arduino IDE. The steps are
analogous to the instructions for the ESP8266, but the microcontroller
board is called “AIThinker ESP32-CAM”.

You will be thrilled to read that you can never have troubles with USB
drivers. (The ESP32-CAM has no USB port. See how to talk to it and
upload code in Chapter 24.)

https://arduino.esp8266.com/stable/package_esp8266com_index.json
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads
https://cityos-air.readme.io/docs/1-usb-drivers-for-nodemcu-v10

26.4. IN CASE YOU CAN’T GET IT TO WORK 205

26.4 In case you can’t get it to work
Search the internet. The Arduino IDE is very widely used. It is very un-
likely that nobody has encountered and overcome your problem before.

26.5 Other IDEs
We require you to use the Arduino IDE exclusively for the individual project
and we recommend that you use it for the team project as well, unless there
are good reasons for using another IDE. The teaching staff may not be able
to help you with other IDEs.

One important alternative to the Arduino IDE is PlatformIO. This is a
plugin for Visual Studio Code. PlatformIO supports all of the microcon-
troller boards we are working with, and usually you can just use C code
developed on the Arduino IDE and it will compile and work fine on Plat-
formIO. The only thing you will have to change to your code is to add a
line

#include <Arduino.h>

at the start of each of your source code files.
You may notice that for some non-Arduino MCUs (and only for these),

the first time you compile your code, some slow caching is happing. One
advantage of PlatformIO is that this is faster.

For ESP32 MCUs, there is an Eclipse-based IDE that you will need to
use if you want to run TensorFlow directly on the MCU.1 If you are not
doing this, we suggest you stay with the Arduino IDE. It is simpler to use,
even if you are very familiar with Eclipse.

For STM32 MCUs, there is the STMCubeIDE. which is also based on
Eclipse. Its Hardware Abstraction Layer (HAL) is substantially more low-
level than the one you will use with the Arduino IDE. The STMCubeIDE
generates all the boilerplate code, so you may not need to write much more
code than with the Arduino IDE; however, you will need to navigate and
read a lot of code that you would not have to deal with on the Arduino IDE.

For advanced work with the STM32 MCUs, there is no way around the
STMCubeIDE; it allows to access powerful MCU features that are below the
HAL in the Arduino IDE and are thus inaccessible to you. Also, note that

1See https://www.tensorflow.org/lite/microcontrollers.

https://www.tensorflow.org/lite/microcontrollers

206 CHAPTER 26. SETTING UP THE ARDUINO IDE

experience with the STMCubeIDE is actually a relevant marketable skill
in job applications, while the Arduino IDE has been designed for children
(really). If you do an embedded systems job interview and then reveal that
you only have experience with the Arduino IDE, you may lose all credibility.

If you are interested in STMCubeIDE programming, check out this quick
30-minute tutorial on implementing the Blink example 2:
https://www.youtube.com/watch?v=Hffw-m9fuxc
Mitch Davis
“STM32 Guide #2: Registers + HAL (Blink example)”

2But read Chapter 27 and particularly Section 27.8 first.

https://www.youtube.com/watch?v=Hffw-m9fuxc

Chapter 27

Microcontroller Programming

27.1 Language Syntax

We program our microcontrollers using the Arduino IDE in C/C++.1 If
you do not know C yet, but know Java, you are already well prepared –
Java takes much of its syntax from C++. If Python is the only program-
ming language you know so far, then shame on you ;-), and you have an-
other good reason for taking this course. C is a compiled and statically
typed2 language unlike Python. You need to declare your variables and
their types – there is type checking but no automatic type inference. There
is very little automatic type conversion (casting): You have to do this ex-
plicitly. C used to dominate software development, and to this day, at least
performance-sensitive software, such as operating systems, networking
and graphics code, and device drivers are mostly written in C. Computer
scientists should know C. It would be risky, though, to claim mastery of C
in job interviews based on your work with a very simple fragment in this
course.

To us, by fiat, microcontrollers are no microcontrollers if they run an
operating system (and Raspberry PIs are no microcontrollers). Since there
is no operating system to manage resources for you, you have complete

1We will not make a real distinction between C and C++ here. C++ is C with some ex-
tensions (mostly related to object-orientation), and the Arduino IDE works with a heavily
restricted version of C++. It is unusual to make heavy use of object-orientation in Arduino
IDE programs, so you will probably mostly work in C.

2Though, compared to other, mostly more modern statically typed programming lan-
guages, it is comparatively permissive, which invites sloppy use and bugs.

207

208 CHAPTER 27. MICROCONTROLLER PROGRAMMING

control over all resources. There is no memory management, and all the
memory is yours to use. You do not allocate memory using a system call
(such as malloc() in C on POSIX-compliant operating systems) or a new
instruction. If you need (simulated) dynamic data structures – which is
unusual in simple programs – you statically declare arrays, use them as
memory buffers, and do your own memory management. For instance,

int a[32][16];

declares a 32 times 16 two-dimensional integer array. On an Arduino Uno
with its 2-byte integers, this takes 1KB, or half its RAM.

One of the most disgusting defects of Python is that code blocks are
defined by whitespace intendation. In C, you create blocks by enclosing
code in curly braces { }, which is totally superior since it unleashes the
power of Spaghetti code. So here is a little piece of code:

int i; for(i = 0; i < 10; i++) { if(i % 2 == 0) { /* do something */ }
else { /* do something else */ } } /* now i is 10 */

We start by declaring i as an integer. Then we loop over a code block
with an if and an else branch ten times. The first time we visit the code
block, i is zero; the final time, it is 9, so i is set to zero at the start, and
then the condition i < 10 is checked every time before entering the code
block, and i is incremented by one (i++) on exiting the code block. The if
condition checks whether i is even (is i modulo 2 equal to zero?); if this is
true, it enters its code block (which just contains a comment), otherwise
it executes the else-branch. Note how instructions end in a semicolon,
and the symbol for assignment (=) is different from the symbol for equality
testing (==). Whitespace (indentation) and newlines play no particular role
other than separating keywords and identifiers. Every C program can be
written as a (very long) one-line program.

C has a reputation for being difficult to master and error-prone, but
much of this to due to the fact that it invites tricks with pointers that are
less seductive when there is no dynamic memory management. Despite
the low-level programming we do with microcontrollers, we usually do not
work with pointers at all.

27.2. STRUCTURE OF A PROGRAM 209

27.2 Structure of a Program
This is specific to programs in the Arduino IDE, not C programs in general:
Every program contains at least a setup() and a loop() function implemen-
tation. Additional declarations and functions are of course possible. So,
syntactically, every program looks like this:
/* stuff, particularly include statements and declarations */

void setup() { /* your code */ }

/* more stuff */

void loop() { /* your code */ }

/* even more stuff */

The functions setup() and loop() return no value (thus their return
type is declared void) and take no parameters.

A program is executed as follows: On startup or reset of the microcon-
troller, the setup() function is called once. Microcontrollers with a USB
port are reset via USB from the Arduino IDE on the completion of upload-
ing a new program, so you do not need to manually reset then.

After setup() has completed, the loop() function is repeatedly invoked,
forever. You do not need to put all your code into the setup() and loop()
functions, you can add additional functions that you call from anywhere
you like.

This way of programming is inherently single-threaded.3 Conceptually,
your core is always busy. You can put it to sleep for limited amounts of
time using the functions4

void delay(unsigned long delayInMilliseconds);
void delayMicroseconds(unsigned long delayInMicroseconds);

Using delay functions and reducing the activity of the microcontroller saves
energy and extends battery life.

See https://www.arduino.cc/reference/en/ for the Arduino IDE lan-
guage reference with an overview of all core functions.

3See the Web for information on programming multi-core microcontrollers.
4Shown here are function signatures showing the relevant argument and return type.

This is not to be understood as executable example code!

https://www.arduino.cc/reference/en/

210 CHAPTER 27. MICROCONTROLLER PROGRAMMING

27.3 Word Length and Numerical Data Types

If you look at the microcontroller comparison chart in Chapter 25, you see
that the Arduino Uno is an 8-bit microcontroller while the ESP8266 and
the ESP32 are 32-bit microcontrollers.

Usually, the convention in C is that the int type for (signed) integers
uses a word of memory – the natural unit in a processor and the size of
each of its registers. However, as an exception, while int on the 32-bit
microcontrollers really takes 4 bytes and has a range from −231 to 231 − 1,
Arduino Uno integers take two bytes (rather than one byte, eight bits) and
range from −215 to 215 − 1. The type for byte-sized integers in C is char
(or byte). For each signed integer type there is an unsigned type, prefixed
by the keyword unsigned. So there are unsigned char, unsigned long, and
unsigned int (which you can shorten to unsigned). Remember to handle
overflow. On the Arduino Uno, if you declare

int i = 32767; /* 2^15 - 1 */
unsigned u = 65535; /* 2^16 - 1 */

and then compute i+1, you get the int -32768. If you compute u+1, you get
0.

27.4 Serial Communication and Debugging

While you keep your microcontroller connected to your computer via USB,
you can use the USB connection for serial communcation between the two.
The Arduino IDE provides a terminal for two-way comunication, the Serial
Monitor (and a Serial Plotter) to make this easy, but you can use other tools
to do this, such as a telnet client like putty or even use a Unix terminal to
talk directly to the device.

Serial communication is particularly useful for logging output and de-
bugging. To use this, you have to call Serial.begin(r) in the setup() func-
tion, where r is a rate of bits per second. We recommend a rate of 9600,
which is the default setting on the IDE Serial Monitor. You can also set the
bit rate in the Serial Monitor. If they aren’t the same, you get gibberish.
Now you can use serial read and write (print) statements in your code.
Here is an example.

27.5. I/O 211

void setup() {
Serial.begin(9600);

}

int i = 0;

void loop() {
Serial.println(i);
i++;
delay(1000);

}

This prints5 the value of i to the serial monitor (initially 0, and incre-
menting by one in each iteration), waits for one second, and then repeats,
forever. See
https://www.arduino.cc/reference/en/language/functions/communication/
serial/
for all on serial communication. By the way, Serial is an object.

27.5 I/O
Here we discuss the use of I/O pins. For more advanced I/O, see Chap-
ter 28 and the Web. We distinguish digital I/O using pins that allow both
reading and writing (GPIO pins) from analog (input) pins.

For GPIO pins, we have to set a mode (INPUT or OUTPUT) in setup() using
the function pinMode(). Then you can use the functions digitalRead() and
digitalWrite() to read and write the values HIGH and LOW to and from your
pins. The signatures of these functions are as follows.6

void pinMode(int pin, pinmode_type mode);
void digitalWrite(int pin, int HIGHorLOW);
int digitalRead(int pin);

Here is an example:
5See https://www.arduino.cc/reference/en/language/functions/communication/

serial/println/.
6I made up pinmode_type. Use INPUT or OUTPUT as mode. Some microcontrollers

support further modes for some pins, such as INPUT_PULLUP.

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/println/
https://www.arduino.cc/reference/en/language/functions/communication/serial/println/

212 CHAPTER 27. MICROCONTROLLER PROGRAMMING

void setup() {
pinMode(2, INPUT);
pinMode(3, OUTPUT);

}

void loop() {
digitalWrite(3, digitalRead(2));

}

This keeps pin 3 at the same digital value (HIGH or LOW) that it reads at pin
2. For another example, here is the Blink sketch, the Hello-World example
of the Arduino IDE.

void setup() { pinMode(13, OUTPUT); }

void loop {
digitalWrite(13, HIGH);
delay(1000);
digitalWrite(13, LOW);
delay(1000);

}

If you build a circuit with a 330Ω resistor and an LED in series between
pin 13 and GND (and the LED is oriented correctly, see Figure 18.2), this
program turns the LED on, waits a second, turns it off, waits a second,
and repeats. On the Arduino Uno, pin 13 is special in that an on-board test
LED is connected to it. This sketch makes that LED blink even if nothing
is externally connected to pin 13. See
https://docs.arduino.cc/learn/microcontrollers/digital-pins/
for more information on digital pins.

Some microcontrollers allow you to programatically activate or de-activate
internal pull-up or pull-down resistors for individual pins. This elimitates
the need to include such pull-up or pull-down resistors in your circuits.

Some GPIO pins support outputting a PWM signal using the function

void analogWrite(int pin, int duty_cycle);

where duty_cycle is a number between 0 and 255. The PWM frequency
(which is different from the duty cycle) can usually be configured (see
also the example on controlling steppers using PWM in Chapter 36). After

https://docs.arduino.cc/learn/microcontrollers/digital-pins/

27.6. INTERRUPTS 213

executing analogWrite(), the microcontroller keeps sending a PWM sig-
nal with the set duty cycle until you do a digital write to the pin or use
analogWrite(pin, 0). Your program isn’t blocked by this call and the CPU
of the microcontroller isn’t busy with generating the PWM signal since
there is separate hardware support for sustaining PWM signals on the
PWM-enabled pins. You could generate a PWM signal by a suitable pro-
gram, but this will keep your CPU busy and creating an exactly times
signal may be tricky, particularly on a slow microcontroller.

Analog input(pin)s are read using the analogRead() function. The value
returned depends on the resolution (in bits) of the internal analog-to-
digital converters, which depends on the microcontroller. The Arduino
Uno uses 10 bit resolution and the value returned is an integer between 0
and 1023.7

Analog input pins are designed to read true analog signals as they may
be obtained from sensors and variable resistors (such as potentiometers).
This information is digitized using an analog-to-digital converter (ADC)
built into the MCU. Each ADC has a resolution (typically 10 to 14 bit) and
not all of our MCUs have ADCs of the same resolution (see your MCU’s
datasheet). For high-precision sensing applications, you can get a high-
resolution ADC as a separate component and connect it to your microcon-
troller board. Analog in pins are not for reading PWM signals. You do that
using the pulseIn() command on a digital GPIO pin.

You can create a true analog signal using a digital-to-analog (DAC) con-
verter, if your MCU has one, get an external DAC board, or you can try to
smoothe out a PWM signal using capacitors.

27.6 Interrupts
So far we have only one way of reacting to external events: by constantly
testing for them – for instance, using digitalRead(). There is an alterna-
tive: interrupts. We can attach a function we have implemented as an In-
terrupt Service Routine (ISR) to a specific event (such as the digital value on
an input pin changing). This is done with the method attachInterrupt().
We refer to the reference https://www.arduino.cc/reference/en/language/
functions/external-interrupts/attachinterrupt/ for details on this and pro-
vide the example from that page here:

7For the case that resolution matters, there are ADC boards with higher resolution.

https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

214 CHAPTER 27. MICROCONTROLLER PROGRAMMING

volatile byte state = LOW;

void setup() {
pinMode(13, OUTPUT);
pinMode(2, INPUT);
attachInterrupt(digitalPinToInterrupt(2), blink, CHANGE);

}

void loop() { digitalWrite(13, state); }

void blink() { state = !state; }

The code switches the on-off state of pin 13 (and thus, on the Arduino
Uno, of the built-in LED) every time the digital value on pin 2 changes.
On the Arduino Uno, pin 2 is one of the two interrupt-enabled pins. One
non-interrupt-enabled pins, this code would not work. As you can see, we
can use HIGH and LOW as truth values (true and false); !state negates the
truth value of state.

You would be right in considering it natural (and power-saving) to put
your microcontroller to sleep while it waits for an interrupt. Unfortunately,
this does not work. The delay functions use interrupts themselves, and if
you define your custom interrupts, they interfere.

If the kind of change you are subscribing to by attaching an interrupt is
related to the physical process of opening or closing a connection, say by
a switch or button, there is a pitfall. For a small fraction of a second, what
usually happens is that the contact is made and lost repeatedly, potentially
triggering the interrupt several times. In that case, one should make sure
in the program that this noise does not adversely affect its performance
and correctness. This is called debouncing. This of course is revelant for
monitoring change events no matter what method, using interrupts or not.

27.7 Porting Code to other Microcontrollers

The Arduino IDE provides good abstraction from the details of individ-
ual microcontroller families and models, and frequently, porting programs
from one microcontroller model to another just requires us to substitute
pin numbers to account for the different pinouts of the two models. Of

27.8. GETTING TO THE BARE METAL 215

course, some features are supported in different multiplicites (e.g., num-
bers of analog input pins and thus analog-to-digital converters), poten-
tially requiring mayor changes or making a particular MCU unsuitable for
a particular use. Some features are only present in some models. Ad-
vanced functionality such as Wifi or video recording are usually supported
by code libraries that spare you the need for much coding and make the
use of this advanced functionality easy, but require you to read up on these
libaries. Such libraries will be specific to the MCU models and boards.

27.8 Getting to the Bare Metal
This section aims to help you better understand the functioning of an MCU
and what you ultimately do when you program it. You do not need to
program this low-level unless you want to get the very best performance
from your MCU and are willing to deal with the added complexity.8

Methods such as digitalWrite() in the Arduino IDE and even pin num-
bers do not show up in compiled, executable MCU machine code: they
form part of a Hardware Abstraction Layer (HAL) specific to the Arduino
IDE. The reason why such a HAL does not go all the way to making Ar-
duino IDE programs perfectly portable between MCU models is that they
do not all have the same functionality.

If you are interested in seeing the code that defines the essential map-
pings of this HAL, see
https://github.com/arduino/ArduinoCore-avr/tree/master/cores/arduino,
in particular the file Arduino.h. The file pins_arduino.h9 defines the map-
ping between MCU pins and board pins – you can find the essential in-
formation of Figure 27.1 in this header file, with the following ASCII art
drawing of the IC and its pins to accompany it (starting at line 89):

// +-\/-+
// PC6 1| |28 PC5 (AI 5)
// (D 0) PD0 2| |27 PC4 (AI 4)
// (D 1) PD1 3| |26 PC3 (AI 3)

8Note that some IDEs, such as the STM IDE for STM32 family MCUs, while having a
HAL, expose you much more strongly to the low-level workings of the MCU.

9https://github.com/arduino/ArduinoCore-avr/blob/master/variants/standard/
pins_arduino.h – this is for the Arduino Uno; further boards are covered in other
subdirectories of variants/.

https://github.com/arduino/ArduinoCore-avr/tree/master/cores/arduino
https://github.com/arduino/ArduinoCore-avr/blob/master/variants/standard/pins_arduino.h
https://github.com/arduino/ArduinoCore-avr/blob/master/variants/standard/pins_arduino.h

216 CHAPTER 27. MICROCONTROLLER PROGRAMMING

Figure 27.1: Arduino Uno vs ATMEGA328 pinout.

// (D 2) PD2 4| |25 PC2 (AI 2)
// PWM+ (D 3) PD3 5| |24 PC1 (AI 1)
// (D 4) PD4 6| |23 PC0 (AI 0)
// VCC 7| |22 GND
// GND 8| |21 AREF
// PB6 9| |20 AVCC
// PB7 10| |19 PB5 (D 13)
// PWM+ (D 5) PD5 11| |18 PB4 (D 12)
// PWM+ (D 6) PD6 12| |17 PB3 (D 11) PWM
// (D 7) PD7 13| |16 PB2 (D 10) PWM
// (D 8) PB0 14| |15 PB1 (D 9) PWM
// +----+
//
// (PWM+ indicates the additional PWM pins on the ATmega168.)

27.8. GETTING TO THE BARE METAL 217

Inside executable MCU code, there aren’t instructions such as pinMode()
or digitalWrite(), just like your laptop’s CPU has no instructions for read-
ing out the state of your keyboard or for drawing a pixel on your screen. In
your computer, devices are memory-mapped, and we write to the screen by
writing to a region of memory. Your CPU instructions are all about read-
ing and writing memory, basic calculation, and control (branching and
looping). I/O in your MCU works similarly, and its pins are addressed via
special registers.

For example, in the Atmel ATMEGA328, the MCU used on the Arduino
Uno board, all I/O works through three 8-bit registers, called (port) PB, PC,
and PD (see Figure 27.1 for a complete specification of the wiring between
board pins and pins of the ATMEGA328 IC). Consequently, in ATMEGA328
machine code, we set bit 5 of register PB to 0 or 1 to set digital pin 13 to
LOW or HIGH, respectively. Note, however, that this isn’t the only thing
digitalWrite() does. For example, it also makes sure than PWM genera-
tion for that pin is off. You can find the actual code of the digitalWrite()
function in wiring_digital.c10 (starting at line 138).

HALs come with a cost to performance. For example, in the Blink
sketch, where we keep turning pin 13 on and off, there is no need to turn
off PWM every time. Doing bit manipulation is very natural in C. How-
ever, changing several bits in a register is no more costly than setting just
one; using digitalWrite() to set several pins uses separate instructions
for each pin; thus, a low-level program achieves the same more efficiently.

10https://github.com/arduino/ArduinoCore-avr/blob/master/cores/arduino/
wiring_digital.c

https://github.com/arduino/ArduinoCore-avr/blob/master/cores/arduino/wiring_digital.c
https://github.com/arduino/ArduinoCore-avr/blob/master/cores/arduino/wiring_digital.c

218 CHAPTER 27. MICROCONTROLLER PROGRAMMING

Chapter 28

Interfacing and Communication

In this chapter, we cover wired communication, but more specifically, in-
terfacing and communication among the various electronic components of
your thing. We do not cover (wired) networking (such as Ethernet, and IP
networking) and communication over great distances.

There are a number of interface standards and protocols that you rarely
– if ever – see outside the context of embedded systems. These include
UART, I2C, SPI, and CAN. These are for making the components of an
embedded system talk to each other, and they are typically very simple and
require little computational cost. They are not meant to be seen by end-
users, and they are not suitable for large-scale or even wide-area networks.
They vary in their specifics.

Figure 28.1 gives an overview. Very frequently, you do not choose which
protocol to use, but a component (such as a sensor of motor driver) that you
want to use requires you to talk to it via a specific interface. You can often
recognize which interface – without looking at the datasheet, which you of
course also have to do – by the names of the interface pins. Typical names
are shown in the second column of Figure 28.1. Note that components

Usual Pin Names Type Max Devices
UART RX/TX point-to-point 2
I2C SDA/SCL master-slave bus 127
SPI MISO/MOSI/SCLK/CS master-slave bus ∞
CAN-Bus CAN_H/CAN_L multi-master bus 32

Figure 28.1: Embedded systems interfacing standards.

219

220 CHAPTER 28. INTERFACING AND COMMUNICATION

that interface with any of these standards also need common ground, so
there is, additionally, at least a ground wire connecting the components.

If you have a choice of interfacing protocol (for instance, if you want to
make two MCUs talk to each other), you should use the simplest protocol
that is applicable, because “simple” usually means both low computational
cost and simple to program (using a suitable library). The protocols in
Figure 28.1 are roughly ordered by increasing complexity.

The uncontested champions of communicating using these protocols
are MCUs of the STM32 family. Not only do they support all of these pro-
tocols – usually the support multiple instances of some of these protocols
(which and how many depends on the member of the family).

28.1 GPIO Pins

Before we cover the various protocols, be reminded that you can build
your own interfaces and protocols using GPIO pins. Usually, you won’t do
this unless you have to, because running one of the above protocols with
hardware support means that work is taken off the compute core, and you
have to worry less about timing and how receiving messages interleaves
with your other computations and the overall control flow in your code.
If you want incoming bits (or better, changes in the voltage level of your
“incoming” signals) to trigger interrupts, this takes up interrupt-enabled
pins, which then aren’t available for other uses.

If you are building your own protocol, a main concern is how to achieve
synchrony between two communicating components. You cannot rely on
local clocks (particularly approximations of real time-based ones, as used
in delay()) as these may drift between components. The easiest way to
solve this is to have a dedicated clock signal sent by one component to the
others. Each switch between logical HIGH and LOW (either way) denotes
one clock tick. This approach is used, for instance, in I2C and SPI (via
SCL and SCLK, respectively).

If you simply want to continuously transmit a single current numerical
value, in one direction only, you can do this with a PWM signal. In that
case, you do not need a clock signal (but you still need, as always, common
ground). Read this PWM signal using pulseIn().

28.2. RX/TX SERIAL (TTL, UART) 221

28.2 RX/TX Serial (TTL, UART)

All of our MCUs have at least one UART1 interface, and some have several.
This is a standard that manifests in several ways; we only care about the
simplest2, TTL (Transistor-Transistor Logic). Here we have, in addition to
a common-ground wire, two wires, called RX and TX for two-way data
transmission. There is no dedicated clock wire; you have to set the same
bit rate for data transmission3 in both components intended to talk to each
other. This is a point to point protocol for connecting two components: it
is not a bus that can connect multiple components like I2C, SPI, or CAN.
You connect the RX line of one component to the TX line of the other, and
vice versa.

TTL RX/TX serial plays a special role in MCUs. Each MCU can be
programmed by uploading executable code through the first of these in-
terfaces (if there is only one such interface, than that one). MCUs are
usually in program upload mode while their reset pin is at the logic level
that means “reset”.

MCU boards that have a USB connector usually have USB serial con-
nected to this first RX/TX interface (with a dedicated USB protocol chip
such as a CH340 IC translating the USB protocol to TTL RX/TX). For that
reason, you cannot use these RX/TX pins freely for communicating with
other components: on startup and reset, special things happen on these
pins, and if you communicate with your computer via USB, this transmis-
sion shows on these pins. In practice, it is best to use an MCU’s first UART
interface just for program upload and communication with your laptop –
anything else is complicated and error-prone.

If you run out of hardware UART interfaces, you can use the Software-
Serial library to turn any two GPIO pins into a serial port. Note that this
has limitations – SoftwareSerial does not work well on some MCUs, and
there is a bit rate limit for such software serial ports.

1U(S)ART, universal (synchronous/)asynchronous receiver-transmitter, see https://
en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter.

2There are also RS-232 and RS-485, which use further wires for noise-canceling/error-
correction.

3Which does not solve the timing/synchronization problem itself, but you do not need
to worry about this if your have hardware support or a software library for serial com-
munication.

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

222 CHAPTER 28. INTERFACING AND COMMUNICATION

28.3 Universal Serial Bus (USB)
Many microcontroller boards have a USB port for communicating with a
computer and for code upload. For those that do not (such as the ESP32-
CAM), you can use an FTDI board as a USB adapter. See the discussion
of the ESP32-CAM in Chapter 24.

While your microcontroller board is connected to your computer via
USB, you can talk to it in various ways such as telnet or putty – you are
not limited to the Arduino IDE.

Note that while USB is a serial protocol, USB is more complicated than
TTL serial. This is for robustness, since it is a standard to be used by end-
users. The USB protocol includes a mechanism for a device to identify itself
and to transmit metadata about itself. One important application of USB
ports is as power supply connectors4, and the recent USB-c standard has
taken this to new levels by not just being designed for high currents (up to
5A) but also with a mechanism for switching the voltage and running at
higher voltages than 5V – up to 20V. Because of this, we cannot simply pass
through USB data lines to TTL RX/TX pins. CH340 and CP2102 ICs, for
which you may have to install drivers to connect your microcontroller board
to your computer, are interfacing chips between USB and TTL RX/TX.

28.4 I2C
I2C5 is designed for communication between microcontrollers and low-end
peripherals over small distances. It is a master-slave bus, so many (up
to 127) devices can be connected, and each has an address for it to be
contacted. There is one dedicated master (an MCU) that initiates all com-
munication – it either sends messages to other devices or requests data
from other devices – which will respond to requests but not otherwise ini-
tiate communication. Typical slave devices such as sensors have a fixed
address which you need to know from the datasheet to use it (sometimes,
an address can be chosen from a small number of alternatives by setting
jumpers, but most of these devices are very simple and not programmable

4In a very laudable initiative, the EU is pushing electronics manufacturers to stan-
dardizing power supplies – this will commoditize power supplies and associated cables,
making them cheaper (looking at you, Apple), and eliminating the need to own and carry
around so many of them.

5https://en.wikipedia.org/wiki/I2C

https://en.wikipedia.org/wiki/I2C

28.4. I2C 223

or configurable). This is a limiting factor – you will only be able to use one
or a limited number of this kind of device, because each device on the bus
needs to have a unique address. In an MCU, the address is programmable.

There is a standard6 library for I2C called Wire7 that makes using I2C
easy.

Figure 28.2: The I2C bus (note the pull-up resistors).

One thing to note is that pull-up resistors should be used to pull up
both the SDA and SCL lines (see Figure 28.2). If you just want to make
two Arduino Unos talk to each other, they are not needed.

Here are a couple of videos on using I2C:
https://www.youtube.com/watch?v=PnG4fO5_vU4
DroneBot Workshop
“I2C Part 1 - Using 2 Arduinos”
https://www.youtube.com/watch?v=yBgikWNoU9o
DroneBot Workshop
“I2C Part 2 - Build a I2C Sensor”
https://www.youtube.com/watch?v=6IAkYpmA1DQ
How To Mechatronics
“How I2C Communication Works and How To Use It with Ar-
duino”

It is very easy to use I2C to make an MCU talk to others. Example: two
Arduino Unos. You wire them up using three Dupont cables, to connect

6Thus, it does not have to be installed.
7See the Wire library documentation at

https://docs.arduino.cc/learn/communication/wire/
and the library reference at
https://www.arduino.cc/reference/en/language/functions/communication/wire/.

https://www.youtube.com/watch?v=PnG4fO5_vU4
https://www.youtube.com/watch?v=yBgikWNoU9o
https://www.youtube.com/watch?v=6IAkYpmA1DQ
https://docs.arduino.cc/learn/communication/wire/
https://www.arduino.cc/reference/en/language/functions/communication/wire/

224 CHAPTER 28. INTERFACING AND COMMUNICATION

A4 to A4 (SDA), A5 to A5 (SCL), and GND to GND of the two Unos.8 The
code running on the master is

#include <Wire.h>

int x = 0;
void setup() { Wire.begin(); }
void loop() {

Wire.beginTransmission(9);
Wire.write(x);
Wire.endTransmission();
x = (x + 1) % 10;
delay(1000);

}

The code running on the slave is

#include <Wire.h>

void setup() {
Wire.begin(9);
Wire.onReceive(recv);
Serial.begin(9600);

}

void recv(int bytes) { Serial.println(Wire.read()); }
void loop() {}

The master sends integers to the slave, which the slave prints to serial.

28.5 Serial Peripheral Interface (SPI)
See Wikipedia9 and this video:
https://www.youtube.com/watch?v=fvOAbDMzoks
GreatScott!
“Electronic Basics #36: SPI and how to use it”

8The I2C standard dictates that there should be a pull-up resistor for both SDA and
SCL, but when connecting to Uno R3s, you should be able to do without.

9https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

https://www.youtube.com/watch?v=fvOAbDMzoks
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

28.6. CAN-BUS 225

Compared to I2C, SPI uses up more pins of your MCU – not only does SPI
use three (clock, master-out-slave-in/MOSI, and master-in-slave-out/MISO)
rather than two pins for communication; in addition, one pin of your mas-
ter MCU is needed per slave device to select which slave device to talk to:
While the actual communication lines are shared among slaves, there is a
separate line per slave to instruct one slave to talk (to) and the others to
be quiet. This can be an advantage: No per device addresses are needed,
so you can communicate with several instances of the same kind of device
on the same bus, unlike for I2C.

If you want to use many devices with SPI (there is no limit), you can
do with a logarithmic number of address pins of your MCU by using a
de-multiplexer chip such as the 74HC59510.

28.6 CAN-Bus

The CAN-bus has been developed for automotive applications, but we also
encounter it with advanced brushless motor drivers like o-drives and VESCs
and expensive servos (like those used in the MIT11 robot dog). The mi-
crocontrollers we use do not have native CAN-bus support, but there are
boards for that. Note that CAN-bus devices are arranged in a chain, at the
ends of which we need special terminating resistors.

https://www.youtube.com/watch?v=QYX_XOjjGOM
How To Electronics
“Arduino CAN Bus Tutorial | Interfacing MCP2515 CAN Mod-
ule with Arduino”

The CAN-bus is also used for accessing the self-diagnostics facilities
of cars in car repair shops. There are videos on youtube on how to do
this with you car, such as the following. (Check the legal and warranty
implications before doing anything.)

10It’s a shift register, but can be used as a de-multiplexer. The 74HC595 is an easy way
to increase the number of digital output pins of you MCU if you do not need particularly
rapid switching. See https://www.youtube.com/watch?v=Ys2fu4NINrA

11That’s the other MIT. Btw, did you know that the animal first called Panda is now called
the Lesser Panda (Ailurus fulgens) to give way to calling the high-contrast Chinese bamboo
bear a Panda? (See https://www.youtube.com/watch?v=H63S6QG-8Ow.) Moving on...

https://www.youtube.com/watch?v=QYX_XOjjGOM
https://www.youtube.com/watch?v=Ys2fu4NINrA
https://www.youtube.com/watch?v=H63S6QG-8Ow

226 CHAPTER 28. INTERFACING AND COMMUNICATION

https://www.youtube.com/watch?v=lkBILe55LQ8
South West EV UK
“How to read the CanBus in any car. (Can Bus) Part #1”

28.7 Parts in Stock for CS358
Model Comm to microcontroller CHF
PCA9685 16-channel PWM multiplexer I2C 12
FTDI USB-to-TTL-serial board TTL serial 2
8-channel logic-level converter GPIO 1
MCP2515 CAN module SPI 2

https://www.youtube.com/watch?v=lkBILe55LQ8

Chapter 29

Wireless Communication

29.1 Bluetooth
Some microcontrollers, such as the ESP32-CAM, natively support Blue-
tooth. (But note that “plain” Bluetooth is not the same or compatible with
Blutetooth Low Energy (BLE).)

Alternatively, you can wire up you microcontroller with the HC05 Blue-
tooth board.
https://www.youtube.com/watch?v=NXlyo0goBrU
Bytes N Bits
“Adding Bluetooth to Your Arduino Project with an HC-05 or
HC-06 Bluetooth Module”

The HC05 has a logic level of 3.3V (logic 1/high is represented by 3.3V),
which means that if you are using a microcontroller with a logic level of
5V like the Arduino Uno, you must translate the signal that goes from the
Arduino’s TX pin to the HC05’s RX pin using a voltage divider or a logic-
level converter. Note that the Arduino’s threshold for high is below 3.3V,
so it “understands” the 3.3V signal that comes back from the HC05 to the
Arduino’s RX pin, so no translation is needed here.

The HC05 can work in a master or slave mode, and particularly if you
want to use multiple HC05, you need to do some configuring (using the
button on the HC05 and AT commands). Look for tutorials on the Web for
that. Note that the default password for the HC05 is either 0000 or 1234,
usually the latter. The default baud rate can also vary, most tutorials say
it should be 38400 baud, but the batch I worked with had 9600 baud as
default. An indication that the baud rate set in your code doesn’t match

227

https://www.youtube.com/watch?v=NXlyo0goBrU

228 CHAPTER 29. WIRELESS COMMUNICATION

an HC05 is if you write out what an Arduino receives through Bluetooth
with the Serial Monitor, and it shows really weird symbols outside the
alphanumeric range. When you set 38400 in software and the HC05 runs
at 9600 baud, you would also “receive” two to three bytes for every byte
you send.

For Bluetooth debugging, I recommend to install a Bluetooth serial ter-
minal app on your phone (there are plenty free ones in both the Apple and
Google app stores). This is a lot less painful that setting up a bluetooth
terminal on your laptop.

29.2 Wifi

Some micro-controllers are Wifi-capable; this includes the ESP8266 and
the ESP32-CAM but not the Arduino Uno. There are Wifi boards and
cousins of the Arduino Uno that are Wifi-capable, but we do not use them.
If you want a microcontroller like the Uno but with Wifi-capability, pick the
ESP8266.

Normal Wifi at EPFL is using WP2-enterprise, which is tricky to con-
nect to with microcontrollers. DLLEL has set up a WP2-personal hotspot,
which is easy to use from a microcontroller. Go here for further informa-
tion: https://make.epfl.ch/tools/iot-wifi At home (i.e., for your individual
project), you can set up a Wifi Hotstop on your mobile phone, but please
don’t do this on the EPFL campus.

29.3 ESP-Now

You will do Wifi using Expressif’s MCUs. Note that ESP32 MCUs also
support a proprietary (i.e., just among EPS32 MCUs) wireless communi-
cation method called ESP-Now that is a bit faster and more long-range on
the same MCUs. It is point-to-point, thus it does not require a Wifi-hub
nearby, so you could use it outside and in the wilderness.

https://make.epfl.ch/tools/iot-wifi

29.4. RADIO 229

29.4 Radio
There are small and cheap wireless communications boards designed for
use with microcontrollers, such as HC-12.1 Nowadays, in most cases, it
is probably preferrable to use Wifi for wireless communication and micro-
controllers.

We may also use remote controls from/for toy cars, planes, etc.

29.5 Parts in Stock for CS358
Model Comm to microcontroller CHF
HC05 bluetooth board TTL serial 3

1https://howtomechatronics.com/tutorials/arduino/arduino-and-hc-12-long-range-wireless-communication-module/

https://howtomechatronics.com/tutorials/arduino/arduino-and-hc-12-long-range-wireless-communication-module/

230 CHAPTER 29. WIRELESS COMMUNICATION

Part V

Sensors

231

Chapter 30

Introduction to Sensors

This chapter is work in progress. For now, we just provide a grouping of
sensors by the difficulty of using them plus some general insights.

There are sensors for almost anything you could be thinking of, and
they are often quite affordable and easy to use. Go to aliexpress.com and
search for “sensor kit”. The search will return kits consisting of as many
as 45 simple sensors for use with a microcontroller like the Arduino Uno
(see Figure 30.1). Have a look at the images and the lists of sensors there.

Figure 30.1: A typical sensor kit (costs about CHF 11 for the entire kit).
Not everything in this kit is a sensor, though.

233

234 CHAPTER 30. INTRODUCTION TO SENSORS

There are some kinds of sensors, like accelerometers, that are intrinsi-
cally tricky to use. While we say so, do not be discouraged outright from
using them. Look at some tutorials on using them online and then decide.
We do not rate anything mentioned in this chapter as unsuitable (too dif-
ficult to use) for the course, though some LIDARs are too expensive.

30.1 Super-simple Sensors
Some sensors appear as resistors (with variable resistance based on the
quantity measured) in your circuit. This includes temperature sensors,
humidity sensors, photoresistors1 (brightness sensors), and Hall sensors
(which sense magnetic fields and can be used, in conjunction with mag-
nets, for various applications, such as sensing small distances and ori-
entations and counting rotations). They are connected to your microcon-
troller via an analog input pin, which measures a voltage. (But search the
Web for an example circuit – you typically build up a voltage divider.)

There are also transistor-like sensors, such as phototransistors, which
switch a digital signal based on a physical quantity (such a brightness)
exceeding a threshold. You can read these with a digital input pin – again,
search the Web for circuit examples.

30.2 Simple Sensors
Some sensors take measurements of physical quantities in a scenario
where we either need to detect very small changes, or the sensor reading
changes only slightly as environmental conditions change. An example are
load cells, which are weight sensors based on the changing resistance of
a piece of metal that is being deformed. The resistances change only very
slightly, and reading this with an analog input pin would not get reliably
useful results, no matter what you do in your code. These require ampli-
fiers. Amplifiers are components that you may know from sound systems
as increasing the volume of sound. That is not their key function, though:
there are about enhancing differences in sound levels. Many a sensor
comes with board with an amplifier on it. This does not make it hard to

1There are various kinds, based on the wavelength of light they are sensitive too. IR-
sensors are different from sensors for visible light.

30.3. CHALLENGING SENSORS 235

use, but you usually have additional wires to power the electronics on the
board, and in some cases you need to provide negative voltages (which you
achieve by batteries and a floating ground).

Another complication arises when the sensor sends messages that have
structure, such as pairs of readings or multi-bit messages. In that case,
they need a suitable protocol to communicate messages to the microcon-
troller. This does not make the use of these sensors inherently difficult,
but you must be aware of this. Usually, such sensors come with a match-
ing library to make their use easy, which you first have to download. An
example of a sensors with a simple message protocol is the HC-SR04 ul-
trasonic distance sensor, which is covered in detail in Chapter 31.

Also keep in mind that some sensors have an active component such
as an LED as part of their assembly, which interacts with the environment
and creates additional constraints on where and how to place the sensor
on your thing. This includes, for instance, the above-mentioned HC-SR04.
Another example is the TCRT5000 IR sensor for sensing the brightness of
a surface, which is often used for line-following mobile robots.

30.3 Challenging Sensors

30.3.1 Accelerometers

There are a number of related terms used in this context: accelerometers
(which measure acceleration and deceleration of the thing the sensor is
mounted on), compasses (which detect orientation relative to the magnetic
north pole of Earth), gyroscopes (which measure orientation relative to
the vector of gravity), and inertial measurement units (IMU; which refers to
sensors measuring any subset of the above, but usually primarily measure
acceleration).

The need for these naturally arises in many applications, but they are
challenging to use, and some applications are not realistic. It is relatively
unproblematic to detect the fact that a thing is accelerating, but you cannot
robustly calculate absolute positions or relative distances moved. Do not
assume that you can measure the distance travelled by a mobile thing
using an accelerometer. In principle, it is possible to calculate distances
traveled from acceleration and time, in practice, the measurements are too
imprecise for this to work and errors accumulate and multiply.

236 CHAPTER 30. INTRODUCTION TO SENSORS

Also, the orientation of your thing in space, say, relative to “down” and
north, is feasible, but these sensor readings drift, and compensating this
isn’t easy.

The most widely used and available accelerometer is the MPU6050. You
will find that there are other accelerometer boards that are sometimes de-
scribed as more precise. These suffer from the same (programming) pit-
falls as the MPU6050, such as drift. If you don’t get these under control for
the MPU6050, switching to a more precise alternative will not solve your
problem.

Not all such sensors measure the same things. Look at the datasheet.
A simple stat is how many degrees of freedom (DOF) they have/measure.
More is not necessarily better in your application.

We will probably give you an MPU6050 even if you request a different
IMU.

30.3.2 GPS Sensors
The software side of using them isn’t particularly difficult, but we fre-
quently have experienced malfunctioning sensors. Also, their precision
is not high enough for precise robot navigation.

30.3.3 LIDAR
LIDAR sensors (that actually work) tend to be large, heavy, and expensive.

30.3.4 Cameras/Vision
You usually combined video cameras with computer vision. The ESP32-
CAM is a microcontroller with an on-board two-megapixel camera and bor-
derline sufficient compute capacity to do basic computer vision tasks on
board. There is a very limited version of TensorFlow that can run on the
ESP32-CAM, but we warn you that this may be super-tricky to get to work,
and we haven’t seen anyone do it yet. The standard way of doing computer
vision in this course is to use a stationary Webcam or stream video from the
ESP32-CAM to your laptop and do the computer vision processing there.
See also Chapter 50.

Remember that cameras are not the only way of “seeing” the environ-
ment and avoiding obstacles in the case of a mobile robot. Ultrasonic dis-

30.4. RECOMMENDED VIDEOS 237

tance sensors (possibly mounted to a rotating platform) and LIDARs are
alternatives that may be preferable – sensing objects may be more robust
than with computer vision.

30.4 Recommended Videos
https://www.youtube.com/watch?v=V1txmR8GXzE
DroneBot Workshop
“Using Rotary Encoders with Arduino”
https://www.youtube.com/watch?v=XCyRXMvVSCw
DroneBot Workshop
“Build an Electronic Level with MPU-6050 and Arduino”

30.5 Parts in Stock for CS358
Model Type CHF
HC-SR04 ultrasonic distance sensor 2
TOF400C laser distance sensor 5
TOF400H laser distance sensor 6
TCRT5000 infrared reflective optical/distance sensor module tba
LD2410C 24GHz radar human presence sensor 7
? passive infrared motion sensor, small tba
SEN-13285 passive infrared motion sensor 10
MPU-6050 6 DOF inertial measurement unit 5
NXP Adafruit 9-DOF accelerometer/mag/gyro board 62
OE-TP capacitive touch button 1
LLC4690 fingerprint sensor 19
WallySci E3K biosensing platform/sensor kit 143
ATGM336H GPS sensor module 12
GE-NEO6MV2 GPS sensor module 29
- 45-item misc sensor kit 30
? electrets (microphone capsules) ?
RC522 RFID sensor + RFID tag 6
TC3200 color sensor 8
SEN-13329+HX711 load cell and amplifier board (weight sensor) 20
CUI AMT-102-V Rotary Incremental Encoder (for FOC), indexes 21
TLE5012b? Hall Effect Rotary Encoder (for FOC) 18?

https://www.youtube.com/watch?v=V1txmR8GXzE
https://www.youtube.com/watch?v=XCyRXMvVSCw

238 CHAPTER 30. INTRODUCTION TO SENSORS

30.6 Sensor Pitfalls
As you can see in the table above, sometimes there are multiple different
sensor technologies available to sense the same physical quantity. For ex-
ample, above, we find distance sensors that use ultrasound, lasers, and
infrared light. All of them actively emit sound or light waves and measure
their round-trip times. Our ultrasound and laser sensors each are rated
to a maximum distance of about 4m. The ultrasound sensor may interfere
with other ultrasound sensors (in case you had in mind to use multiple
such sensors on your thing). The laser sensor, on the other hand, may
be sensitive to the surface materials it is reflecting its beam off of. The
infrared sensor has very different use cases – it is only suitable for very
small distances; while it can be used for collision warnings, its most pop-
ular use case is as a reflectivity sensor directed downward, to all a robot to
follow a line drawn on the ground, for example. The sensor is placed just
millimeters above the round and is able to distinguish a reflective (white)
surface from a dark surface.

Another example are rotation sensors (rotary encoders). There are very
cheap rotation sensors (even a potentiometer – a variable resistor – can
achieve this) that are intended to read the angle of a rotary knob (e.g.,
the sound volume on a sound system). These have relative low resolution
and precision and may have a hard stop to rotation both clockwise and
counterclockwise (as rotary knobs usually do), making them unsuitable
to be attached to the output shafts of continuously rotating motors. At
the other end of the price range are rotary encoders (usually incremental
encoders2) that offer very high resolution (thousands of PPR – pulses per
revolution) and – usually – cause nearly no friction when attached to a
motor shaft. These usually use either optical technology or the magnetic
hall effect. The former need to wrap around a motor shaft and are best
used with motors whose shaft protrudes on both ends of the motor. Hall
effect encoders require a small magnet to be glued to one of the ends of
the motor shaft (a circular base, when the shaft is viewed as a cylinder)
or to the rotor of the motor (if it is an outrunner3). Rotary encoders with
an index have a way of keeping track of an absolute zero position of the
encoder. In an encoder without an index, you have to keep track in your
program of the change of position since power-on, and you may need to do

2https://en.wikipedia.org/wiki/Incremental_encoder
3https://en.wikipedia.org/wiki/Outrunner

https://en.wikipedia.org/wiki/Incremental_encoder
https://en.wikipedia.org/wiki/Outrunner

30.6. SENSOR PITFALLS 239

some additional calibration for your thing.
As you see, there are things to know about sensors to determine whether

a particular sensor module is suitable for you. You do not get around read-
ing up on the sensor and looking for a tutorial on that particular sensor
model. (You need to do this before you put it into your bill of materials.)

Even though it is obvious, be reminded that sensors need to sense their
environment, and for that, they need to have unimpeded access to it. Plan
ahead when you design your thing. Where (on the “outside”) do you have
to put your sensors so the thing does not obstruct the sensors?

240 CHAPTER 30. INTRODUCTION TO SENSORS

Chapter 31

The HC-SR04 Ultrasonic
Distance Sensor
Juliette Parchet

The HC-SR04 ultrasonic sensor is a popular sensor used for measuring
distance1 and has two main components: a transmitter and a receiver. The
sensor sends out high-frequency sound waves, which bounce off of nearby
objects and return to the receiver. By timing how long it takes for the sound
waves to return, the sensor can calculate the distance to the object (see
image below). It is commonly used in robotics, home automation, and
security systems, as it is easy to use and relatively inexpensive.

Now let’s take a closer look at Figure 31.1 to see the HC-SR04 main
specifications and pinout.
We can see that the operating voltage of the sensor is 5V, so we can connect
the VCC to the 5V pin of the Arduino UNO, and the GND to the GND. Then
we use the Trig pin to send the ultrasound wave from the transmitter of
the sensor, and we use the Echo pin to listen for the reflected signal. As
we will only use the HIGH/LOW values for the Echo and Trig pins, we can
connect them to any digital pin of the Arduino UNO (so for example pins 9
and 10 as shown in the image below).

Let’s then inspect the protocol. In order to generate the ultrasound, we
need to set the Trig pin HIGH for 10 µs. The sensor will react by sending an
8-cycle ultrasonic burst which will travel at the speed of sound. The Echo

1You can also use it to make a levitation device: https://www.youtube.com/watch?v=
WZpdGN6YTdY.

241

https://www.youtube.com/watch?v=WZpdGN6YTdY
https://www.youtube.com/watch?v=WZpdGN6YTdY

242 CHAPTER 31. THE HC-SR04 ULTRASONIC DISTANCE SENSOR

Figure 31.1: Main characteristics of the HC-SR04 (left) and pinout (right).

Figure 31.2: HC-SR04 to Arduino Uno wiring.

pins go HIGH right away after that 8-cycle ultrasonic burst is sent, and it
starts listening or waiting for that wave to be reflected from an object.

If a reflected pulse is received the Echo pin will go LOW. Based on the
duration for which the Echo pin was HIGH, we can determine the distance
the sound wave traveled and thus the distance to the object. If there is
no object or reflected pulse, the Echo pin will time out after 38ms and get
back to the LOW state.
To calculate the distance of the object, we use this formula: d = v×t

2
, with v

the speed of sound (= 34cm/ms), t the time is ms during which the Echo
pin was HIGH, and divided by two to account for the round trip.
Now that we understand how the HC-SR04 ultrasonic sensor works, we

243

Figure 31.3: The HC-SR04 ultrasound protocol.

can get to the coding part.

// defines pins numbers
const int trig = 9;
const int echo = 10;

// We define the speed of sound, time, and distance variables
const float v = 0.034;
long t;
int d;

void setup() {
// Set the trig pin as an Output to send the trigger signal
pinMode(trig, OUTPUT);
// Sets the echo pin as an Input to receive the echo signal
pinMode(echo, INPUT);
// Starts the serial communication
Serial.begin(9600);

}

void loop() {
// We first clear the trig pin, using the function digitalWrite
digitalWrite(trig, LOW);
delayMicroseconds(2);

244 CHAPTER 31. THE HC-SR04 ULTRASONIC DISTANCE SENSOR

// Now we set the trig pin on HIGH for 10 microseconds
digitalWrite(trig, HIGH);
delayMicroseconds(10);
digitalWrite(trig, LOW);

// Then we read the echo pin and store the sound wave travel
time in microseconds
// PulseIn is a function that measures the duration of a pulse
on a digital input pin and takes as an argument the pin to
read and the state of the pulse.
t = pulseIn(echo, HIGH);

// Lastly we calculate the distance
d = (t * v) / 2;

// To see the resulting distance, we can use the Serial Monitor
Serial.print("Distance to object: ");
Serial.println(d);

}

31.1 Recommended Videos
https://www.youtube.com/watch?v=6F1B_N6LuKw
DroneBot Workshop
“Using the HC-SR04 Ultrasonic Distance Sensor with Arduino
- Everything you need to know!”

https://www.youtube.com/watch?v=6F1B_N6LuKw

Chapter 32

Making your own Sensors

Sometimes, the sensor you need isn’t readily available. This may be the
case because you have something particularly unusual in mind, or simply
because the structural and mechanical characteristics of your thing make
off-the-shelf sensors unsuitable.

For example, there are various types of rotary encoders available, but,
typically, their design assumes that rotation is around a simple axis. If you
are building a biologically-inspired thing, you will observe that your animal
will have no simple and well-behaved joints. For example, the human body
has numerous approximations of ball joints, but the balls aren’t balls but
are typically more egg-shaped. A human knee joint isn’t the hinge joint we
might presume it is, and the joint attaching our arms to our torsos (the
shoulder) isn’t even close to our shoulders but is located where the clavicle
meets our thorax, in front of our bodies, below our necks. (Shoulders are
extremely complicated.) So how do you measure rotation, angle, or path
travelled in such a complex bio-mechanical system?

You may adapt an existing sensor or build a mechanical contraption to
translate the complex motion into a simpler circular motion. We can call
that contraption, together with the off-the-shelf base sensor, a sensor we
created of our own.

But we may even go beyond this and start making our sensors from
scratch. It can be fun, and the sense of achievement on success will be
considerable.

245

246 CHAPTER 32. MAKING YOUR OWN SENSORS

32.1 Resistor-based Sensors

Remember from Chapter 30 that many sensors are simply variable re-
sistors using a material that is sensitive to a physical quantity such as
temperature or light intensity.

Let’s first de-mystify resistors. Take a piece of paper and a very soft
pencil (such as a 6B) and cover a 2 × 5cm rectangle thickly with graphite
from the pencil. We are talking as thick a layer as the paper will hold,
with a glossy, metallic-looking surface. Now take a multimeter, put it in
resistance-measurement mode, and touch two points on this graphite sur-
face with your probes. The resistance will vary with distance, up to some-
thing on the order of 10kΩ, a very good level for building sensors. If you
created a very clean and consistent layer, your resistance will be grow-
ing quite precisely linearly with distance and will be very reproducible. If
this works only intermittently for you, the points of the probes may be
too pointy – try to change the angle of the probes to have a greater metal
surface of the probes touch the graphite layer.

This is a form of distance sensor – you can read voltages and thus re-
sistances using the analog input pins of your microcontroller. You can
turn this into a rotary encoder by wrapping the sheet of paper around
something round, even it it’s not perfectly round (as in those biomechan-
ical things we discussed above). Just think of a good solution for making
continuous contact with your graphite layer. (Maybe using a spring?)

Of course, this is an idea to get you started tinkering, and not for cre-
ating a product. The piece of paper, and the graphite layer on it, will not
survive long-term.

32.2 Amplifying Small Changes

Suppose you have a sensor that turns a physical quantity into resistance
and thus a voltage. Often, even a considerable change of the physical
quantity changes the voltage only slighty (this is particularly true for load
cells and photoresistors). The voltages here aren’t necessarily close to zero,
but the changes are small. In that case, you need to precisely amplify
the delta relative to a baseline voltage, to get a useful reading into your
microcontroller. This is done with electronic components called amplifiers.

Note that amplifiers come with special complications regarding supply-

32.2. AMPLIFYING SMALL CHANGES 247

ing power (they usually require both positive and negative voltages relative
to Gnd to be supplied to them. To give you a base understanding, let us
talk a bit about operational amplifiers1, which are a fundamental kind of
electronic component that instrumentation amplifiers are based upon.

Figure 32.1: Using an OpAmp: Basic amplifier circuit (left) and differential
amplifier circuit (right).

Discussing them in detail is beyond the scope of this section, though it
is fascinating. Watch the video on them recommended below (the one by
EEVblog).

In short, OpAmps can be used to achieve different functions based on
the circuit they are put into. The basic amplifying circuit is shown in
Figure 32.1 (left). Note that an OpAmp has additional pins for Gnd and
to supply a positive and a negative voltage relative to Gnd. The two input,
labeled + and - in the figure, are not these power supply pins but the so-
called inverting and non-inverting inputs. (Do not confuse them with the
power supply pins!) The circuit of Figure 32.1 (left) will amplify the voltage
(signal) on Vin by a factor determined by the two resistances Rf and Rg, up
to the supply voltages.

As for supplying power, we need to supply positive and negative volt-
ages, relative to Gnd. We can do this with two batteries or islated power
supplies connected in series, with (“floating”) Gnd defined as the voltage
level between the two power sources, of using a voltage divider, where Vin,
Vout, and Gnd of the supplying circuit with the voltage divider become V+,
Gnd, and V−, respectively, of the amplifier circuit. Be careful – we now

1OpAmps, see https://en.wikipedia.org/wiki/Operational_amplifier.

https://en.wikipedia.org/wiki/Operational_amplifier

248 CHAPTER 32. MAKING YOUR OWN SENSORS

have two different things called Gnd and interpreted as Gnd in two differ-
ent regions of our circuit, and if we connect them by mistake, we create
a short-circuit! Note that this is a scenario we covered before, with the
amplifier application in mind, in Figure 17.5!

Operational amplifiers can be used in a setup that makes them differen-
tial amplifiers (to amplify deltas, which is what we need), using the circuit
shown in Figure 32.1 (right). However, for technical reasons (impedance
matching), you need a slightly more complicated circuit (usually with three
OpAmps and some resistors), which as a package is called an instrumen-
tation amplifier. If you want to amplify very small voltages, or want to try
out a differential amplifier for cheap, try an OpAmp. (OpAmps are much
cheaper than instrumentation amplifiers, because they are produced in
much larger volumes.)

For sensor applications, we use instrumentation amplifier boards2. The
recipe for using your instrumentation amplifier depends on the actual
product. We have a couple in store which are popular with makers – search
the Web/Youtube for recipes and tutorials.

Another very different use of OpAmps that may be relevant to us is as
buffers (see the EEVblog video). If we want to take a voltage (signal) and
supply it with a large current without this interfering with the part of the
circuit that voltage “comes from”, we may use an OpAmp as a buffer. To the
circuit providing the voltage, the OpAmp looks essentially like an isolator
– no current flows through it, an still at the output side of the OpAmp, the
same voltage is provided at the current we supply to the OpAmp.

Note that, if you only want to amplify DC signals (where the voltage level
does not go below Gnd), no AC signals, some amplifier boards may not need
a negative voltage supplied (you may connect the V− pin to Gnd). Check
in the datasheet. For a differential amplifier application, that is never the
case, because the measured voltage may go above and below the reference
voltage against which we compute deltas.

2https://en.wikipedia.org/wiki/Instrumentation_amplifier

https://en.wikipedia.org/wiki/Instrumentation_amplifier

32.3. RECOMMENDED VIDEOS 249

32.3 Recommended Videos
https://www.youtube.com/watch?v=7FYHt5XviKc
EEVblog
“ EEVblog #600 - OpAmps Tutorial - What is an Operational
Amplifier?”
https://www.youtube.com/watch?v=7zUYqQ6wUhA
ElectronX Lab
“Operational Amplifiers - Differential Amplifiers ”

32.4 Parts in Stock for CS358
Model Type CHF
AD8221AR instrumentation amplifier board 10
AD620 instrumentation amplifier board 13

https://www.youtube.com/watch?v=7FYHt5XviKc
https://www.youtube.com/watch?v=7zUYqQ6wUhA

250 CHAPTER 32. MAKING YOUR OWN SENSORS

Part VI

Actuators

251

Chapter 33

Electromagnetism

Currently, the computer science undergraduate curriculum only contains
a single physics course, which focuses on mechanics. In the past, the same
curriculum contained much more physics, including an entire course on
electromagnetism. The idea was that for you to be considered a solid en-
gineer, knowing electromagnetism is indispensable. With the reduction
of the undergraduate programs to three years (the Bologna process), the
coverage of electromagnetism was removed. For most of what computer
scientists do, it is not on the critical path. However, it is important to this
course, for understanding and working with actuators.

As mentioned, electromagnetism can fill an entire course. This chapter
restricts itselfs only to covering issues that you absolutely need to know to
work with actuators – no deeper understanding of electromagnetism can
be communicated here.

I strongly recommed that you read up on electromagnetism though.
Start on Wikipedia:

https://en.wikipedia.org/wiki/Introduction_to_electromagnetism
I also recommend this video:

https://www.youtube.com/watch?v=XoVW7CRR5JY&t=671s
ScienceClic English
“The Electromagnetic field, how Electric and Magnetic forces
arise”

One of the beauties of electromagnetism is that is allows to evaluate
deep concepts, including fundamental forces and their unification, leading
to the standard model of physics, elementary particles, fields, and special
relativity in a context that is very familiar to us and which we all have expe-

253

https://en.wikipedia.org/wiki/Introduction_to_electromagnetism
https://www.youtube.com/watch?v=XoVW7CRR5JY&t=671s

254 CHAPTER 33. ELECTROMAGNETISM

rience. The applications could not be overstated. Without it, no chemistry,
no biology, and no you. Without it, no electrical power generation, mobile
phones, Wifi, or microwave pizza.

33.1 Inductance and Back-EMF
Electrical current flowing through a conductor creates a magnetic field.
In practice, we want to make this effect significant by packing a lot of
conductor (wire) in a small volume of space in a way that the contributions
of sections of the conductor to the magnetic field do add up rather than
cancel out – by keeping the sections of wire parallel and the current flowing
in the same direction in these parallel pieces of wire. This can be achieved
by winding up the conductor in a coil.

The strength of the magnetic field is proportional to the current flowing
through the coil. This magnetic field opposes a change of current. How
strongly it does that is expressed by a constant, called the inductance L
(in Henry, or V/(I/t), that is, volts per change of current), of the coil. The
inductance value of a coil reflects the material in, and the geometry of, the
coil.

The magnetic field built up by the coil while current flows through it
stores some energy. This energy has to build up from zero when your
circuit is powered up and has to be dissipated somehow when the current
is reduced. The coil does that by producing an instantaneous voltage v
opposing the change of current (trying to keep the current flowing, in the
same direction, as before), called counter-electromotive force (or back-EMF)
calculated as v = L ∗ di/dt (where i is the current).

It is important to note that this voltage only depends on the current
flowing through the circuit but not on the voltage used to power the cir-
cuit. If we power up a circuit with a coil and then suddenly open the
circuit (e.g., disconnect the power supply), the back-EMF voltage is the-
oretically infinite, and, in practice, may amount to tens of thousands of
volts, leading to electricity arcing over where you open the circuit (creating
sparks). These voltage spikes are extremely dangerous to other electronic
components in your circuits (for instance, your laptop1), and can destroy
them.

1Do not assume perfect protection of your laptop when using a USB isolator. These
are usually rated to a few hundreds of volts, not tens of thousands!

33.2. MAKING ELECTROMAGNETS 255

To counteract this, you have to do at least two things:
• You need to keep the circuit permanently closed by placing a reverse

diode across the coil, i.e., from the - end of the coils to its + end: be-
cause of the directionality of current flow through diodes, no current
will flow through the coil while the power supply is on, and when it is
turned off, the back-EMF flows through the diode from the - end of
the coils to the + end, creating a circuit just of the coil and the diode.

• You need to create some way to dissipate the energy in the coil –
by adding a suitable low-resistance, large-power resistor to it. For
relatively low currents, this is optional because the coils can act as
this resistor.

An alternative to using a diode and a resistor is to use a brushed motor
driver such as the L298N, which does all of this and adds the ability to
reverse the direction of the magnetic field.

33.2 Making Electromagnets
Making an electromagnet is a popular science experiment for children. It
is simple – create a coil of laquered copper wire around an iron nail or a
similar iron or steel item and connect it to an electric power source. This
may give you the idea to make your own electromagnet or solenoid-based
linear actuator.

While this can absolutely be done, be warned that making an effective
electromagnet that serves a practical purpose beyond demonstrating the
principle is tricky. The key points people usually underestimate are

• The core material is extremely important – steel is usually very bad,
soft iron is better. The geometry matters, and good cores for electro-
magnets are assembled from plates rather than being made mono-
lithically.

• You need extremely large numbers of windings of extremely thin wire,
and the windings should be done in clean layers. Doing this winding
by hand is impractical.

• The geometry of the electromagnet matters. You want the height of
the coil, viewed abstractly as a cylinder, to be low. Good electromag-
nets look more like pancakes than like rods.

256 CHAPTER 33. ELECTROMAGNETISM

• You need high currents.

Do not just make an electromagnet. To be successful in creating an
electromagnet with some holding power, you will need to learn a bit of
theory. Start with this video:
https://www.youtube.com/watch?v=vHP-zq23uvE
Nick Electronics
“5 Tips To Make A Good Electromagnet / How To Calculate
Electromagnet Force?”

We keep some electromagnets in the inventory. See below. Do not forget
that you need at least a diode or a (brushed) motor driver to deal with back-
EMF.

33.3 Solenoid Actuators

While solenoid is another word for a coil, you can buy things called solenoids
that consist of a coil that pull sa freely moving iron core to its center when
powered, creating an actuator that can push or pull loads.

This may appear as an attractive option for your projects, for instance
for a thing that lifts small loads or pushes buttons. Be warned, though,
that it is very difficult for you to find and order a solenoid up to the task
that you intend for it. The reasons for this are the following:

• The range of motion during which a solenoid can produce relevant
force is extremely short – usually something like one milimeter. So,
if you, for instance, want to use a solenoid to push a button (for in-
stance, the key of a keyboard or piano) 5mm deep, you generally can-
not use a solenoid.

• Solenoid specifications are confusing. We had a couple of teams order
solenoids in the past, and in every single case, the items ordered were
not up to the task and could not be used.

• Solenoids are somewhat unusual items that are not very popular with
makers. For that reason, there is only a narrow range of solenoids
for very specific purposes (e.g. door locks) that are widely available.
There are technical suppliers of solenoids of nearly any specification,

https://www.youtube.com/watch?v=vHP-zq23uvE

33.4. PARTS IN STOCK FOR CS358 257

but these usually cater only to customers buying them in large num-
bers. They are often produced on order, and small orders are imprac-
tical or forbiddingly expensive.

• Solenoids are inefficient. Compared to a rotary motor, whose work
for your purpose adds up over time (and which still can be translated
into linear motion), solenoids need to do their work in extremely short
time periods, while their push/pull rod moves a very small distance.
Thus, relative to rotary motors, for similar tasks, solenoids need to
work with much larger voltages and currents.

For these reasons, any use of solenoids in this course is strongly dis-
couraged. Consider using a (rotary) motor with some translation to linear
motion, for instance via a crank and crankshaft or a lead screw assembly.

33.4 Parts in Stock for CS358
We have some electromagnets; please ask.

258 CHAPTER 33. ELECTROMAGNETISM

Chapter 34

Electric Motors

Motors allow our projects to move and affect the physical world. In this
chapter, we cover some formal foundations1, as well as safety hazards.

34.1 Power, Speed, and Torque
TLDR: Motor speed is proportional to voltage; motor strength (torque) is pro-
portional to electric current.

We use the standard symbols U for voltage, I for current, and P for
power (see Figure 34.1). Of course, P = U∗I (Watt’s law) holds in electronics
in general, not just for motors.

1See also https://en.wikipedia.org/wiki/Electric_motor .

symbol unit SI units
voltage U V(olts) 1kg·m2

As3

current I A(mperes) 1A

power P W(atts) 1kg·m2

s3

angular velocity ω radians per second 1/s
angular acceleration a radians per second2 1/s2

torque τ Nm (Newtonmeters) 1kg·m2

s2

velocity constant Kv(SI) radians per second per Volt 1 A·s2
kg·m2

torque constant Kt Nm/A 1kg·m2

A·s2

Figure 34.1: Symbol table

259

https://en.wikipedia.org/wiki/Electric_motor

260 CHAPTER 34. ELECTRIC MOTORS

Let us first consider an idealized situation, where we disregard ineffi-
ciencies of the motor that cause some of the electrical power to be turned
into heat rather than mechanical work. Then angular velocity ω (“rota-
tion speed” in radians per second, where one full rotation is 2π radians) is
proportional to voltage, and torque τ is proportional to current:

ω = Kv(SI) ∗ U
τ = Kt ∗ I

where Kv(SI) and Kt are called the velocity constant and the torque con-
stant, respectively, with Kt = 1/Kv(SI).

The (mechanical) power output in this idealized scenario is

P = U ∗ I = ω ∗ τ.
So when designing a motor to consume a given amount of power, there

is a trade-off to be made between fast motors (maximize ω = P/τ ; high-Kv

motors) and strong motors (maximize τ = P/ω; low-Kv motors).
Low-Kv motors are built using coils of many turns of thin copper wire,

while high-Kv motors are built from coils of few windings of thick copper
wire. As a consequence, low-Kv motors have higher resistance in the coils
than high-Kv motors, and need a higher voltage for the same current to
flow. Ignoring friction and inefficiencies, low- and high-Kv motors produce
the same amount of torque per Watt of power. In practice, if we need a high-
torque motor, we prefer one with a low Kv rating. (This keeps currents low,
creates less heat, and allows us to work with thinner cables.)

Motors with higher rotor diameters tend to “have” higher torque (the
causality is reversed here); for that reason you can buy pancake-shaped
low-Kv brushless motors. You can view this from a viewpoint of mechanics
– a higher diameter-motor has a better lever to create torque – or better, a
low-Kv motor needs more diameter/space for copper so that it can run at
a certain power (since a greater length of wire is involved) than a high-Kv

motor.
So yes, for a given desired power output, low-Kv motors tend to be heav-

ier and thus more expensive, but cooling is easier (the heat resulting from
inefficiencies spreads out over a greater volume) and you save on other
components (such as cables).

Motors often come with a Kv rating in RPM/V (rotations per minute per
Volt) reported in their specifications. You can compute

Kv(SI) =
π

30
·Kv(RPM).

34.2. ACCELERATION 261

and
τ = I ∗Kt =

I

Kv(SI)
=

1
π
30

∗Kv(RPM)
∗ I =

30 ∗ I
π ∗Kv(RPM)

.

Usual Kv(RPM) ratings are between about 100 and a few thousands.
The meaning is, of course, that the motor will rotate that many RPM for
every Volt supplied (above a minimum voltage needed to overcome internal
friction and make the motor turn at all). So, for instance, a motor with
Kv = 1000 will rotate with 10000 RPM if supplied with 10V.

You cannot strictly rely on the Kv ratings reported by manufactures
being exactly correct.2 Also, in practice there is a minimum voltage needed
for any motor (brushless or not) to overcome internal friction and turn at
all. However, the inefficiency of the motor dominates these inaccurracies.
You can try to see how these inefficiencies alter the above formulas, but,
since the key relationships are linear, it is easiest to compute your quantity
using the idealized formulas first and to apply a fudge factor in the end; for
instance, if your motor is reported to be 80% efficient3, and you compute
a torque of 2Nm using the idealized formulas, multiply the 2Nm with 0.8
to get an estimate of actual torque.

34.2 Acceleration
A torque of 1Nm means that a motor, rotating a lever (an arm) of one meter
length, exerts a force of 1N at the tip of the lever. Assume we have arranged
the axis of rotation of our level (and our motor) perpendicularly to vertical.
To resist the pull of Earth’s gravity exerted by a mass of 1 kg attached to
the tip of the (1 m long) lever, we need about 9.81 Nm of torque rotating
the lever upwards. But what torque does it take to accelerate the rotation
of a mass from standstill?

You first need to calculate the moment of inertia (unit: kg·m2) of the load
you want to rotate. See e.g. https://en.wikipedia.org/wiki/Moment_of_
inertia for this. Example: If the load is a cylinder/disk of uniform density
centered on the axis of rotation, then the moment of inertia is

2Manufacturers typically measure Kv for their motors by running them under power,
while the correct way to obtain a Kv rating would be by measuring back-EMF while turn-
ing the rotor with another motor.

3Brushed motors are typically 50% to 60% efficient, and brushless motors 80% to
90%.

https://en.wikipedia.org/wiki/Moment_of_inertia
https://en.wikipedia.org/wiki/Moment_of_inertia

262 CHAPTER 34. ELECTRIC MOTORS

JL = m ∗ r2/2

in kg ·m2 where m is the mass of the disk in kg and r is the radius.
A proper calculation of the torque needed requires you to consider a

number of factors, but for a simplified, rough calculation of torque in Nm,
use

τ = JL ∗ a

where a (in rad/s2) is the angular acceleration. (For example, if you want
to accerate by a full rotation per second, a = 2π/s2.)

34.2.1 The Case of Stepper Motors
Please first read the chapters on motor types and stepper motors and then
return here.

Angular acceleration is a problem for stepper motors. In order for the
stepper motor to do its job and not to skip steps, you need to accelerate
your load from zero to the speed necessary to move the load by the angle
of one step (1.8 degrees = π/100 radians by default) within the time of one
step. By a very rough back-of-the envelope calculation, for a 17HS4401
stepper motor (≈ 0.4Nm holding torque, and about 2 milliseconds maximal
pulse width), this gives us a supported moment of inertia of about

JL =
τ

a
≈ 0.4 ∗ (2 ∗ 10−3)2

π
100

≈ 5.1 ∗ 10−5kg ·m2.

Manufacturers give the following rule of thumb for picking the size of a
stepper motor: The moment of inertia of the load should not (much) exceed
10 times the rotor inertia4 of the motor. For a 17HS4401 stepper, the rotor
inertia is reported as 5.4 ∗ 10−6kg ·m2. The supported moment of inertia by
this rough rule is 106% of the number calculated above – pretty close.

Example 34.2.1 In CS-358 2022, a team wanted to rotate a turntable sit-
ting (against my advice) directly atop a stepper motor, rotating the turntable
without any belt or gear reduction. The turntable had a radius of 20 cm
and a mass of 1.5 kg (with much of the mass, such as a motor, far away

4This is a number that is reported in the datasheet of the motor.

34.3. SAFETY HAZARDS 263

from the axis of rotation). The moment of inertia thus was greater than
1.5 ∗ 0.22/2 = 0.03kg ·m2. Even leaving aside the considerable friction of that
turntable as well as other inefficiencies, by the above calculation, this was
by more than a factor of 0.03/(1.2 ∗ 10−4) = 250 too much! The 17HS4401
motor was able to turn the turntable, but it made a loud bang on start-
ing and stopping, skipping lots of steps. The purpose of the stepper was
precise positioning, so this was a failure.

34.3 Safety Hazards

34.3.1 Blunt Trauma

When we build robots, we need strong motors. We must over-provision the
power of our motors compared to a biological system because our machine
will be mechanically less sophisticated. Animals have bodies shaped and
balanced to minimize energy costs, and can swing limbs or have internal
spring-loading mechanisms5 to reduce the need for strong actuation. If
we don’t want to make our machines too complicated, we need to use mo-
tors that can generate considerable forces. This makes our motors quite
dangerous.

Even the kinds of robots people on youtube are creating at home use
(brushless) motors with many hundreds or even thousands of Watts of
peak power and gearboxes that create torque in the 20-50 Nm range.6

For comparison, the strongest torque humans generate is in the hip
joint (which is served by the strongest muscle groups, particularly the
gluteus maximus). A person of 70 kg mass walking at an average speed
will generate brief peaks of 25Nm torque in the hip joint (more if they
run or do sit-ups)7. An average walking human’s power output is about
70W. Outputting power comparable to that of a moderately sized brushless
motor requires superhuman physique, ideally a suitable myostatin gene
mutation, and effort.8

5This is most impressive in mantis shrimps and pistol shrimps, which can move limbs
at supersonic speeds thanks to spring-loading mechanisms.

6James Bruton’s open dog v1/ robot requires at peak 10000W (three 6374 motors) of
motor power per leg. See https://www.youtube.com/watch?v=cusoDUBzzAY .

7https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431254/
8https://www.youtube.com/watch?v=S4O5voOCqAQ

https://www.youtube.com/watch?v=cusoDUBzzAY
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431254/
https://www.youtube.com/watch?v=S4O5voOCqAQ

264 CHAPTER 34. ELECTRIC MOTORS

Figure 34.2: The Renault Twizy 45 (3730W) and a 6374 brushless motor
from our parts catalog (3250W).

If you are unlucky, a robot arm doing a jerky movement at startup may
kill you if you do not take sufficient safety precautions (keeping distance,
in particular). Robot arms have killed people since 1979.9

The most powerful motors we have in store for the course have 3250W,
comparable to a small car (see Figure 34.2), and with the right gear re-
duction, they can be used to tear down a building. Motors that you will be
given for your project without special warning will be harmless (speaking
of mechanical rather than electrical danger) unless you create substantial
mechanical advantage (using e.g. gearboxes, see Chapter 42).

34.3.2 Current Draw
Not only can a sufficiently strong motor destroy stuff, but a motor that is
too weak for a purpose (or is obstructed from turning) will suffer or get
destroyed.

Oversimplifying things, voltage determines the rotation speed of an elec-
tromotor, while current determines its torque. Creating too much mechan-
ical resistance while a motor tries to turn will cause a very high current to
flow, heating up the motor, motor drivers, and cables, eventually causing
damage or even a fire hazard. If you find there is mechanical obstruction to
your motor turning, turn off your motor immediately. This is particularly
important for servo motors with plastic gears, where in addition to heat
damage, the gearbox has such a high reduction factor that it can destroy

9https://en.wikipedia.org/wiki/Robert_Williams_(robot_fatality)

https://en.wikipedia.org/wiki/Robert_Williams_(robot_fatality)

34.3. SAFETY HAZARDS 265

itself. Here you must absolutely avoid this from happening even for a mo-
ment – double check that it is possible for the motor to turn freely before
you power it on!

While the voltage is most directly connected to motor speed10, the cur-
rent a motor draws depends primarily on its load, i.e., how much mechan-
ical resistance there is to it turning. If you supply a voltage to a motor but
don’t allow it to turn, the current will rise to a level where the motor will
get very hot and will be damaged. Also, some gearboxes may not be able
to handle high loads, and their gears be destroyed. This is particularly
relevant for small servos with plastic gears.

Motors may draw considerable amounts of power (voltage and current),
and you will NOT be able to use the voltage output pin of your microcon-
troller board to drive motors 11; you will need a separate power supply.
For some brushless motors, the peak current draw may be so high that,
maybe unintuitively, it may be impossible to find a suitable wired power
supply (i.e., one that is powered by mains voltage); LiPo batteries are the
only suitable form of power source. Some such motors may draw as much
as 100A, which is no problem supplying from larger LiPos, while the lab
bench power supplies in DLLEL can supply no more than 3A.

34.3.3 Counter-Electromotive Force (Back-EMF)
All electric motors use coils. Coils store energy in the magnetic field, which
builds up when they are powered. They try to keep a current that flows
through them flowing. Thus, when power is turned off, so-called back-
EMF12 (a high negative charge on the positive pole side of the coil) is cre-
ated, which will (at least) cause sparks to fly and nearby electronics to be
destroyed.

Motor drivers handle this and protect you from back-EMF, but beware
of a malfunctioning motor driver.13

There are other uses of coils in electric circuits, and we need to be
concerned about those that build up considerable magnetic fields. This in
particular includes electromagnets. If you want to use elecromagnets, you

10The impact of supply voltage on the functioning of stepper motors is more complicated;
stick to the specifications.

11If you try it, you may damage your microcontroller board.
12See https://en.wikipedia.org/wiki/Counter-electromotive_force .
13The A4988 is an infamous offender, see Section 36.2.

https://en.wikipedia.org/wiki/Counter-electromotive_force

266 CHAPTER 34. ELECTRIC MOTORS

must provide appropriate protection against back-EMF. Talk to an expert.
The solution will involve a properly placed diode.

34.3.4 Radio Frequency Interference
Motors may also create significant radio noise. This noise isn’t audible to
you but may interfere with wireless communications, including commu-
nications that you do as part of your project.14 For that reason, it may
be technically illegal to operate your motor without first addressing this
issue. Unfortunately, the electronics skills required to do this to make a
commercial product are beyond the scope of this course.

Radio noise is a particularly serious problem for brushed motors. It is
less of a problem in brushless motors.

For brushed motors, a partial solution to the problem is to solder a
small ceramic capacitor (0.01 to 0.1 µF) across the two motor terminals, if
your motor does not already come with such a capacitor soldered on (see
e.g. https://www.pololu.com/docs/0J15/9).

14See https://en.wikipedia.org/wiki/Electromagnetic_interference .

https://www.pololu.com/docs/0J15/9
https://en.wikipedia.org/wiki/Electromagnetic_interference

Chapter 35

Motor Types

In this chapter, we cover motors and the motor drivers1 that go with them.
You will find that programming microcontrollers to operate actuators is
relatively easy. The main challenge is picking the motor appropriate for
a purpose, and correctly wiring it up and supplying power to it. As for
picking a motor, we may have requirements regarding minimum torque2,
RPM (rotations per minute) range, supply voltage, current draw, weight,
dimensions, and price.

We will consider three classes of motors: brushed, brushless, and step-
per; these are based on fundamentally different designs, with many con-
sequences.

35.1 Brushed Motors
The simplest kind of electrical motor is the brushed DC motor. Brushed
motors internally use graphite brushes to transmit power from the station-
ary outside of the motor (the stator) to the rotor, which has a coil mounted
in it to which we need to supply power. These brushes cause friction (re-
ducing their efficiency) and erode and fail over time. Small brushed motors
(see Figure 35.2) can be very inexpensive, but be careful with the metal
pads/rings to which the two wires need to be soldered. They are easily
torn off, rendering the motor unusable. Don’t pull on the wires!

1These are electronics boards, not software drivers.
2Torque, measured in Nm (Newtonmeter) by anyone other than the Imperials (who use

pound foot or stone yards, but not pound feet or foot pounds), is the rotational analog of
linear force. To learn more, see https://en.wikipedia.org/wiki/Torque .

267

https://en.wikipedia.org/wiki/Torque

268 CHAPTER 35. MOTOR TYPES

Figure 35.1: A brushed motor (top), a brushless motor with an external
rotor (center), and a bipolar stepper motor (bottom), all opened up.

35.1. BRUSHED MOTORS 269

Figure 35.2: A small brushed motor (left) and the same type of motor with
a gearbox (right).

Figure 35.3: A back-EMF protection circuit using a diode. The motor is
represented by the wiggly line representing a coil, labeled “electromagnet”.

Brushed motors have low torque (about 0.001 Nm for the motor in Fig-
ure 35.2 (left)), and require gearboxes for virtually any application we might
encounter. “Yellow gear motors” as shown in Figure 35.2 are popular; their
specs are 3-9V, 110 RPM (at the output shaft of the gearbox), 1:48 reduc-
tion in the gearbox, 2.6 Ncm torque.

35.1.1 Motor Drivers: H-Bridges

Brushed motors have two wires by which you can directly attach them to
a DC power source, with the direction of current determining the direction
of rotation. However, this is not a safe thing to do. When turning off power,

270 CHAPTER 35. MOTOR TYPES

back-EMF will be generated3, potentially damaging electronic components
in the same circuit. Also, typically, a spark is created that may damage
things closeby, even if not in the same circuit, and which may cause a fire.
You can avoid this by placing a diode as in the circuit of Figure 35.3. By
this approach, the motor can only ever turn in one direction; to reverse
the direction of rotation, you need to manually change the wiring.

Now suppose we want to control motor direction and speed by signals
from a microcontroller. For this we need a motor driver, a dedicated elec-
tronic component. Note that brushless motors and stepper motors also
need motor drivers, but they are fundamentally different. You cannot use
a brushless motor driver for a brushed motor, and vice versa.4

The core circuitry of such a brushed motor driver is a so-called H-
bridge5, which allows us to control the direction of current. The key func-
tional units are four transistors, through two of which flows our motor
current while the motor is running. We distinguish motor drivers based
on the transistor technology used.

Motor drivers that use bipolar transistors have a voltage falloff at the
transistors of 1.4V in total. Thus, if you want to run your motor at, for
example, 6V, you need to supply 7.4V to the motor driver. Because of
this falloff, a significant fraction of the power supplied is turned into heat
at the motor driver. Motor drivers that use MOSFETs have no significant
voltage falloff and heat up much less, but they are (usually) larger, more
expensive, and need to be protected from electrostatic discharge (do not
touch the electronics).

Both L298N and MX1508 take two input signals per motor. Both are
PWM signals which set the speed for each direction (using analogWrite()
between 0 and 255). At least one of the PWM signals has to be zero at all
times; motors cannot rotation in both directions at the same time.

35.1.2 Recommended Videos
https://www.youtube.com/watch?v=ygrsIqWOh3Y
DroneBot Workshop
“Driving DC Motors with Microcontrollers”

3To learn more, see https://en.wikipedia.org/wiki/Counter-electromotive_force.
4It is possible to drive certain stepper motors using two brushed motor drivers, but

this is complicated. Do not do it.
5To learn more, see https://en.wikipedia.org/wiki/H-bridge

https://www.youtube.com/watch?v=ygrsIqWOh3Y
https://en.wikipedia.org/wiki/Counter-electromotive_force
https://en.wikipedia.org/wiki/H-bridge

35.2. BRUSHLESS MOTORS 271

L298N MX1508 IBT-4
technology BJT BJT MOSFET
motors driven. 2 2 1
supply voltage (V) 7-35 2-10 5-15
max current (A) 1.5-2 1-1.5 50
logic level (V) 5 5 3.3-12
dimensions (mm3) 49x55x33 24.7x21x5 43x48x23
weight (g) 33 2 60(?)
wire conn. screw mount soldering screw mount
pros 5V output very small size amps!!!
price (CHF) 5 5 6

https://www.youtube.com/watch?v=I7IFsQ4tQU8
How To Mechatronics
“Arduino DC Motor Control Tutorial - L298N | H-Bridge | PWM
| Robot Car”

35.2 Brushless Motors
Brushless motors (aka BLDC – brushless DC – motors) use a different
principle where the coils are in the stator and no brushes are needed. In
these motors, the outside housing holds the permanent magnets and is
part of the rotor, so the motor can only mounted using one of its faces
(in the brushless motor picture above, that’s the end of the stator from
which the cables protrude). These motors can be very efficient, i.e. a very
large fraction of the power (Watts) used is translated into mechanical work,
rather than heat. Brushed motors are typically 50-55% efficient6, brush-
less motors 80-90%.

Brushless motors are popular in things that fly (model airplanes, multi-
rotor helicopter drones, etc.) and mobile robots because they have ex-
tremely high power density (power to weight ratio). However, keeping them

6Watts of mechanical work per Watts of electrical power supplied.

https://www.youtube.com/watch?v=I7IFsQ4tQU8

272 CHAPTER 35. MOTOR TYPES

cool is a challenge. Even at 90% efficiency, a 3000W motor produces 300W
of heat. The only way some motors can be kept cool enough not to be de-
stroyed when they run at maximum power is if they are in the downwash
of a helicopter rotor, which is exactly what they are designed for. So de-
pending on your application, not all of a motor’s advertised power may be
available to you because you have no good-enough way to cool it.

35.2.1 Motor Characteristics
The statements made in Section 34.1 hold for other kinds of motors be-
yond brushless motors, but are particularly important for brushless mo-
tors. Unlike brushed motors, which supply torque so low that we realis-
tically always need high-reduction gearboxes to use them, brushless mo-
tors may have sufficient torque to be used without gearbox or with only a
mild belt reduction. However, motor torque is usually not indicated in the
datasheets, or may be very unreliable. You need to calculate it from the Kv

rating of the motor, which may be the singly most important characteristic
of a brushless motor, and is always indicated.

You can practice calculating torque using the examples of Figure 35.4.
For instance, the (idealized) torque of the 3536 motor can be computed as

τ =
30 ∗ I

π ∗Kv(RPM)
=

30 ∗ 35
π ∗ 1200

Nm ≈ 0.28Nm.

35.2.2 Brushless Motor Drivers (ESCs)
Brushless motors have three connections for power supply, through which
a complex pulses of power are supplied in a complex pattern; a motor driver
(called ESC) is absolutely needed. In addition, some (“sensored”) motors
have additional connections through which the motor driver can read out
information on rotor position and rotations performed.

The timing of the pulses to be emitted by the ESC depends on the spec-
ifications of the motor. ESCs can obtain these timings in two ways:

• measuring back-EMF from the coils. All ESCs do this, but cheap ones
have only this method, and as a consequence, motors may stutter at
startup and at low-RPM operation.

• tracking rotation – this requires a sensored motor and an ESC that
supports it.

35.2. BRUSHLESS MOTORS 273

(Racerstar) 3536 Flipsky 6384 T-Motor MN5008
type BLDC outrunner BLDC outrunner BLDC outrunner
from spec:
Kv(rpm/V) 1200 190 170
#pole pairs 7 7 14
phase resistance 0.025Ω 0.05Ω 0.27Ω
#LiPo cells 2-4S 4-13S 6-12S
Dimensions 35x35x36mm 63x63x84mm 56x56x32mm
Weight 115g 1100g 128g
max current 35A 95A 15A (180 sec)
price (CHF) 15 100 90
sensor no yes, Hall no
calculated:
max voltage 16V 52V 48V
:w max power 560W 4940W 720W
max rpm 19200 9880 8160
Kv(SI) 125.7 19.9 17.8
Kt 0.008 0.0503 0.0562
torque 0.28Nm 4.77Nm 0.84Nm
advertised:
torque - 9Nm -

Figure 35.4: Three brushless motors: A drone motor (left), a (sensored)
motor for electric bikes and skateboards (center), and a pancake motor
intended for drones but popular in robotics applications (right). The cal-
culated values (unreasonably) assume 100% efficiency.

274 CHAPTER 35. MOTOR TYPES

Note that any usable brushless motor driver (that is, one that can drive
loads) needs to be able to do some sensing to know where the coils are rel-
ative to the permanent magnets at any point in time. This feedback is nec-
essary because the power pulses need to be sent to the coils at exactly the
right moment for the motor to rotate one, creating torque. A motor driver
with no feedback component whatsoever could conceivably rotate a motor
if it could be brought up to the right speed by an external impulse, using
a fixed cycling of pulses, but any load would stop the rotation, and while
the motor would consume substantial current, it would produce nearly no
torque. How can this be possible given that we said in Chapter 34 that
torque is proportional to current? Answer: the current would be used by
the motor to fight its own rotation. The torque would not be used to push
the load, but to brake the motor’s rotation. It’s not braking that we can
feel, because feeling that a motor brakes (opposes us) would require it to
be able to sense that we are trying to turn its axle.

Brushless motor drivers can be quite complicated and expensive, and
some have advanced features such as an interface through which they (and
the motors) can be tuned from a computer. Many take feedback from the
motor in the form of back-EMF and through rotary encoders to understand
what the motor is doing and its performance. Some drivers have specific
functionality for braking, for harvesting the brake energy and charging the
battery with it, and some have stepper-like functionality, or have current-
or torque control (rather than speed control) modes.

Three open-source brushless motor driver projects worth knowing of
are VESC for electric skateboards and ODrives and SimpleFOC for robotics.
All three support sensored motors and have very rich sets of features. Even
though open-source designs, the former two motor drivers are very expen-
sive (well above CHF 100 for a single motor) and are practically unavail-
able to us in this course. SimpleFOC is primarily a software library, and
there are affordable motor drivers to go with it. All three are FOC con-
trollers7, though only the latter two, ODrives and SimpleFOC, are designed
for robotics applications.

35.2.3 Gimbal Motors
When shopping around for brushless motors, you may come across the
notion of a gimbal motor. Gimbal motors are just a subclass of brushless

7See Chapter 40 on that topic.

35.3. STEPPER MOTORS 275

motors that are at the low-kv end of the spectrum: so usually they have
relatively high numbers of windings per coil, with thin wires, and support
relatively low maximum currents but offer relatively high torque. Gimbal
motors frequently have (mild) pancake shape – that is, their diameter is
relatively high relative to their height. Also, frequently, gimbal motors are
rather small, and images may be deceptive. Certainly check their dimen-
sions before you order one!

Gimbal motors were developed as actuators for camera gimbals, and
are also popular in drones. The most high-performance brushless motors
are not gimbal motors, or else you may be disappointed when you receive
it!

Brushless motor controllers that are designed specifically for gimbal
motors must not be used with non-gimbal motors since the high currents
flowing would make the motor drivers overheat.

35.2.4 Recommended Videos
https://www.youtube.com/watch?v=uOQk8SJso6Q
How To Mechatronics
“How Brushless Motor and ESC Work and How To Control
them using Arduino”
https://www.youtube.com/watch?v=-mLuU1Nscu4
Skyentific
“Why the brushless controllers are awesome for robotics”

35.3 Stepper Motors
Stepper motors are brushless, even though the mechanism is different
from so-called brushless motors. For steppers, the stator with the coils is
on the outside and the rotor with the permanent magnets is on the inside;
for brushless motors it is (typically) the reverse. Also, they are wired up
differently; brushless motors have only three wires, with three coils con-
nected at one end in a star formation, so they are controlled differentially,
while the steppers we are using have two independent coils. Most impor-
tantly, the magic of steppers happens in the grooves and ridges you can
see on the rotor and the inside of the stator, and how they are magnetized
is key.

https://www.youtube.com/watch?v=uOQk8SJso6Q
https://www.youtube.com/watch?v=-mLuU1Nscu4

276 CHAPTER 35. MOTOR TYPES

They achieve precise stepping without any sensor or feedback loop, just
thanks to their electromechanical principle.

Stepper motors are “current-driven”. Their voltage ratings (in the data-
sheets) are quite low, and are quite meaningless in practice. Stepper mo-
tors can often handle high voltages (even quite dangerous voltages for big-
ger stepper motors), but the voltages don’t make a big difference to their
operation.

Stepper motors typically consume significant power even when at rest;
in that case they actively “brake” to lock their output shaft in position. If
the application does not require this, it is good practice to power off the
stepper when at rest8, particularly when the motor is supplied by a battery.

We will discuss the most popular class, “hybrid” two-coil stepper motors
(bipolar steppers). Look elsewhere for how they work, it’s quite elegant.
Abstractly speaking, they have of two coils and expose four wires. Note
that there are also unipolar steppers (see Chapter 37).

For our purposes, bipolar stepper motors such as the 17HS4401 are rel-
evant. This is a NEMA17 stepper motor (see Chapter 41). These are also
used in many 3d printers, such as the Prusa i3 mk3s. NEMA17 motors
are usually in the 0.4 to 0.6 Nm torque range. It is typical for NEMA17
stepper motors to have 200 steps per rotation, or 1.8 degrees per step.
Using a technique called microstepping, this resolution can be substan-
tially increased (usually by factors of 2, 4, 8, and 16, and for some stepper
drivers even by a factor of 32).

For small steppers, small inexpensive drivers (“stepsticks”) like the A4988
are popular. For any larger motors, more powerful drivers are needed,
which quickly get quite large and expensive.

There are many things to say about using bipolar steppers, and sev-
eral safety hazards. So one combination of bipolar stepper and driver, the
17HS4401 and A4988, available to us in this course, is covered in a sep-
arate chapter, 36.

35.3.1 Recommended Videos
https://www.youtube.com/watch?v=7spK_BkMJys
How To Mechatronics
“Stepper Motors and Arduino - The Ultimate Guide”

8Set the ENABLE pin to HIGH.

https://www.youtube.com/watch?v=7spK_BkMJys

35.4. INRUNNERS VS. OUTRUNNERS 277

Figure 35.5: A (bipolar) 17HS4401 stepper motor (left) and a (unipolar)
28BYJ-48 stepper with its motor driver ULN2003 (right).

https://www.youtube.com/watch?v=0qwrnUeSpYQ
DroneBot Workshop
“Stepper Motors with Arduino - Controlling Bipolar & Unipolar
stepper motorsa”

aCovers both NEMA17 and 28BYJ-48 steppers.

35.4 Inrunners vs. Outrunners

We distinguish inrunner and outrunner motors. Inrunners are motors
in which the rotor is fully enclosed and only the axle of the rotor is ex-
posed. Outrunners are motors where the rotor is on the outside and ro-
tates around the stator.

Brushed motors and steppers are, by design, always inrunners, and
some brushless motors are, too. (Industrial brushless motors are in-
runners or at least have their rotor enclosed for protection from the el-
ements, dust, etc.)

The majority of brushless motors are outrunners. This is particularly
true for very high power-density motors, typically drone and aircraft mo-
tors, which have cutouts in the rotor, exposing the internals of the motor
to the rotor downwash for cooling.

https://www.youtube.com/watch?v=0qwrnUeSpYQ

278 CHAPTER 35. MOTOR TYPES

35.5 Parts in Stock for CS358
Class Model Specs CHF
brushed gear motor “yellow” gear motor see chapter 3

Chihai CHF-GM37-550ABHL 12V 90RPM 3.4Nm w. enc 25
brushed driver L298N see chapter, for 2 motors 5

MX1508 see chapter, for 2 motors 5
BTS7960 5.5-27V 43A, for 1 motor 7
IBT-4 5-15V, 50A, for 1 motor 5

ESC (bidirectional, nonsensored) 40A 10
(bidirectional, nonsensored) 80A 20
FSESC v4.12 50A sensored 86

stepper + driver 28BYJ-48 + ULN2003 see chapter 2
17HS4401 + A4988 see chapter 15

See also Chapter 40 for more brushless motor drivers.

Brushless motors:
Model maxV maxA pp Kv phΩ ph ind grams CHF
YT2804 (gimbal) 12 ? 7 320 large ? 34 17
Sunnysky x2212 12 15 7 980 0.086 1.373e-5 ? 30
Racerstar 3536 16 35 7 1200 0.025 3.00e-6 115 15
Racerstar 5065 48 34 7? 140 ? ? 480 70
T-Motor MN5008 48 15 14 170 0.27 ? 128 90
Eaglepower 8318 56 58 20 100 0.055? ? 599 80
Flipsky 6384 52 95 7 190 0.05 ? 1100 100

Note: YT2804 includes an AS5600 encoder. Sunnysky x2212 includes
a TLE5012b encoder. Flipsky 6384 includes a Hall effect sensor.

Chapter 36

Bipolar Steppers: 17HS4401 +
A4988

This chapter is required reading if you want to use bipolar steppers.1

If you do not follow the instructions of this chapter, you are acting neg-
ligently and will, with very high likelihood, destroy the electronic com-
ponents of your thing and possibly even more. You will also create very
difficult to find problems in your thing, causing your team significant frus-
tration and time loss. Once your electronic components are destroyed, you
will have your walk of shame to the teaching staff, and should we give you
replacements, you will have to spend time rebuilding your thing.

The A4988 stepper motor driver is very well matched with the stepper
motor 17HS4401 (see Figure 35.5 (left)), a NEMA17 bipolar stepper motor
rated at 1.5A current draw. The A4988 can handle voltages up to 35V
and currents up to 2A in total, for two coils. The two coils do not draw
maximum current at the same time, so steppers that draw up to 1.5A per
coil are fine. The 17HS4401 has a torque of about 0.4Nm (without using
a gearbox).

Note that the A4988 is very sensitive to misuse. If you damage it, it will
not simply “not work” but it will turn evil and become outright dangerous.
It may work intermittently work normally and from time act out of spec-
ification; in the worst case creating very large voltage spikes2 or allowing

1Bipolar stepper motors other than the 17HS4401 are strongly discouraged, but in any
case, most of this chapter also applies to other bipolar stepper motors.

2Even if your electronic components are not destroyed, these voltage spikes may make
other components apparently unrelated to the operation of steppers work erratically,

279

280 CHAPTER 36. BIPOLAR STEPPERS: 17HS4401 + A4988

very large current to flow. You may damage it and only observe strange
behavior at a later date, making your system hard to debug. Apart from
the dangers arising from a malfunctioning A4988, this can cause you great
time loss and frustration.

Avoid this by following the instructions of this chapter rigorously. These
motor drivers are inexpensive. If your merely suspect that you may be deal-
ing with a malfunctioning A4988, try replacing it and see if your problem
persists. Make it easy to replace your A4988s. Do not solder them to any-
thing. Create sockets that make it quick to swap them out (or use a CNC
shield or RAMPS board, which has sockets for the motor drivers).

36.1 Setup

Figure 36.1: Wiring up an A4988.

The A4988 comes on a very small board3, but it contains everything
needed to drive one 17HS4401 stepper motor. The direct way to wire it up
is shown in Figure 36.1. The alternative is a board called a CNC shield,
which stacks nicely on top of an Arduino Uno and which can house up
to four A4988s, driving up to four steppers, dramatically simplifying your
wiring. See tutorials online.

Stepper motor drivers like the A4988 have a tuning potentiometer in
the form of a small metal screw to set a current limit; you must set this
correctly before operating a motor, or else you may cause a fire. This is
not perfectly easy, and it requires a multimeter. For the 17HS4401, the
voltage between the tuning screw of the A4988 and motor supply ground

adding to the difficulty of debugging your system.
3Please read more on it at https://www.pololu.com/product/1182.

https://www.pololu.com/product/1182

36.1. SETUP 281

Figure 36.2: Using the CNC Shield

282 CHAPTER 36. BIPOLAR STEPPERS: 17HS4401 + A4988

has to be set to 1.5 * 0.8 = 1.2V. (See also the first of the recommended
videos in Section 35.3 on how to do it.)

36.2 Safety

In addition to all the safety hazards covered in Section 34.3, there are a
number of additional hazards that you need to avoid when working with
the A4988.

First, of course, the A4988 may draw several Amperes of current, and
you must use 1.5 mm2 wires to supply motor power, both to the A4988
motor power pins and to a CNC shield’s motor power pins if you are using
one. If you use jumper wires instead, they will go up in flames, it will be
spectacular!

An A4988 may fail (get damaged). When this happens, it does not simply
not function, but its behavior is undefined. It might do unexpected and
dangerous things, such as creating an internal short-circuit, allowing very
large circuits to flow, or making the motor coils produce extreme back EMF
voltage spikes that run through the system and damage or destroy all the
connected electronics, including your laptop! Unfortunately, this is not
just a theoretical possibility: it has happened to a CS358 student in 2023.
The laptop was judged a total loss by Poseidon!

To minimize the likelihood of damaging your A4988, make sure that
your wiring is correct before you power it up. In particular, you must
never connect or disconnect the stepper motor to/from the A4988
while it receives power! If you do this, the A4988 gets damaged with
near 100% certainty. Always shut down power first before changing the
wiring.

If one of the cables between your motor and motor driver has a loose
connection or is damaged, the result is the same as connecting or discon-
necting the motor while the motor driver is powered. To avoid this, ensure
good cable management, and don’t

In my experience, it is not enough for you to know this. In the heat of
getting your thing to work, it will eventually happen that you break this
most important rule. Agree with your team on a workflow for testing and
tinkering with your steppers that ensures that your never break this rule.

The best (and perfect) protection to your laptop is to disconnect it be-
tween programming the microcontroller and powering up the A4988. Of

36.3. PROGRAMMING 283

course, this is inconvenient, and it makes it impossible to receive debug
output from the microcontroller via USB serial while your thing is running
and being tested.

It is strongly recommended that you run your laptop on battery while
working with an A4988, that is, NOT have a ground connection of your
laptop through the power supply cable and the mains voltage plug.

If you choose to have your laptop plugged in to power, you are taking an
extra risk. In that case, when working with the A4988, you must protect
your laptop using a USB isolator, which you must include in your bill
of materials and which we will provide. Note that such a device is not
a perfect protection against extreme voltage spikes. However, it may just
save your laptop and USB port, so please always use it while working with
the A4988. In addition, it eliminates the possibility of a ground loop (see
Chapter 17).

If you have a USB isolator, please use it even if your laptop is running
on battery.

The A4988 is sensitive to voltage spikes coming from the power supply,
which may make it work erratically, and it may also pass through voltage
spikes produced by the back-EMF of its stepper motor to the rest of your
circuit. These voltage spikes can exceed 35V when you supply it with 12V
of power. These can destroy your electronics! The 47µF capacitor which
you find in circuit diagrams and which must be places as close to the
A4988 board (wire-wise) as possible, is meant to protect against this (and
the CNC shield already has these capacitors on the board). It you think
you are dealing with voltage spikes, talk to an expert.

36.3 Programming
There are many good stepper motor tutorials online 4. Look there first.

You can program steppers directly or through a library such as Accel-
Stepper. In the direct method, you achieve one step (there are 200 steps
per rotation with the 17HS4401, assuming microstepping is disabled) us-
ing code such as

digitalWrite(stepPin, HIGH); delayMicroseconds(tHIGH);
digitalWrite(stepPin, LOW); delayMicroseconds(tLOW);

4See https://lastminuteengineers.com/a4988-stepper-motor-driver-arduino-tutorial/,
https://www.makerguides.com/a4988-stepper-motor-driver-arduino-tutorial/

https://lastminuteengineers.com/a4988-stepper-motor-driver-arduino-tutorial/
https://www.makerguides.com/a4988-stepper-motor-driver-arduino-tutorial/

284 CHAPTER 36. BIPOLAR STEPPERS: 17HS4401 + A4988

where we recommend numbers close to tHIGH=100 and tLOW=1000 for
smooth movement of the 17HS4401. The sum of tHIGH and tLOW de-
termines the duration of a step and thus the speed of rotation (one full
rotation takes 200*(tHIGH + tLOW) microseconds). Making the numbers
significantly higher or lower will significantly increase noise and vibration,
and for extreme values the motor will not be able to turn at all or will make
seemingly random movements5.

36.4 Stepping by PWM Signal
Presented next is a somewhat esoteric method of stepping that is not cov-
ered in the various web tutorials.

The signal we create to make the stepper do multiple steps is essen-
tially a PWM signal. Using this observation, and PWM-enabled pins, we
can make the stepper turn using analogWrite, as shown in the following
program code.

const int enPin=8;
const int stepPin[4] = { 3, 9, 10, 11};
const int dirPin[4] = { 2, 4, 7, 12};

void setup() {
// set
TCCR1B = TCCR1B & B11111000 | B00000011; // pin 9 and 10
TCCR2B = TCCR2B & B11111000 | B00000011; // pin 3 and 11
// to 32 * 1000 / 31250 = 1024 microseconds per step

pinMode(enPin, OUTPUT);
for(int i = 0; i < 4; i++) {

pinMode(stepPin[i], OUTPUT);
pinMode(dirPin[i], OUTPUT);

}
}

inline void go(int stepper) {

5One example in https://www.makerguides.com/a4988-stepper-motor-driver-arduino-tutorial/
uses tHIGH = 2000 and tLOW = 2000, which does NOT work.

https://www.makerguides.com/a4988-stepper-motor-driver-arduino-tutorial/

36.4. STEPPING BY PWM SIGNAL 285

analogWrite(stepPin[stepper], 25);
// changing 25 does not affect speed of rotation

}

inline void stop(int stepper) {
analogWrite(stepPin[stepper], 0);

}

inline void waitRotations(float rotations) {
delay(204.8 * rotations);
// one full revolution takes 1.024 * 200 = 204.8 ms
// because of the casting to int, this will not
// be exact

}

void loop() {
digitalWrite(dirPin[0], HIGH);
digitalWrite(dirPin[3], HIGH);
digitalWrite(enPin, LOW); // enable

go(0); go(3); waitRotations(1);

digitalWrite(dirPin[0], LOW);
digitalWrite(dirPin[3], LOW);

waitRotations(1); stop(0); stop(3);

digitalWrite(enPin, HIGH); // disable, allow to cool
delay(2000);

}

In this example program, we are supporting four steppers, but only use
two of them (steppers 0 and 3). The program runs both steppers for one
rotation, changes direction, then runs them for another rotation, and then
pauses for two seconds.

The first two lines of setup() are specific to the Arduino Uno; we change
the frequency of PWM for the pins 3, 9, 10, and 11 to 10000000/1024
= 976.5625 Hz, which is the closest-possible setting to the approximately

286 CHAPTER 36. BIPOLAR STEPPERS: 17HS4401 + A4988

1000 Hz required by the A4988.6 The Arduino Uno has two further PWM
pins whose frequencies can be changed by setting TCCR0B; however, this
timer is used for delay(), so changing it would change the semantics of
delay() and all the timings in your code.

The upside of this technique is that we do not need to actively loop to
keep doing steps; instead, we can do other work. There is separate func-
tional unit in the microcontroller for creating PWM signals, so we take real
work out of our programmed thread, which is better than the interrupts
used in stepper libraries. Also, this technique results in smooth and quiet
operation of the steppers.

The downside of the technique is that it may be tricky to ensure that
we do exactly the number of steps we want. Thus it isn’t suited for making
plotters or 3D printers, but it is suitable for a vehicle that is using steppers
for precise movement. There is also no way to change the speed of rotation
(other than enabling microstepping).

Note also that we disable the steppers for the two-second pauses. This
is good practice if we do not need our steppers to brake while not rotating.
This saves energy and keeps the steppers and drivers cooler.

36.5 Troubleshooting

The stepper does not move at all. Ask yourself these questions:

• Is the circuit receiving power?

• Did you wire up your stepper circuit correctly?

– Is the microcontroller talking to the A4988 through the right pins
actually wired to STEP and DIR of the A4988?

– Did you connect +12V and GND from the power supply to the
correct pins – the motor supply pins?

– Did you confuse the motor supply pins with the logic-level power
supply pins (which should be connected to the microcontroller)?

– Did you create the wire link between the RESET pin and SLEEP?
6https://microcontrollerslab.com/arduino-pwm-tutorial-generate-fix-and-variable-frequency-signal/

https://microcontrollerslab.com/arduino-pwm-tutorial-generate-fix-and-variable-frequency-signal/

36.5. TROUBLESHOOTING 287

• Is the A4988 damaged? (Did you ever connect or disconnect the motor
while power was on, create a short circuit, confuse +12V with GND,
or confuse the logic level supply pins with the motor power supply
pins? Did the A4988 ever overheat?)

Vibration or “Random walks”. We have seen it happen quite frequently
in CS358 projects that, in a correctly wired-up system with steppers and
A4988 drivers, the steppers vibrate heavily or even rotate and change di-
rection randomly. When this happens, motors and drivers also heat up
more than they should. Here are some thoughts on what may be going
wrong; I suggest to investigate these sources of trouble in the order given
here.

1. Did you mistakenly switch the STEP and DIR pins?

2. Are all STEP and DIR pins of your A4988s which are connected to
motors/your CNC shield also connected to a signal source such as
a microcontroller I/O pin set to pin mode OUTPUT? Remember from
Chapter 17, if that is missing, your STEP and DIR pins act as anten-
nas, and the signal they read is random, and can change randomly
anytime.

3. A timing problem in the code. The stepper drivers are very sensitive
to the pulse length and timing through the STEP pin. If you are us-
ing your own low-level code for setting the STEP pin HIGH and LOW,
your delay times may be wrong. This may be the case for code ob-
tained from the Web, too, and even libraries. See Section 36.3. If you
are directly setting delays, try experimenting with different delays. If
you are using a library such as AccelStepper, try changing the mo-
tor speed. A stepper will vibrate when it runs slowly, because it will
stop and restart at a high frequency to do its stepping at the speed
you set. Try increasing the stepping speed and see if this reduces the
vibrations. If you try to rotation your motor axle too fast, this will
usually result in no rotation at all (potentially vibrating while being
stuck in place), or a random walk (rotation that changes direction fre-
quently). There is an ideal speed at which your motor moves fastest
and smoothest. Try to find it.

4. The power source is not good enough. The A4988 is very sensitive
to voltage spikes (thus the capacitor in the circuit schematics, which

288 CHAPTER 36. BIPOLAR STEPPERS: 17HS4401 + A4988

may not suffice to filter voltage spikes). Switching mode power sup-
plies (and buck converters, which use the same principle7) create
such spikes. Try a lab bench power supply (whose main quality cri-
terion is clean power) or a battery. Also, if the voltage drops well
below 12V because the battery is empty, you are guaranteed erratic
behavior from the A4988.

5. The A4988 may be broken. Try a replacement.

36.6 Stepper Motor Music
Try this:
https://www.instructables.com/Make-Music-With-Stepper-Motors/
instructables.com
“Make Music With Stepper Motors!”

36.7 Recommended Videos
https://www.youtube.com/watch?v=ROpLjd9iQQU
NSTB
“Rossini’s William Tell Overture Finale - Stepper Motor Music”

7The spikes may even occur upstream from the buck converter; so there might be a
problem if a buck converter is connected to the same circuit, even if the A4988 isn’t
receiving converted power from it.

https://www.instructables.com/Make-Music-With-Stepper-Motors/
https://www.youtube.com/watch?v=ROpLjd9iQQU

Chapter 37

Unipolar Steppers: 28BYJ-48 +
ULN2003

A very inexpensive way of adding steppers to a project is the 28BYJ-48, a
unipolar stepper motor with a built-in gearbox, with the driver ULN2003.
This stepper runs at 5V.1 It internally has 32 steps per rotation (when not
using microstepping). The reduction factor of the gearbox is 63.68395,
which has the unpleasant consequence that a nonintegral 2037.8864 steps
make one rotation of the output shaft.2 The motor is very precise and quite
strong (3.43 Ncm), but slow (15 RPM).

The 28BYJ-48 is very small; due to its gearbox (the 17HS4401 steppers
do not come with internal gearboxes) it is relatively strong for its small
motor size, but very slow. In practice, its applications don’t overlap with
those of the 17HS4401.

Be sure not to use unipolar steppers with bipolar stepper drivers or
bipolar steppers with unipolar stepper drivers. They are incompatible!

For further explanations and wiring up one or two of the ULN2003
and 28BYJ-48 with a microcontroller, see https://edistechlab.com/en/
der-28byj-48-stepper-motor/

1There are 5V and 12V versions of this motor, but unless we told you otherwise, your
motor is the 5V version.

2So don’t build use this stepper to position the hands of an analog clock. The error
would accumulate, making it a bad clock. But for applications where the stepper drives
a belt, this doesn’t matter at all!

289

https://edistechlab.com/en/der-28byj-48-stepper-motor/
https://edistechlab.com/en/der-28byj-48-stepper-motor/

290 CHAPTER 37. UNIPOLAR STEPPERS: 28BYJ-48 + ULN2003

37.1 Programming: The Low-Level Method
Just like for bipolar steppers, it isn’t overly hard to program these step-
pers the low-level way, without any library, though it is a little harder here
than it was for A4988 (see Section 36.3) because the ULN2003 interface is
more low-level: For the A4988 we send signals triggering steps, while, for
the ULN2003 we have to cycle through four phase patterns (relating very
roughly to activations of one of the four motor wires) to steps. Have a look
at the following code example, which just keeps stepping in one direction,
forever.

void setup() {}

int stepper_pins[4] = {8,9,10,11};

int phase_pattern[][4] = {
{1,0,0,0},
{0,1,0,0},
{0,0,1,0},
{0,0,0,1}

};

void step(bool forward){
static unsigned current_step = 0;

if(forward) current_step = (current_step + 1) % 4;
else current_step = (current_step - 1) % 4;

for(int i=0; i<4; i++)
digitalWrite(stepper_pins[i], phase_pattern[current_step][i]);

}

void loop() {
delayMicroseconds(3000); // You may be able to decrease this.
step(true);

}

Here we have connected pins 8 to 11 of the microcontroller board to in1
to in4 of the ULN2003, respectively.

37.2. PROGRAMMING: THE ACCELSTEPPER / MULTISTEPPER LIBRARIES291

The step() method cycles through the four phase patterns. It’s argu-
ment allows to reverse stepping direction (going in reverse just requires to
cycle through the phase patterns in reverse order.

Between any two phase pattern activations, we have to wait a little for
them to have any effect and the motor to move into position. In the ex-
ample, we wait for 3000 microseconds between steps. You may try to tune
this a little – for a motor I tried this with, the minimal delay was roughly
1800 microseconds, but this may be different for you. As you decrease the
delay, your motor runs faster but also more smoothly: After executing a
step, its calling as a stepper makes it want to stop there and lock itself into
position. This frequent acceleration and deceleration causes vibrations
and noise. If you time it just right, the stepper receives instructions to do
the next step just when it reaches its position from the last command, and
it keeps running at constant velocity instead of slowing down and speed-
ing up again. However, if you make the delay too small, the stepper moves
erratically or not at all. The exact minimum will depend on sample varia-
tions and won’t be the same for all copies of the 28BYJ-48. Worse, it will
even vary a little with the quality of supplied power, room temperature,
and whether it likes you as a person. So tuning this too tightly is asking
for trouble.

37.2 Programming: The AccelStepper / Multi-
Stepper Libraries

A higher-level method to program steppers is using the AccelStepper li-
brary3 – which also works for bipolar steppers, see the Web. Together
with the MultiStepper class, AccelStepper allows you to address a set of
k steppers together in a CNC-style machine, where each stepper handles
one spatial dimension. You can now instruct the stepper group to move
to points in k-dimensional space, and the library does the rest, includ-
ing doing all the calculations to accelerate and decelerate the steppers
smoothly.4 Be sure to read the documentation on the library on the Web;
it has a variety of functions.

3http://www.airspayce.com/mikem/arduino/AccelStepper/
4If you did the same the low-level way, you’d have to do your own trigonometric cal-

culations to achieve “diagonal” movement between points. The Arduino IDE supports
trigonometric functions sin(), cos(), and tan() as built-ins, without including a library.

http://www.airspayce.com/mikem/arduino/AccelStepper/

292 CHAPTER 37. UNIPOLAR STEPPERS: 28BYJ-48 + ULN2003

Note that there are blocking and non-blocking operations. For non-
blocking operations, you can issue the command and your thread of con-
trol returns to you immediately. You can execute further instructions on
the microcontroller while the steppers move to the set position. You have
to query the library to check whether they have reached their position be-
fore giving new commands. In the blocking versions, the library operations
block your microcontroller program until they are done.

The following example uses two steppers, as for a 2D-plotter. In the ex-
ample, we are taking coordinates from the Serial Interface (of the Arduino
IDE). For instance, entering “200 500” followed by hitting return will make
the two steppers move to absolute position (200, 500).

#include <AccelStepper.h>
#include <MultiStepper.h>
#define MotorInterfaceType 4

AccelStepper X(MotorInterfaceType, 8, 10, 9, 11);
AccelStepper Y(MotorInterfaceType, 2, 4, 3, 5);
MultiStepper XY;

long pos_xy[2] = {0,0};

void setup() {
X.setMaxSpeed(500.0);
Y.setMaxSpeed(500.0);

XY.addStepper(X);
XY.addStepper(Y);

Serial.begin(9600);
}

void loop() {

if (X.distanceToGo() == 0) {
while (Serial.available() == 0) {}

String s;
pos_xy[0] = Serial.parseInt();

37.3. TURNING THE 28BYJ-48 INTO A BIPOLAR STEPPER 293

pos_xy[1] = Serial.parseInt();
s = Serial.readString();
Serial.print("x = ");
Serial.print(pos_xy[0]);
Serial.print(" y = ");
Serial.print(pos_xy[1]);
Serial.println(s);
XY.moveTo(pos_xy);

}

XY.runSpeedToPosition();
}

Note the following quirk of the AccelStepper library. With the construc-
tor of the AccelStepper class, you provide five arguments, the first of which
can always be (motor interface type) 4, and the remaining are the four pins,
but in a permuted order. For instance,

AccelStepper X(MotorInterfaceType, 8, 10, 9, 11);

means that you need to connect in1 to in4 of the ULN2003 to pins 8, 9,
10, and 11, respectively, of the microcontroller board, not 8, 10, 9, and 11!

Make sure the Serial Monitor of the Arduino IDE is set to 9600 baud!

37.3 Turning the 28BYJ-48 into a Bipolar Step-
per

There is a hack for turning the 28BYJ-48 from a unipolar stepper into a
bipolar stepper. Apart from the fact that, once this is done, you cannot
use the ULN2003 motor driver anymore, it has only advantages, some
quite significant:

• The motor’s efficiency is improved and its output torque more than
doubles (from 0.038 Nm to 0.08 Nm)!

• You can use the A4988 stepper motor driver after the conversion; as
a consequence, you can use the same programming for the modified
28BYJ-48 as for other bipolar steppers such as the 17HS4401.

294 CHAPTER 37. UNIPOLAR STEPPERS: 28BYJ-48 + ULN2003

• The A4988 has a higher level interface than the ULN2003. For the
ULN2003, you need to cycle through multiple phase patterns to step,
and it takes four signal lines to connect the microcontroller to an
ULN2003 driver. The A4988 uses just two signal lines, step and di-
rection. Thus the microcontroller is less busy driving the stepper,
and you free up pins for other purposes.

Find the instructions for the conversion at
https://ardufocus.com/howto/28byj-48-bipolar-hw-mod/. There are also
Youtube videos covering the conversion. Note that you need to open up the
motor. The conversion is relatively easy, but you still need to work carefully
in order not to destroy the motor.

Important: As you need a different motor driver after this conversion
and doing it badly may take out the motor, do not do this conversion un-
less you have first received permission from the teaching staff. Never
do this for an individual course project!

https://ardufocus.com/howto/28byj-48-bipolar-hw-mod/

Chapter 38

Servos

Servos are devices consisting of a motor, usally with gearbox to increase
torque, a rotary sensor, and an “intelligent” motor driver with a feedback
component that allows to either position the output shaft of the motor to
a precise position (angle) or to do a specified number of (fractions of) rota-
tions. Thus, there is a closed control loop – the servo senses the rotation
of the motor and allows to “program” a desired position (angle) the motor
is to rotate to. In this section, we talk about the practical aspects of using
servos; Chapter 39 goes more deeply into control theory and the so-called
PID controllers used in servos.

There are various different types of servos, mostly distinguised by the
motor technology used, their size and strength, and the interfaces by which
they can receive positioning instructions. Figure 38.1 shows the main
types of servos.

38.1 Brushed Servos
Brushed servos are offered in different sizes but usually have a similar
box shape. They use relatively small motors and achieve considerable
torque using large gearbox reductions. For that reason, they are not back-
driveable, and trying to force them into position by rotating their out-
put shaft will typically damage or destroy their gearboxes. Their torque
is a key characteristic, and is usually indicated in kg · cm.1. The most
widespread model of brushless servos, the SG90, is shown in Figure 38.2.

11kg · cm = g
100Nm ≈ 0.1Nm, where g ≈ 9.81m/s2.

295

296 CHAPTER 38. SERVOS

Figure 38.1: Brushed servos of different sizes in the popular box form fac-
tor (top), a brushless MIT robot dog servo (center), and closed-loop stepper
(bottom).

38.1. BRUSHED SERVOS 297

Figure 38.2: A common small servo of type SG90. Motor, gearbox, and
control electronics are all integrated into a small package.

Their range of rotation is usually limited to either a little less than 180
degrees, to 180 degrees, or to 270 degrees, though continuous-rotation
servos exist as well. Typically, supported voltages are from 6V for small
servos to about 8.4V for larger ones.

They have a built-in motor driver that uses feedback from the motor
(via a rotary encoder, usually simply a cheap potentiometer) to decide in
which direction to move the motor. The logic to calculate this delta, the
PID control, is fully integrated and there is no way to modify or tune it. A
servo may overshoot the target position and start “searching” (going back
and forth beyond the target position) if it is not correctly tuned, the load
is too high, or it is damaged.

These servos take a PWM signal as input by which you can send a
desired absolute servo position (an angle) via the PWM signal’s duty cycle.

These servos have a three-wire female connector that is compatible with
jumper cables. The typical coloring of the cables is yellow, red, and black
(where red is the middle wire). Here, black is ground, red is + (typically
6V), and yellow carries the PWM relative to ground. The colors are not
always these, but there is usually a yellowish PWM wire, and the + wire is

298 CHAPTER 38. SERVOS

Figure 38.3: The PCA9685 16-channel PWM board.

always in the middle.

38.1.1 Operating many servos

Some applications require many servos, more than you have PWM pins on
your microcontroller. Instead of using multiple microcontrollers, is is eas-
ier to use one or more PCA9685 PWM multiplexer boards (see Figure 38.3).
Each of these features 16 PWM pins, and it is possible to use muliple such
boards with a single microcontroller.

38.2 Brushless Servos

Brushless Servos were popularized by the MIT2 Cheetah robot dogs and
various projects by Boston Dynamics. These servos use powerful brush-
less motors, and can perform explosive acceleration that allows sizeable
robots to move nimbly and even jump. They include either planetary or
harmonic drive gearboxes with a reduction factor of around 10. They are
back-driveable, which allows for organic springiness and animal-like move-
ment. The PID controllers typically offer multiple interfaces, such as a CAN
bus, and their PID controllers can be parameterized and tuned. These
servos are very expensive (above CHF 500 a piece for no-name clone and
thousands of CHF for a quality product).

2That place is unrelated to our course. We should sue them.

38.3. CLOSED-LOOP STEPPERS 299

One way to build such servos yourself is by using odrive motor drivers.
These are very powerful, flexible, programmable, and, using a high-quality
rotary encoder, they provide precise position control for brushless motors.
Unfortunately, this is only a more flexible, but not a cheap solution.

38.3 Closed-loop Steppers
Stepper motors without an explicit feedback component are not considered
servos. Stepper motors support precise rotations and positioning based on
their design principle and do not require a feedback component to achieve
their purpose. However, if a stepper encounters to much resistance to ro-
tation, it may skip steps, and will not be aware of this. For that reason,
closed-loop steppers with a feedback components to detect and compen-
sate for skipped steps do exist; however, they are relatively uncommon.

38.4 Recommended Reading and Videos
For more on servos, see

https://www.circuitcrush.com/servo-motor-introduction/.
https://www.youtube.com/watch?v=kUHmYKWwuWs
DroneBot Workshop
“Using Servo Motors with Arduino”

38.5 Parts in Stock for CS358
Model Specs CHF
SG90 tba 3
DMS15 15kg·cm 180 deg. 5
Racerstar DS6225MG 25kg·cm 300 deg. 18
SPT5435LV-180 35kg·cm 21

https://www.circuitcrush.com/servo-motor-introduction/
https://www.youtube.com/watch?v=kUHmYKWwuWs

300 CHAPTER 38. SERVOS

Chapter 39

Control Loops
Alexander Müller

TODO: Test course-correction control code for vehicles.
Control loops are central to robotics. They are present in airplanes,

cars, robot arms, and home appliances. Control loops are an abstraction
that allow us to quickly and precisely set real world values by using some-
what unreliable actuators and sensors.

As with many chapters of this book, this chapter is not a complete guide
to control theory, as it is far too large a field to fit in a few pages. This chap-
ter will serve as an introduction to one of the important and most widely
utilized control theory concepts, but to get a better and deeper understand-
ing for your specific application, you will need to do some further reading.
Wikipedia is always a good place to start.

If you are really looking to skip through this book and this sounds
boring, here are the systems where you will probably need to read this:

• Driving your vehicle / robot at an exact speed.

• Flying to an exact height .

• Positioning your vehicle / robot exactly in a coordinate system.

• Heating something to a precise temperature .

There are two types of control loops: open 1 and closed. Open control
refers to systems that simply try to make a difference without checking how

1Arguably, open control loops aren’t loops

301

https://en.wikipedia.org/wiki/Control_theory

302 CHAPTER 39. CONTROL LOOPS

well they’re doing. A good example is those light switches where you can
adjust the brightness. Even though you’re requesting specific brightness
levels, the system has no way of knowing if it’s actually achieving what you
requested, and an old bulb might not get as bright as it should under the
same voltage after being used for a long time.

39.1 Closed Control Loop

An example of a closed loop controller would be a heater and air conditioner
that have a thermometer to measure how accurately they’re setting the
temperature. If you are in your home and you set the thermostat to 78,
you expect it to get to 78. But how do we actually achieve this? The obvious
first step is to say that if the current temperature is higher than 78, we
should turn on the air conditioning. And if we’re below, we should turn on
the heater. That’s it! We have made a closed control loop.

39.1.1 Building a Smart Closed Control Loop

However, it’s not very efficient. Most heaters and air conditioners can be
adjusted to output different power levels. If we choose a high setting on
the heater when we’re at 77 degrees, for example, we might overshoot and
have to turn on the air conditioner. This can create huge oscillations in
temperatures and is very inefficient. So let’s try to make a basic algorithm
that captures some logical ideas to get a more optimal control loop.

The first obvious step is to say the further we are from the target, the
stronger our change should be. This is known in the control world as
the “proportional” term, because the difference it makes is proportional
to |target - current|. Obviously, we will multiply |target - current| by some
constant Kp in order to make sure we have some reasonable conversion
from “difference in temperature” to “heater power level”. For many sys-
tems, like our heating system, this term is enough to achieve good results.
However, we want to do better. Imagine now that our heater is using the
proportional term and it gives us some kind of result like this:

39.1. CLOSED CONTROL LOOP 303

Where blue is the desired temperature and red is the actual tempera-
ture. Since our heater will become weaker as we get closer to the target,
we are never going to get the actual target (keep in mind that the outdoors
is colder than indoors, so even though the heater is always on it will not
always strictly get hotter). So, just looking at this graph, it seems logical
to say if it’s been underneath the desired temperature for a long time, we
can turn up the heater more. Additionally, if it’s further away, this effect
should kick in faster. In a way, this term is proportional to the accumula-
tion of how far we are away from the target.

Hopefully it can be seen that this term is proportional to the integral of
(target - actual) (with respect to time). We can use some basic estimation
of the integral, such as a Riemann sum, to keep track of this. This term is
shockingly known as the integral term. We will multiply it by a constant Ki

to get a reasonable conversion between “Fahrenheit-seconds” and “heater
power level”.

Now comes the last problem. If our starting value is quite far from
the target value, the integral and proportion terms together can build up
together quite quickly to make the above curve way over shoot the target
(not remotely to scale):

304 CHAPTER 39. CONTROL LOOPS

The integral term will continue to grow as long as you’re under the
curve! This will cause the rate of growth to continue increasing. So, we
introduce one last term, with a constant Kd: the derivative. This term is,
as the name suggests, based on the slope of the curve. When we are close
to the target value, and have a mostly flat curve, this term does almost
nothing, as the derivative is close to zero.

However, when the actual value is quite far from the target, and the
integral and proportional terms create a fast change, it can counteract
this and smooth the approach to the target value. In control theory, a
graph like this is used to represent the final system:

Credit: Wikipedia

We’ve done it! We’ve made a smart closed loop control system, known
as a PID Loop.

39.2. PID TUNING 305

39.2 PID Tuning

Remember those constants to convert our error values into output values?
What should they be? How should we find them? Disappointingly, the vast
majority of PID systems are tuned using heuristic methods. In other words,
they use trial and error to see if the constants are good. The reason this
is usually the case is because it can be hard or even impossible to model
the effects of the controller. If you have a good model of your system,
methods do exist to mathematically tune the constants. Beware, even
small discrepancies between the model and reality can throw off the results
wildly.

Here, I will just discuss some general tips for heuristic methods. You
should always first consider your application and convince yourself the
values you are using make sense. Additionally, if possible, graph the out-
puts of the controller to see what is happening. It cannot be overstated
how much simpler tuning a PID controller is when you can see what is
happening.

WARNING: Before setting up any PID system, check that the constants
are of a reasonable order of magnitude. A motor with a large Kp value can
way overshoot its target speed, instantly destroying what you’re working
on or worse, hurt someone. Large Ki values can cause massive changes
after a period of time.

The first constant to tune is always the proportional term. It has the
simplest behavior, and as stated before, is sometimes the only term re-
quired in some scenarios. Consider the units and ranges of values that
the output space and input to the controller work in. For instance, an
electric motor outputs rotations per minute, in a range from perhaps 0 to
1000. They take as an input a voltage between 4 to 7 volts, provided by a
motor controller (note: some motor controllers have built-in control loops,
so this may be unnecessary). From the software side, we usually control
the voltage with a PWM signal from 0 to 1024. So, the ranges being sim-
ilar, it is not unreasonable to assume our P constant might be around 1.
From there, the value can be further tuned by observing the two follow-
ing things: If the constant is too large, there will be large overshoots and
frequent oscillations around the target value. If the constant is too small,
it will take a really long time to reach the target value. Ideally, we will get
oscillations with a long period around the target.

When you are satisfied with the results from the previous section, you

306 CHAPTER 39. CONTROL LOOPS

can try to add an integral term. Logically, the integral term should be quite
a bit smaller than the proportional term, as it builds up to large values over
time. In fact, another way of formulating the constant Ki is Ki =

Kp

Ti
, where

Ti is an amount of time that represents how long it takes for the integral
term to kick in as hard as the proportional term. In general, Ki can be
anywhere between half and 1

100
th of Kp. In general, it is better to start with

a significantly smaller value of Ki, and work up, until the oscillations start
becoming worse.

Finally, you can start to tune the Kd term. This is by far the hardest and
least consistent term to tune, and is hard to say much about in general,
because its use is so dependent on the system. Many systems will indeed
be fine without this constant, as a little bit of overshoot is not always a
problem. If overshoot is a huge problem, no matter the values of Ki and
Kp, it may be necessary. A good value to start with is often 0.1(Ki) or
0.01(Kp). You may google formulas and procedures to tune Kd, and some
of the results you find may even work.

39.3 Additional Notes

We can apply transformations to the output value of the PID loop in order
to make it more logically fit the constraints of our problem. For example, in
a motor controller that accepts a pwm value from 0-1024, we would limit
the output to that range. We can additionally add a constant term, known
as feed-forward, if we know we need some baseline kick in power in our
application.

39.4 PID Code Example

Here is a small example of how a PID controller could look in python. The
class is initialized with the constants Kp, Ki, and Kd, as well as some
optional limits on the output and integral term. The update method is
meant to be called in a loop, with the feedback as a parameter. The update
method returns the output for the system. We use the riemann sum to
estimate the integral, increasing the term by (lastfeedback + feedback)/2 at
each time step.

39.4. PID CODE EXAMPLE 307

import time
class PID:

def __init__(self, Kp: float, Ki: float,
Kd: float, target: float, min: float=0, max: float=float('inf'),
min_int: float=-float('inf'), max_int: float=float('inf')) -> None:
"""
Parameters ----------
Kp : float Proportional gain.
Ki : float Integration gain.
Kd : float Derivative gain.
target : float Target value.
min : float Minimum output.
max : float Maximum output.
max_int: float Maximum integral value
min_int: float Minimum integral value"""
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self.target = target
self.Dterm = 0
self.Iterm = 0
self.last_error = 0
self.last_time = time.time()
self.last_feedback = 0
self.last_output = 0
self.last_time = 0
self.max = max
self.max_int = max_int
self.min = min
self.min_int = min_int

def update(self, feedback: float) -> float:
""" Calculate the PID output value.
Parameters ----------
feedback : float Value to be compared to the target. Returns -------
float Output of the PID controller. """
error = self.target - feedback
current_time = time.time()

308 CHAPTER 39. CONTROL LOOPS

#we use deltatime for integral and derivative approximations
delta_time = current_time - self.last_time
if self.last_time == 0:

delta_time = 0.001
if delta_time == 0:

return self.last_output
self.Pterm = self.Kp * error #k term is k_t*e(t)
#riemann approximation of integral
self.Iterm += (error + self.last_error) * 0.5

* self.Ki * delta_time
#approximation of de(t)/dt
self.Dterm = self.Kd * (self.last_feedback - feedback)

/ delta_time

#limit integral term
if self.Iterm > self.max_int:

self.Iterm = self.max_int
elif self.Iterm < self.min_int:

self.Iterm = self.min_int

self.last_time = current_time
self.last_error = error
self.last_feedback = feedback

output = self.Pterm + self.Iterm + self.Dterm
if output < self.min: #limit output

return self.min
if output > self.max:

return self.max
self.last_output = output
return output

#change target
def set_target(self,target):

self.target=target

39.4. PID CODE EXAMPLE 309

39.4.1 Example Application: Phone-Controlled Car

In this section, we will make a car that we can control using our phone
camera. The idea will be that we hold our phone in our hand, camera
pointing at the ground. The car will always try to center itself in the frame.
By walking around with your phone, keeping the car at the edge of the
frame, you will be able to make the car follow you around.

The first thing we need to do is to create a small, remote-controllable
car. We can do this easily with either an Arduino UNO and an HC-05 BT
tx/rx, or an ESP8266 WiFi microcontroller, a servo, a brushless motor, and
an electronic speed controller of your choice. We can mount all these parts
onto a 3D printed frame or some legos, if you like. My car look something
like so:

And the electronics were wired as follows:

310 CHAPTER 39. CONTROL LOOPS

Then, download Camo on your phone and laptop, and follow their pair-
ing instructions. You should be able to access your phone’s camera using
cv2.videoCapture(1). Finally, follow this book’s guide to install AprilTags .
Print an Apriltag and stick it to your car.

Now, we have to write some code. We can reuse the code from the
previous part as our PID controller.

Then, we quickly write a class to wrap the bluetooth socket to control
the car and a camera class to quickly get the location of the car:

#camera.py
import cv2
from pupil_apriltags import Detector

class Camera:
def __init__(self, cam):

self.goal_x = None
self.goal_y = None
self.cap = cv2.VideoCapture(cam, cv2.CAP_DSHOW)
self.at_detector = Detector(families='tag36h11',

nthreads=1,
quad_decimate=1.0,

https://reincubate.com/camo/

39.4. PID CODE EXAMPLE 311

quad_sigma=0.0,
refine_edges=1,
decode_sharpening=0.25,
debug=0)

ret, self.frame_in = self.cap.read()
self.pos = (-1,-1)

def update(self):
ret, self.frame_in = self.cap.read()
grey = cv2.cvtColor(self.frame_in, cv2.COLOR_BGR2GRAY)
tags = self.at_detector.detect(grey)
if len(tags) == 0:

self.pos=(-1,-1) #to stop the car if we dont see the tag
for tag in tags:

cv2.putText(self.frame_in, str(tag.tag_id),
(int(tag.corners[1][0]),int(tag.corners[1][1])),

cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 3,cv2.LINE_AA)
cv2.rectangle(self.frame_in,

(int(tag.corners[0][0]),int(tag.corners[0][1])),
(int(tag.corners[2][0]),int(tag.corners[2][1])),
(255,0,0), 2)

self.pos = ((tag.corners[0][0] + tag.corners[2][0])/2,
(tag.corners[0][1] + tag.corners[2][1])/2)

if self.goal_x is not None: #draw the goal
cv2.circle(self.frame_in, (int(self.goal_x),

int(self.goal_y)),
3, (255,0,0), 9)

cv2.imshow('image', self.frame_in)
def get_pos(self):

return self.pos
def draw_goal(self,x,y):

self.goal_x = x
self.goal_y = y

#car.py
import socket
class Car:

def __init__(self, addr):
port = 1

312 CHAPTER 39. CONTROL LOOPS

s = socket.socket(socket.AF_BLUETOOTH,
socket.SOCK_STREAM, socket.BTPROTO_RFCOMM)

s.connect((addr, port))
self.s = s
self.x = 0
self.y = 0

def send(self, command):
self.s.send(command)

And we need some quick code for the car to receive speeds. To send a pwm
speed between 255 and -255 (the limits of PWM), we read the Bluetooth
into two bytes before converting to an int. Please note that while opening
the Serial monitor can be useful for debugging, it can significantly slow
down the Arduino’s ability to read from the Bluetooth serial port.

#define ledPin LED_BUILTIN
#include <SoftwareSerial.h>
SoftwareSerial MyBlue(8, 9);
#include <math.h>
#include <Servo.h>
#define motorpin1 2
#define motorpin2 3
#define enapin 5
#define servopin 13

int middle = 90;

Servo myservo;
void setup() {

pinMode(motorpin1, OUTPUT);
pinMode(motorpin2, OUTPUT);
pinMode(enapin, OUTPUT);
myservo.attach(servopin); // attaches the servo on pin 13 to the servo object
turn(0);
stopCar();
pinMode(ledPin, OUTPUT);
digitalWrite(ledPin, LOW);
MyBlue.begin(9600); // Default communication rate of the Bluetooth module

39.4. PID CODE EXAMPLE 313

}

void drive(int speed){
//don't drive at low speed, bad for motor
if (speed < 80 && speed > -80) {

speed = 0;
}
if(speed >= 0){
analogWrite(enapin,speed);
digitalWrite(motorpin1, LOW);
digitalWrite(motorpin2, HIGH);
} else {

analogWrite(enapin,-1*speed);
digitalWrite(motorpin1, HIGH);
digitalWrite(motorpin2, LOW);

}
}
void turn(int angle){

myservo.write(middle+angle);
}
void stopCar(){

analogWrite(enapin,0);
digitalWrite(motorpin1, LOW);
digitalWrite(motorpin2, LOW);

}

void loop() {
int16_t speed = 0;
uint8_t buff[2];
if(MyBlue.available()){
int success = MyBlue.readBytes(buff,2);
if(success > 0){

speed = buff[1] + (buff[0] << 8);
}
drive(speed);

}

314 CHAPTER 39. CONTROL LOOPS

}

And finally a main method for our python code:

from cars import Car
from camera import Camera
from PID import PID
import cv2
adapter_addr = '00:21:11:01:FA:1C'
camera = Camera(1)
pid = PID(20,0.0001,0,0,max=255,min=-255,max_int=100,min_int=-100)
car = Car(adapter_addr)
initial_x = -1
initial_y = -1
while initial_x == -1:

camera.update()
if cv2.waitKey(1) & 0xFF == ord('q'):

break
initial_x, initial_y = camera.get_pos()

goal_x = 800 #approximately the middle of my camera screen (in pixels)
camera.draw_goal(goal_x, initial_y)
pid.set_target(goal_x)
i = 0
while True:

camera.update()
x,y = camera.get_pos()
camera.draw_goal(goal_x, y)
output = pid.update(x)
if (x,y) == (-1,-1):

car.send(int(0).to_bytes(2, byteorder='big', signed=True))
else:

car.send(int(output).to_bytes(2, byteorder='big', signed=True))
if cv2.waitKey(1) & 0xFF == ord('q'):

break

Afterwards, we need to do our PID tuning. I found that a value of 0.8
works quite well for the Kp, and that the other constants are not required

39.4. PID CODE EXAMPLE 315

(as our motor doesn’t have a wide range of speeds and we do not require to
much precision or speed to arrive at our goal). As an experiment, you can
set Kp to 30 or so and see what kinds of massive oscillations can happen
when the PID loop is tuned incorrectly.

Next, we need to make sure that the car always drives towards the cen-
ter of the screen. For this, we need a second PID loop. Using the AprilTag,
we can draw a line down the center of of the car, and a line from the center
of the car to the center of the screen. Notice that these lines always inter-
sect (at the center of the car), and that when these lines are coincident,
the car is facing perfectly at the target (or perfectly away from it). Then if
there is a positive angle between the two lines, we should turn right, while
a negative angle between the two lines implies that we should turn left.
The implementation of this is left as an exercise to the reader.

316 CHAPTER 39. CONTROL LOOPS

Chapter 40

Field-Oriented Control

Field-oriented control (FOC) refers to a technical approach to controlling
brushless motors which maximizes torque and the smooth running of mo-
tors. This is particularly significant when the motor is accelerating/dece-
lerating or running at low speed. FOC controllers turn motors into closed-
loop actuators (servos) and can be used for quite accurate positioning,
allowing them to take the roles of stepper motors and (box) servos in many
robotics applications, though with much higher speed, torque, and power.

FOC isn’t just a marketing term: It is descriptive of the underlying the-
ory. In FOC, the relative orientations of rotor and stator in the magnetic
field, and orientation relative to field lines are leveraged. The underlying
mathematics is much beyond the scope of this manual, but see this video
for more:
https://www.youtube.com/watch?v=_6-_jvZe7iA
Texas Instruments
“Field-Oriented Control”

40.1 Control Feedback and Customization
Feedback from the motor is integral to FOC. A FOC controller uses some
or all of the following: Measurements of

• the current drawn by the motor over the three power lines,

• back-EMF1 “coming back from the motor”, and
1Some FOC controllers, such as odrives, can even harvest the back-EMF energy to

317

https://www.youtube.com/watch?v=_6-_jvZe7iA

318 CHAPTER 40. FIELD-ORIENTED CONTROL

• rotor angle information, measured by a rotation sensor (rotary en-
coder). This is a component separate from the motor driver, which
needs to be mounted to the rotor (shaft) of the motor and connected
to the motor driver by wires separate from the three wires powering
the motor.

Some FOC controllers can operate while having access to only some of
this feedback. Using sensor information relating to rotor position (which
applies to all three kinds of feeedback mentioned above) is usually the
criterion to make a motor controller “closed-loop”. In the context of FOC,
running a controller without feedback from a rotation sensor is usually
called open-loop, even if other feedback information available. (A good
FOC controller such as an odrive can derive some limited angle information
from back-EMF, at the resolution of the number of motor poles, which can
be higher than 20 for large pancake motors).

FOC controllers do some heavy calculations that are also quite cus-
tomizable. For these reasons, they are not entirely implemented in hard-
ware but have a significant piece of code running on an MCU. This software
needs to be configured and takes a considerable number or parameters.

Among the key parameters that you can/should/need to provide is in-
formation on the motor and the rotation sensor.

For the motor, the key characteristics are

• The number of pole pairs. Most brushless motors have between 7 and
14 pole pairs. This information should be in the motor’s datasheet;
alternatively, may count the poles if the motor has cutouts allowing
you an inside view of the motor stator. A pole is a visible coil in the
stator. Two opposite poles for a pole pair. Outrunner (drone) motors
usually have cutouts to allow for better motor cooling in the propeller
downwash, allowing you to see the coils, and other non-hobby mo-
tors are likely to have better-than-useless datasheets which detail the
number of pole pairs. Do not confuse poles with pole pairs!

• The kv rating, which provides information on the motor’s speed to
torque tradeoff (or wire thickness to number of turns per coil tradeoff).

recharge a battery. Generally speaking, this energy has to be absorbed somewhere, or
else, for large motors and strong braking, this loose current can interfere with your elec-
tronics and even damage something For that reason, odrives, when not set up to feed
the energy back into the battery, should be connected to a special high-power, low-Ohm
resistor.

40.1. CONTROL FEEDBACK AND CUSTOMIZATION 319

odrive SimpleFOC+Stepper SimpleFOC + BLDC
#pole pairs yes yes: 50 yes
kv yes no no
phase resistance no no yes
phase inductance no no no

Table 40.1: Required motor parameters for various FOC scenarios.

• Phase resistance and phase inductance. The two numbers should be
in the motor datasheet, and some motor drivers can measure them,
so you may not need to provide them.2

Note that you cannot measure phase resistance with a multimeter!3

There are different kinds of rotation sensors, including optical and mag-
netic (Hall-effect) sensors. To the FOC controller, what is relevant is how
this angle information is provided. The two most typical sensor types are
Hall-effect sensors with three signal lines, usually called Hall1, Hall2, and
Hall3, and incremental encoders4 with two signal lines called A and B, and
potentially a third, the index (sometimes labeled X or Z)5. For an encoder,
you also need to provide its resolution (the number of counts per rotation,

2Odrives measure both reliably during motor calibration, so you do not need to provide
them; on the other hand, if you provide these two numbers as paramaters, you may skip
motor calibration, which otherwise runs on each odrive startup or reset. For odrives, you
must provide the pole pairs and kv ratings of the motor as parameters. For SimpleFOC
with steppers, you need to only provide the number of pole pairs, which is always 50. For
SimpleFOC with brushless motors, you need to provide pole pairs and phase resistance
(but not phase inductance). Note that SimpleFOC will not complain if you do not provide
phase resistance, but if you do not provide this, or provide an incorrect number, extreme
currents may flow, with all the serious consequences this entails. See Table 40.1 for a
summary of what you need to provide.

3Actually you can in principle (see https://docs.simplefoc.com/phase_resistance), but
for doing that you need to know the internal wiring topology (mainly star or delta) of the
motor, information even less available than phase resistance, to apply the right multiplier
to your measurement. Another problem is that most multimeters are not precise enough
when measuring very small resistances and may give you a reading that is off by an order
of magnitude. Using a phase resistance value obtained in this way might cause very large
currents to flow.

4See https://en.wikipedia.org/wiki/Incremental_encoder.
5If the encoder supports an index, it will send a signal whenever the rotor passes a

particular zero-angle position, allowing absolute positioning. In the absence of an index,
the zero angle is the position at the time of controller startup or reset.

https://docs.simplefoc.com/phase_resistance
https://en.wikipedia.org/wiki/Incremental_encoder

320 CHAPTER 40. FIELD-ORIENTED CONTROL

most commonly 2048 or 4096).
Generally speaking, you should provide as many of these parameters as

possible, if you have them (accurately). Note that the FOC controller may
determine from sensor feedback that it receives that some of the settings
provided by you are incorrect, leading to runtime failures. This is partic-
ularly true if you indicate the wrong number of pole pairs or an incorrect
resolution for your rotary encoder.

There are many further parameters that can be set, such as limits on
voltages, current draws, or rotation speeds, and parameters for tuning
the internal PID controllers. FOC controllers usually have multiple PID
controllers for different kinds of supported operation.

40.2 Features

FOC controllers usually offer a number of modes, characterized by the pri-
mary parameter manipulated by the user, including torque control, posi-
tion control (called angle control in SimpleFOC), and speed control modes.
In either mode, the controller will attempt to follow its instructions, such
as running at a given speed no matter the opposing forces (in speed control
mode). This means, in particular, that the motor will actively brake – try
to lock itself in the current position when stopped (speed set to zero) – and
will even oppose you when you try to help it turn in the same direction it
is rotating if you try to make it rotate faster than it is set to rotate.

These features make FOC controllers very popular in robotics applica-
tions. Some of these behaviors and features aren’t achievable using any
other motor/controller technology.

While FOC position control doesn’t yield as high an angular resolu-
tion as stepper motors do, for many applications, such as legged robots,
it is easily accurate enough, particularly if some mechanical reduction
(through belt drives, gearboxes, etc.) is employed. Differently from (open-
loop) steppers6, FOC actuators are closed-loop, making them more robust
in applications where your thing interacts with the real world and unex-

6Remember: Open-loop means that the controller is blind to its environment. A stepper
has a reliable mechanism for advancing by precisely one step, but if it hits an obstacle
or its torque is insufficient to complete the step, it misses a step and neither the motor
controller nor you will know this happened. A closed-loop servo/stepper has a position
sensor and can keep trying until it achieves the desired position.

40.3. SIMPLEFOC 321

pected obstacles. Brushless motors usually have much higher acceler-
ation and torque maxima than stepper motors, making a FOC actuator
much faster and more responsive than a stepper. Note that most indus-
trial robots (robot arms), some of which weigh multiple tons, have several
meters of reach, and which achieve reproducible position accuracy of less
than 0.02mm, use sensored BLDC motors with FOC controllers (and gear
reduction), rather than steppers.

By the PID control and the working principle of brushless motors, FOC
actuators are naturally springy and back-driveable, and can create more
lively and organic motion than other motor technologies. Back-driveablity
is particularly essential in legged and bio-inspired robotics.

FOC controllers have little resemblance with cheap brushless ESCs
used in remote-controlled cars and drones. The gold standard for FOC
controllers for us are odrives7, but they are expensive.8 An alternative is
SimpleFOC9.

40.3 SimpleFOC

SimpleFOC is an open-source software library that works with many brush-
less motor controllers.

TODO discuss code structure, motor and driver class options, sensors,
and commander interface.

40.3.1 STM32 B-G431B-ESC1 and a Brushless Motor

Here is a position control example with the STM32 B-G431B-ESC1 and
an X2212 motor. This motor has 7 pole pairs and a phase resistance of
0.092Ω according to datasheet (0.086Ω as measured by an odrive). This
motor comes with a TLE5012b (magnetic) encoder with a resolution of
4096 counts per rotation. Note, in the following code, the various pin
aliases pre-set specifically for the B-G431B-ESC1, such as A_PHASE_**,
A_HALL*, and A_OP*_OUT.

7https://odriverobotics.com/
8A genuine odrive costs about CHF 250 without motors, and a clone from China costs

CHF60+.
9https://simplefoc.com/

https://odriverobotics.com/
https://simplefoc.com/

322 CHAPTER 40. FIELD-ORIENTED CONTROL

TODO add links to STM32 B-G431B-ESC1 manual, example code, fo-
rum post, and SimpleFOC tuning video.

#include <SimpleFOC.h>

BLDCMotor motor = BLDCMotor(7, 0.092); // SunnySky x2212
BLDCDriver6PWM driver = BLDCDriver6PWM(A_PHASE_UH, A_PHASE_UL,

A_PHASE_VH, A_PHASE_VL,
A_PHASE_WH, A_PHASE_WL);

LowsideCurrentSense currentSense = LowsideCurrentSense(0.003f,
-64.0f/7.0f, A_OP1_OUT, A_OP2_OUT, A_OP3_OUT);

Encoder encoder = Encoder(A_HALL2, A_HALL3, 4096); // TLE5012b
void doA(){encoder.handleA();}
void doB(){encoder.handleB();}

Commander command = Commander(Serial);
void doTarget(char* cmd) { command.motion(&motor, cmd); }

void setup() {
encoder.init();
encoder.enableInterrupts(doA, doB);
motor.linkSensor(&encoder);

driver.voltage_power_supply = 12;
driver.init();
motor.linkDriver(&driver);

currentSense.linkDriver(&driver);
currentSense.init();
currentSense.skip_align = true;
motor.linkCurrentSense(¤tSense);

motor.controller = MotionControlType::angle;

motor.voltage_limit = 12;
motor.current_limit = 10;
motor.velocity_limit = 1000;

40.3. SIMPLEFOC 323

motor.PID_velocity.P = 0.2;
motor.PID_velocity.I = 20;
motor.PID_velocity.output_ramp = 1000;
motor.LPF_velocity.Tf = 0.01;
motor.P_angle.P = 20;

motor.target = 0;
motor.init();
motor.initFOC();

Serial.begin(115200);

command.add('T', doTarget, "target angle");

Serial.println(F("Ready."));
_delay(1000);

}

void loop() {
motor.loopFOC();
motor.move();
command.run();

}

40.3.2 L298N and a Bipolar Stepper

In the recommended videos section of this chapter, you find a number of
useful videos on SimpleFOC. One particular feature is that SimpleFOC can
also turn a bipolar stepper motor with two H-bridges into a FOC servo. This
does not work with a stepper driver such as the A4988, but it works with a
dual H-bridge brushed motor driver such as the L298N (see Chapter 35).

Observe how the stepper completely abandons its stepper character-
istics: It runs much more smoothly and silently, and potentially much
faster. It also develops higher torque than in the standard setting it was
designed for (thanks to the control theory of FOC, which essentially max-
imizes torque)! SimpleFOC yields position control at the cost of not being
able to do stepping, so this wouldn’t be a good solution in a 3d-printer or
CNC machine.

324 CHAPTER 40. FIELD-ORIENTED CONTROL

#include <SimpleFOC.h>

StepperMotor motor = StepperMotor(50);
StepperDriver4PWM driver = StepperDriver4PWM(5, 6, 9, 10, 8, 7);

Encoder encoder = Encoder(2, 3, 2048);
void doA(){encoder.handleA();}
void doB(){encoder.handleB();}

Commander command = Commander(Serial);
void onMotor(char* cmd){ command.motor(&motor, cmd); }

void setup() {
encoder.init();
encoder.enableInterrupts(doA, doB);
motor.linkSensor(&encoder);
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;

driver.voltage_power_supply = 12;
driver.init();
motor.linkDriver(&driver);

motor.controller = MotionControlType::angle;

motor.PID_velocity.P = 0.2;
motor.PID_velocity.I = 20;
motor.PID_velocity.D = 0;
motor.LPF_velocity.Tf = 0.01;

motor.voltage_limit = 12;
motor.P_angle.P = 20;
motor.velocity_limit = 50;

Serial.begin(115200);
motor.init();
motor.initFOC();
motor.target = 0;

40.4. AN ODRIVE EXAMPLE 325

command.add('M', onMotor, "motor");
_delay(1000);

}

void loop() {
motor.loopFOC();
motor.move();
command.run();

}

40.4 An ODrive Example

Below you find a complete odrive configuration example for our 6374 mo-
tors, in python. You will be excited to read that the myriad of esoteric
parameters such as flux linkage10 are not boilerplate from some web page
but were set by me after lookup in a data sheet or experimentation (there
is a calibration stage where you play with the motor and controller to find
out the right settings). The settings very much differ for different motor
models. Bad setting (particularly current limits) may destroy all electron-
ics in the vicinity and cause fires. Correct and double-checked wiring and
understanding ground loops (see Chapter 17) is essential. Odrives may
unleash thousands of watts of power; even a “correctly” set up and con-
figured thing (in terms of FOC controller configuration) may hulk-smash
everything around it, including you.

Since you will most likely not be working with odrives, this is to give you
a rough idea of the range of configuration parameters of FOC controllers.
No explanation of parameters is given here – you will either already know
what these parameters mean after reading the previous chapters, or the
parameter meanings are fundamentally un-knowable ;-) (See the odrive
documentation11 if you must know. If you ever get to work with odrives,
you must know. Script kiddies12 kill odrives.)

10See wikipedia if you must. But isn’t this the perfect term for technobabble? Usage:
“This is a Unix system! I know this! The flux linkage is over 9000 when the ssh button is
booted down!” (Credits to Jurassic Park 1, Dragon Ball Z, Aeon Flux, Die Hard 4, etc.)

11https://docs.odriverobotics.com/v/latest/guides/getting-started.html
12https://en.wikipedia.org/wiki/Script_kiddie

https://docs.odriverobotics.com/v/latest/guides/getting-started.html
https://en.wikipedia.org/wiki/Script_kiddie

326 CHAPTER 40. FIELD-ORIENTED CONTROL

odrv0.erase_configuration()

odrv0.config.enable_brake_resistor = True
odrv0.config.brake_resistance = 2
odrv0.config.dc_max_positive_current = 18
odrv0.axis0.controller.config.vel_limit = 20
odrv0.axis0.motor.config.pole_pairs = 7
odrv0.axis0.motor.config.torque_constant = 8.27 / 190
odrv0.axis0.motor.config.current_lim = 60
odrv0.axis0.motor.config.calibration_current = 30
odrv0.axis0.config.calibration_lockin.current = 30
odrv0.save_configuration()

sensorless (comment out either this part of the sensored mode part below)
odrv0.axis0.controller.config.vel_gain = 0.01
odrv0.axis0.controller.config.vel_integrator_gain = 0.05
odrv0.axis0.controller.config.control_mode = CONTROL_MODE_VELOCITY_CONTROL

odrv0.axis0.motor.config.current_lim =
2 * odrv0.axis0.config.sensorless_ramp.current

odrv0.axis0.sensorless_estimator.config.pm_flux_linkage =
5.51328895422 / (7 * 190)

odrv0.axis0.config.enable_sensorless_mode = True
odrv0.axis0.motor.config.pre_calibrated = True
odrv0.save_configuration()

odrv0.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL

sensored mode
odrv0.axis0.config.enable_sensorless_mode = False

odrv0.axis0.encoder.config.cpr = 8192
odrv0.axis0.requested_state = AXIS_STATE_FULL_CALIBRATION_SEQUENCE
#wait until finished before issuing more commands

odrv0.axis0.encoder.config.use_index = True

40.4. AN ODRIVE EXAMPLE 327

odrv0.axis0.requested_state = AXIS_STATE_ENCODER_INDEX_SEARCH
#wait until finished before issuing more commands

odrv0.axis0.requested_state = AXIS_STATE_ENCODER_OFFSET_CALIBRATION
#wait until finished before issuing more commands

odrv0.axis0.encoder.config.pre_calibrated = True
odrv0.axis0.motor.config.pre_calibrated = True
odrv0.axis0.config.startup_encoder_index_search = True
odrv0.save_configuration()

tuning, was done with 50V
odrv0.axis0.controller.config.vel_integrator_gain = 0
odrv0.axis0.controller.config.vel_gain = 0.33
odrv0.axis0.controller.config.pos_gain = 110
odrv0.axis0.controller.config.vel_integrator_gain =

0.5 * 10 * odrv0.axis0.controller.config.vel_gain
odrv0.axis0.requested_state = AXIS_STATE_IDLE
odrv0.save_configuration()

defaults
odrv0.axis0.controller.config.vel_integrator_gain = 0
odrv0.axis0.controller.config.vel_gain = 0.16
odrv0.axis0.controller.config.pos_gain = 20
odrv0.axis0.controller.config.vel_integrator_gain = 0.32
odrv0.save_configuration()

testing position control and holding torque
odrv0.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
odrv0.axis0.controller.input_pos = 1.5

filtered position control
odrv0.axis0.controller.config.input_filter_bandwidth = 5
odrv0.axis0.controller.config.input_mode = INPUT_MODE_POS_FILTER
odrv0.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL

328 CHAPTER 40. FIELD-ORIENTED CONTROL

def goto(x):
odrv0.axis0.controller.input_pos = x
while(abs(odrv0.axis0.controller.pos_setpoint - x) > 0.02):

time.sleep(0.1)

Should you ever need to do this, talk to me. There are some quirks,
such as that the calibration was done interactively, not by running this as
a script. The parts with a comment marked “wait until” were copied into
the console, with me waiting until the previous operations were completed.
(This is done once during calibration, not every time the thing starts up.
odrv0.save_configuration() saves settings in nonvolatile memory on the
motor controller.) Note that no line here is superfluous, including the ap-
parently repetitive configuration saving.

40.5 Parts in Stock for CS358
item #motors max V Ctrl MCU CHF
Odrive v3.6 clone 2 56 odrive yes 65
STM32 B-G431B-ESC1 1 24 SimpleFOC yes 20
SimpleFOC Shield 1x gimbal 24 SimpleFOC no 15
L298N (stepper FOC) 1 35 SimpleFOC no 3

For your team project, do not suggest a FOC controller other than those
in this list. If you want to use FOC, pick among these.

When your project involves brushless motors, you must add a USB iso-
lator (costs CHF 15) to your Bill of Materials.

40.5.1 Current Needs and Ratings
The single most important stat of a FOC driver is its current rating; how-
ever, things cannot be distilled down in a single number. It is essential
that you read the technical description and cooling requirements of your
motor driver before putting it into operation; otherwise you will destroy it
and may even cause a fire. Some short remarks here, though:

• Odrives and the STM32 B-G431B-ESC1 use MOSFETs and can han-
dle substantially higher currents than the other two drivers in our
list.

40.5. PARTS IN STOCK FOR CS358 329

• Odrives come with heat sinks on their driver MOSFETS and are rated
for 40A (continuous) per motor (each board can drive two motors)
without additional cooling. With the right cooling setup, they can
handle up to 120A. For details, see
https://docs.odriverobotics.com/v/0.5.4/specifications.html.

• The specced 40A max for the B-G431B-ESC1 is not realistic and
would require intense active cooling. This motor driver assumes it
is mounted under the propeller of a large drone. Even for normal op-
eration, a heatsink should be mounted on the MOSFET, which is not
shipped with the product and needs to be ordered separately. To run
a small brushless motor with low torque needs except for brief peaks,
the motor drivers can operate without a heatsink.

• The SimpleFOC shield is rated for 2A continuous. It is designed for
gimbal motors with phase resistance of about 10Ω. This is extremely
high: Normal brushless motors have phase resistances of tens of mΩ,
and if you run them with the SimpleFOC shield, very bad things may
happen.

If you are trying out the SimpleFOC shield with a small brushless
motor that is not a gimbal motor, make sure to set the maximum
motor voltage to 1V (via SimpleFOC parameter motor.voltage_limit)
and measure the current draw with a lab bench power supply. You
may increase this voltage limit while checking that peak current draw
for your thing under load does not exceeed 2A.

• The L298N13 uses BJT technology H-bridges, with an internal voltage
falloff of 1.4V. Thus, if you run a classical brushed motor at 2A, about
3W of heat are produced in the motor driver.

The L298N is rated for 2A, but that is practically a peak rating. If you
run anything close to 2A of current for just a few seconds, the L298N
will get extremely hot, despite its mounted heat sink. Running it at
more than about 0.5A continuously will destroy it quite quickly.

You can use the L298N with SimpleFOC only with bipolar steppers
such as the 17HS4401. Unipolar steppers such as the 28BYJ-48 or
brushless motors do not work!

13The L298N is usually used to drive two brushed motors – see Chapter 35.

https://docs.odriverobotics.com/v/0.5.4/specifications.html

330 CHAPTER 40. FIELD-ORIENTED CONTROL

Note, though, that a brushless motor (or a bipolar stepper in FOC mode)
will run at very low currents (on the order of 10mA) when no load is at-
tached and acceleration is not too extreme (which is easy to ensure by
parameter settings in FOC). The actual current draws for your applica-
tion depend on how heavy your loads are and whether your thing has to
fight gravity (as is typically the case for robot arms). Experimentation may
be in order to find out your torque and current requirements, but you
should first try to estimate the required torque based on your mechanical
design and calculate the required currents based on the math introduced
in Chapter 34.

40.5.2 Ease of Use
All four models of FOC motor drivers can be used with SimpleFOC; how-
ever, using SimpleFOC with odrives requires overwriting the odrive firmware,
which is actually superior to SimpleFOC; moreover, it may not be possible
to restore the original odrive firmware on odrive clones, so overwriting it
and using odrives with SimpleFOC is forbidden.14

Leaving aside odrives, the remaining three types of drivers can all be
used with SimpleFOC and programmed using the Arduino IDE.15 Sim-
pleFOC is a little easier to use than odrives, though odrives yield higher
performance.

Remember that FOC requires substantial computation on an MCU.
Odrives and the B-G431B-ESC1 have on-board MCUs which you will have
to separately program/configure and which will usually only run FOC, re-
ceiving instructions from your main microcontroller(s) running your project’s
core behavioral code. Thus there may be two kinds of microcontrollers
in your project (“core” and FOC ones), that need to be separately pro-
grammed, run different code, and need to talk to each other. The Sim-
pleFOC Shield and the L298N do not have MCUs on board, so the FOC
computations need to be done on the MCU intended to run your project’s
core code.

The STM32 B-G431B-ESC1 does not come with connectors to the power
supply, the motor, or the rotation sensor/encoder. These need to be sol-
dered on by you, and this requires substantial soldering skill: This is a

14Take this seriously. Violating this rule will be taken as vandalism.
15Though to unleash the full potential of the STM32 B-G431B-ESC1, you’d have to

program it using the STMCubeIDE.

40.5. PARTS IN STOCK FOR CS358 331

very small and tightly packed board, with small solder pads that are very
close to other functional components, so there is the danger of overheat-
ing these or creating a shortcircuit connection via a solder bridge. The
high-current solder connections to power supply and motor need quite a
bit of solder and need to be down well for the motor driver to work, and the
solder pads for the sensor/encoder are very small, and are best soldered
under a microscope. You should certainly have a soldering practice run
on some scrap items before attempting this on the STM32 B-G431B-ESC1
board.

The SimpleFOC shield is designed to be mounted atop an Arduino Uno.
The advantage of this is that you do not need to worry about the wire
connections between the motor driver and the microcontroller. On the
downside, this makes it more difficult to connect other things than a FOC
motor driver for one motor to your microcontroller (solutions exist though).

The Arduino Uno is actually too slow to keep up the refresh rates nec-
essary for FOC to work well (running the motor.loopFOC() function call in
the main loop of the microcontroller frequently enough per second). When
running SimpleFOC on the Arduino Uno, FOC may not work at all, torque
will be much lower than expected, or, at the least, position control will be
very jittery: When trying to move the motor to a position, the movement
will constantly overshoot the desired position because control is to slow to
stop the motor at the desired position, leading to oscillation or vibration.
In this case we may provide you, exceptionall, with a microcontroller board
that is not on the list of approved boards – probably an STM32 Nucleo64
board. These can be programmed on the Arduino IDE and used like a
faster Arduino Uno – even standard Uno shields can be mounted on top.

40.5.3 Choosing a FOC Solution

Let us distill conclusions from the points made earlier in this chapter. Here
is how you should pick your FOC solution.

When your project needs FOC, the motors and motor drivers tend to be
the dominating cost factor in your Bill of Materials. In practice, odrives
are too expensive, as, even though a clone board may be within budget,
the large motors that require us to use it cost on the order of CHF 100 a
piece; smaller motors can be run by the cheaper drivers. However, odrives
can be used to measure phase resistance and inductance of your motor,
and we may lend you an odrive for that.

332 CHAPTER 40. FIELD-ORIENTED CONTROL

The SimpleFOC shield is practically limited to gimbal motors, and these
provide relatively little power for their price.

Thus, the preferrable options for you are probably the remaining two –
the L298N plus stepper combination, and the STM32 B-G321B-ESC1 for
brushless motors.

Among these two, the L298N plus 17HS4401 stepper option is cheaper
and simpler to use (and does not involve a difficult soldering job). It is
cheaper because the motor drivers are very inexpensive and the stepper
motors are standardized and mass-produced (practically every modern
3D-printer uses several of them). Thus you get a lot of motor for the price.

With this combination, you get about 0.4Nm of torque ang about TO BE
CHECKED rpm of maximum speed. You can raise either torque or rotation
speed at the cost of the other using a suitable gearbox or belt drive, see
Chapter 42.

If this is not sufficient for your application, pick the STM32 B-G321B-
ESC1 and a suitable brushless motor.

40.6 Caveats and Debugging
Protecting your laptop from voltage spikes, short circuits, and ground
loops. When working with brushless motors, you need to have a USB
isolator between your thing and your laptop at all times. Running your
laptop on battery (so there is no ground connection through a switching-
mode power supply) is recommended in addition.

Make sure your motor parameters are correct. Getting any of them
wrong may lead to very large currents flowing. An incorrect phase resis-
tance is particularly dangerous. Do not guess and try pole pair or phase
resistance settings. Do not power up the system if you don’t know these
values.

Get a clear idea of the current drawn by your system. While familiariz-
ing yourself with FOC and your motor and driver combinations, and when
you start running your motor under load, make sure to keep track of the
current drawn and shut down the power supply immediately if the cur-
rent flowing seems high. To do this, run your thing off a lab bench power
supply which displays the flowing current and allows to XXX

You get a message indicating that the FOC controller expected to see

40.6. CAVEATS AND DEBUGGING 333

a different number of pole pairs. Both SimpleFOC and odrives have
these error messages. It could be that the number of pole pairs that you
indicated is wrong (don’t confuse poles with pole pairs) or that your sen-
sor/encoder parameters are wrong.

For instance, if you indicated that your motor has 7 pole pairs (and
that’s the correct number) and that your encoder has 2048 counts per
rotation, but SimpleFOC tells you that it detected roughly 3.5 pole pairs
(which is of course impossible), then your encoder really has 4096 counts
per rotation, not 2048.

A FOC controller rotates its motor a little on startup. The reason for
this is that they calibrate themselves and check whether the parameters
you provided are consistent. Also, for encoders with index, the controller
will search for the index to home its position. The motor driver may also
assume or require that no load is attached to the motor shaft.

This is of course undesirable, since we do not want to have to partially
disassemble and reassembe our things every time we start them up.

This may be avoidable if you provide all the relevant motor parameters
and use an absolute or non-indexed encoder. For odrives, if you provide
phase resistance and inductance, no calibration is necessary on startup,
and you can help the controller find the encoder index by rotating the rotor
a little by hand, avoiding that the controller makes the motor rotate. If you
provide all the motor parameters, SimpleFOC may still rotate the motor a
little on startup16, but at least it should be able to do this under load, so
no disaassembly of your thing is neeced.

Sensor readings are unreliable: There are two reasons why this may be
happening.

1. The sensor isn’t mounted well on the motor. Rotary encoders such
as the CUI AMT 102V/103V use a plastic adapter to handle various
rotor shaft diameters, and and if this adapter isn’t mounted firmly,
or if the entire encoder has some wiggle room, the reading will be
erratic. Magnetic sensors require you to mount a little magnet on the
rotor (shaft) of the motor, which may come loose. Check that.

2. Noise on the sensor wires induced by the motor is a concern. This
shows as sensor reading that jump wildly. High-end encoders in in-

16So make sure that the position of the rotor on startup is such that some rotation in
both direction is possible given mechanical and structural contraints of your thing.

334 CHAPTER 40. FIELD-ORIENTED CONTROL

dustrial robots use pairs of wires for each signal, carrying the sig-
nal and its complement, twisted together to ensure noise is induced
equally in both wires. By subtracting the two signals using an OpAmp
in the motor driver, the noise is eliminated. Unfortunately, this is not
an option to us since no affordable motor driver supports this. One
way to address this is using a ferrite ring. (Do three windings of your
sensor wires through and around the ferrite ring, as close as possible
to the controller-side end of the wires.) If you thing your sensor read-
ings are erratic due to noise, talk to us. However, it is much more
likely that your problem lies elsewhere. Please debug your system
and exclude all other possible causes of problems before coming up
with the noise theory.

Note that your can do sensor readings without running you motor or
even have the motor connected to the FOC controller. You can turn the
motor shaft by hand and read out the sensor.

40.7 FOC in Industrial Robots
Industrial robot arms achieve extremely high precision (in terms of ac-
curate reproducibility of movements and positions), often within an error
margin of 0.02mm, on robots that can lift hundreds or even thousands of
kilograms of weight and can move extremely fast. This isn’t achievable with
steppers, but is done with large brushless motors17 under FOC, using suit-
able sensors and mechanical reducers (usually a combination of a timing
belt drives with extremely low-backlash gearboxes – such as a harmonic
drives – for the final stage of the mechanical reduction). Leaving aside the
mechanical reducers, these controller-motor-sensor solutions differ from
those available to us mainly in three ways.

• The brushless motors are not just large but run at very high voltages
(usually 310–480V).

• For FOC to work well at high speeds, the motor drivers have to do the
control loop computations extremely fast, requiring hardware support
beyond a fast microcontroller (but a FOC implementation in FPGA or

17These look like large steppers since they are typically in NEMA housings, but they are
brushless motors.

40.8. RECOMMENDED VIDEOS 335

ASIC). This also requires very fast sensors that send position updates
extremely frequently (and reliably). The position update frequency of
rotary encoders in such industrial robots typically is by at least an
order of magnitude higher than with the rotation sensors available to
us.

• The cabling and electronics have various features to improve robust-
ness and survivability.18 This includes, for instance, using differen-
tial signalling from the sensors to the controllers to eliminate noise.
In Section 40.6, we observed that noise on the sensor signal wires is
a problem. In the industrial setting, we do not use individual signal
wires, but use them in twisted pairs of a signal and its complement.
The noise will be about the same on both wires, so by subtracting the
signals on the two wires (using an OpAmp), we get the signal without
the noise!

The electronics in these FOC controllers and sensors is vendor and
model-specific. As an interesting consequence, you can get an old indus-
trial robot extremely cheaply if you want one – they are sold for scrap metal
or a given away for free, since once the vendor stops making replacement
parts, they cannot be repaired.

40.8 Recommended Videos
https://www.youtube.com/watch?v=Y5kLeqTc6Zk
simplefoc
“Arduino Field Oriented Control (FOC) Open Source Library
Demonstration - Simple FOC project”
https://www.youtube.com/watch?v=G5pbo0C6ujE
simplefoc
“Arduino Simple Field Oriented Control BLDC driver Shield -
SimpleFOCShield”

18Odrives can be placed halfway between SimpleFOC and industrial FOC controllers
and implement some professional features. In fact, even though odrives were expensive
already, the doubled prices with the latest generation of odrives, even though they do
not significantly differ from the previous generation in terms of stats such as supported
voltage and current – all the improvements that justify the doubled price revolve around
“professional” robustness features.

https://www.youtube.com/watch?v=Y5kLeqTc6Zk
https://www.youtube.com/watch?v=G5pbo0C6ujE

336 CHAPTER 40. FIELD-ORIENTED CONTROL

https://www.youtube.com/watch?v=zcb86TRxTxc
simplefoc
“Closed loop Stepper Motor using FOC algorithm - SimpleFO-
Clibrary”

https://www.youtube.com/watch?v=zcb86TRxTxc

Part VII

Mechanical Engineering

337

Chapter 41

Mounting Motors

The natural shape of a motor is, of course, a cylinder. Motors usually
have special mounting points (screw holes) on a face plate – the base of
the cylinder, perpendicular to the axis of rotation. In an outrunner, of
the external surfaces of the motor housing, usually only the faceplate is
hard-connected to the stator; the remaining surface rotates and cannot
be used for mounting the motor. Even for inrunners, the correct way to
mount the motor is by its faceplate, and not by pinching its sides – this
would usually impede cooling and the sides are often not strong enough
to withstand being pinched (clamped down) hard.

For industrial motors, there is an industry standard for motor face-
plates by NEMA (the standard is colloquially referred to be NEMA, but this
is really the name of the standards organization).

Among hobbyists and makers, NEMA is mainly known in conjunction
with bipolar stepper motors; however, there are also other kinds of indus-
trial motors using NEMA faceplates.

Most motors have a dedicated mounting surface or faceplate with screw
holes. This is usually the surface of the motor enclosure where the output
shaft exits. Motors are to be mounted by these screw connections. Make
sure that your screws are not too long, otherwise you may damage the
internals of the motor!

Do not mount motors by making a box shaped like the motor enclosure
for a tight fit:

• the enclosures of geared motors are often not strong enough not to be
damaged by the motor’s own torque.

339

340 CHAPTER 41. MOUNTING MOTORS

Figure 41.1: Typical form factors and torque ranges for bipolar steppers.

• the motor may overheat and get damaged, or it may melt 3d-printed
enclosures.

• many brushless motors have external rotors; a big part of the enclo-
sure rotates when the motor is running, so the only way to mount the
motor is by the faceplate.

When you design your thing and your motor mount, do not forget to
take into account the motor’s cabling! Also, make sure you take correctly
into account the place where cables exit your motor relative to the positions
of the screw holes of the motor faceplate!

It is a very common mistake to forget about this, and as a consequence,
you waste time and material to make the structural parts of your thing.

Chapter 42

Machine Elements and Patterns

42.1 Coupling
Frequently, you have to connect – couple – two parts of the mechanical
design of your thing to communicate rotation from one part of your thing
(usually including a motor) to another. There are a number of ways to do
this.

A shaft is a rotating machine element, usually circular in diameter, of
relatively low diameter, and made of a relatively strong material.

Shaft couplers are for coupling two low-diameter shafts or axles. Flange
couplers are for coupling a shaft with a large diameter thing (such as a
turntable).

Note the box-shaped slot in the the part in the bottom right of Fig-
ure 42.1: This is for sliding a nut in to hold the screw (which goes into the
small round hole) in place and firmly against the shaft in the large round
hole. Thus, the part does not rely on the screw thread to be held firmly by
the plastic (which is too weak for this). This is called a captive nut design.

We expect you to make such parts by yourself; we usually will not buy
them. Note that such parts can be manufactured out of aluminium in
the DLLEL machine shop, but you should do fine with 3D-printed plastic
parts if they are designed well. If your torques are too high for 3d-printed
couplers, your project may be too dangerous for this course anyway.

Obviously, a suitably designed shaft coupler can link to shafts of differ-
ent diameter.

TODO: Discuss couplers that support axial lengthening and shortening
of a shaft, and couplers that can couple shafts at an angle.

341

342 CHAPTER 42. MACHINE ELEMENTS AND PATTERNS

Figure 42.1: Shaft couplers (top left), flange couplers (top right), and two
designs for 3d-printable shaft couplers (bottom).

42.2 Creating Mechanical Advantage (Increas-
ing Torque)

We translate rotary force using gearbox reductions and other means; in
general, disregarding mechanical inefficiency (due to friction), rotation speed
is inversely proportional to torque; we may double the torque of a motor,
halfing its RPM, using a 1:2 reduction.

An important property of such mechanical reductions is whether they
are back-driveable, that is, whether is is possible to turn the output shaft
of the motor-reducer assembly (when the motor is off) without damaging
the reducers. Generally speaking, many but not all reducers of a low re-
duction ratio allow this. For certain robotics projects, particularly legged
robots, back-driveability is important to allow biologically inspired locomo-
tion, easy adaptability to terrain, or an ability to jump.

42.2. CREATING MECHANICAL ADVANTAGE (INCREASING TORQUE) 343

42.2.1 Using Gearboxes
We need to distinguish between gearboxes that need to be able to out-
put high torque and gearboxes that do not need to. Also we need to dis-
tinguish between designs that we can manufacture ourselves (using 3D-
printed parts) and those that we can’t. Finally, we need to consider motors
whose output torque is so low that they can only drive gearboxes whose
stages closest to the motor have very low friction and inertia.

Figure 42.2: Calculations for the internal gearbox of the 28BYJ-48 stepper
motor. The overlap of gears as displayed is confusing: Think of the dark
gears as being below the light gray gears.

When only low torques are involved, many gearbox designs are feasible;
the idea is of course that, when a small gear drives a larger one, the large
one will rotate more slowly, and with more torque, proprotional to the ratio
of teeth of the two gears.1

Many brushed motors have torque so low that even slight friction in
the early stages of the gearbox (close to the motor) can lock up the entire
gearbox; it is key that particularly these gears are manufactured extremely
precisely to minimize internal friction (often disqualifying 3D printers for
manufacturing). Also, bought gearboxs will contain special grease to min-
imize friction. Do not open gearboxes, and do not remove the grease.

The only feasible designs for 3D-printable high-torque gearboxes are
planetary gearboxes, cycloidal drives, and harmonic drives (aka strain
wave drives). Making such a gearbox that works well from mostly 3D-
printed parts is quite a challenging project by itself. All three of these
ingenious designs are very satisfying to watch in operation. Have a quick

1To learn more, see https://en.wikipedia.org/wiki/Gear_train

https://en.wikipedia.org/wiki/Gear_train

344 CHAPTER 42. MACHINE ELEMENTS AND PATTERNS

look into the videos recommended below, even if you do not plan to make
your own gearboxes!

Gearboxes, unless they use worm gears, are usually back-driveable un-
less the reduction factor exceeds about 10x. Do not try to force back-
driving using large-reduction gearboxes such as in servos.

42.2.2 Using Belt Reduction

Unless the reduction factor is extreme, belt reductions are back-driveable.

42.2.3 Recommended Videos

https://www.youtube.com/watch?v=bCvuvCmzuz4
Jeremy Fielding
“The Ultimate Makers Guide to Gear Boxes ”
https://www.youtube.com/watch?v=IVpYtyS5Q-k
James Bruton
“Cycloidal Drive V3 & Robot Dog Test Lega”

a3D-printeable cycloidal drives; back-driveability

https://www.youtube.com/watch?v=QoBgSWkJyM4
James Bruton
“Experimental Harmonic Drive Reducer – 3D Printed”

https://www.youtube.com/watch?v=IXmCze1GsGU
How To Mechatronics
“Harmonic vs Cycloidal Drive – Torque, Backlash and Wear
Test”
https://www.youtube.com/watch?v=mPwbDrXq50Q
How to Mechatronics
“CNC Machined vs 3D Printed Cycloidal Drive”

https://www.youtube.com/watch?v=G0DcM60lWSw
Michael Rechtin
“3D Printed Stackable BRUSHLESS Motor Gearboxa”

a3D-printed planetary gearboxes

https://www.youtube.com/watch?v=bCvuvCmzuz4
https://www.youtube.com/watch?v=IVpYtyS5Q-k
https://www.youtube.com/watch?v=QoBgSWkJyM4
https://www.youtube.com/watch?v=IXmCze1GsGU
https://www.youtube.com/watch?v=mPwbDrXq50Q
https://www.youtube.com/watch?v=G0DcM60lWSw

42.3. TURNING ROTARY INTO LINEAR MOTION 345

https://www.youtube.com/watch?v=BTzkSg_l70M
Skyentific
“Three Actuators: cheap, powerful and completely 3D
printeda”

a3D-printed planetary gearboxes

https://www.youtube.com/watch?v=kcdj-b49TW8
Akiyuki Brick Channel
“LEGO GBC module: Strain wave gearinga”

aAn awesome demonstrator of the harmonic drive principle built using
Lego Technic, though not used as a gearbox.

42.3 Turning Rotary into Linear Motion

Figure 42.3: 3D printers like the Prusa i3 mk3s use lead screw assemblies
for vertical motion and a timing belt drive for left-right motion.

Two good ways to do this are demonstrated by our 3d-printers. The
Prusa i3 mk3s uses a lead screw assembly for z-axis movement (up-down)
and belt drives for x- (left-right) and y-axis (forward-backward table) move-
ment.

42.4 Ball Bearings and Turntables
There are various different ball bearing designs for different purposes; the
main selection criteria, apart from inner and outer diameter and width, are

https://www.youtube.com/watch?v=BTzkSg_l70M
https://www.youtube.com/watch?v=kcdj-b49TW8

346 CHAPTER 42. MACHINE ELEMENTS AND PATTERNS

Figure 42.4: A 400mm lead-screw based linear rail kit.

the expected radial and axial forces the ball bearing will have to be able
to handle. The website https://www.kugellager-express.de/Home gives a
good overview of the different designs.

Note that ball bearings can be quite expensive. One relatively cheap
option are skateboard/rollerblade bearings. These have 8mm inner diam-
eter, 22mm outer diameter, and 7mm width. Since they are produced in
high volumes, they are relatively inexpensive. You should use them in case
they can fulfill the intended purpose in your project.

https://www.kugellager-express.de/Home

42.5. PARTS IN STOCK FOR CS358 347

42.5 Parts in Stock for CS358
item price (CHF)

400 mm lead screw linear rail kit screw dia 8mm 40
16 tooth drive pulley axle dia 5mm, 6mm GT2 ?
idler 6mm GT2 ?
GT2 timing belt width 6mm 1 (/m)

Skateboard ball bearing 1

348 CHAPTER 42. MACHINE ELEMENTS AND PATTERNS

Chapter 43

Inverse Kinematics

This is a placeholder. Volunteers to contribute this chapter are welcome.
See https://en.wikipedia.org/wiki/Inverse_kinematics.
Note from Alex: Wenzel Jakob’s numerical methods course has a good

lecture on inverse kinematics.

43.1 Recommended Videos
https://www.youtube.com/watch?v=IN8tjTk8ExI
James Bruton
“How Robots Use Maths to Move”

349

https://en.wikipedia.org/wiki/Inverse_kinematics
https://www.youtube.com/watch?v=IN8tjTk8ExI

350 CHAPTER 43. INVERSE KINEMATICS

Chapter 44

Robot Arms

This chapter is a stub and will be extended in the future.

Figure 44.1: Orange is the new black.

First, ask yourself why you want to make an robot arm. Is it to grab and
move things in 3D or is it to make an robot arm? Some designs for robot
arms are very difficult to make work well. Be pragmatic about getting the
job done and choose the simplest design that works for you.

44.1 Not Arms
Consider bridge cranes1, gantry cranes2 or the mechanical principle for
3D positioning used by most FDM 3D-printers (such as the Prusa printers

1https://en.wikipedia.org/wiki/Overhead_crane
2https://en.wikipedia.org/wiki/Gantry_crane

351

https://en.wikipedia.org/wiki/Overhead_crane
https://en.wikipedia.org/wiki/Gantry_crane

352 CHAPTER 44. ROBOT ARMS

we are using) as alternatives to robot arms. Mechanically, these are simple
to achieve because weight and torque do not become important problems,
and there is no inverse kinematics problem worth speaking of to be solved
by you. Configurable software such as GRBL3 readily exists for such ma-
chines. Such a design may be suitable for you, unless you need to access
hard-to-get-to places with your tool/hand, or when bridge crane-like de-
signs are too slow.

44.2 Arms

Do not underestimate the challenge of creating a robot arm that works well.
It is not just an issue of programming inverse kinematics; it is surpris-
ingly difficult to build a robot arm strong enough to handle its own weight.
(See also Chapter 15 and the discussion there of the rocket equation-like
chicken and egg problem that plagues robots that have to handle their own
weight.) Remember, stronger motors are heavier and require heavier me-
chanical parts (such as gearboxes). A robot arm can be a CS-358 project;
but do not expect this to be easy.

How many degrees of freedom do you need? Can you use a design where
the arm does not struggle under its own weight by either being rigid in the
Z (up/down) direction or using a strictly vertical actuation using a screw
drive as the Prusa printers do? Check out SCARA robots.4

44.3 Hands

If you are building a grabber/tool for an industrial-style machine, be prag-
matic and don’t get too inspired by your own hands. These are overly
difficult and an quite inefficient design. In case your project is aiming to
be be bio-inspired, search for bio-mimetic hands on the Web, but note that
human-like hands are hard to achieve, for many reasons. One is that you
will need cable transmissions (tendons), which is much harder to make
work robustly than gear or belt drives. (See the video links below.)

3https://github.com/grbl/grbl
4https://en.wikipedia.org/wiki/SCARA

https://github.com/grbl/grbl
https://en.wikipedia.org/wiki/SCARA

44.4. RECOMMENDED VIDEOS 353

44.4 Recommended Videos
https://www.youtube.com/watch?v=QCkl9RMd5-s
KUKA - Robots & Automation
“45 KUKA robots welding ladder frames for automotive sector”
https://www.youtube.com/watch?v=cR-YlZ9NdIA
CPM Special Bearings
“ABB Robots Katana Fight ”
https://www.youtube.com/watch?v=jaQ5AwH7DGk
Skyentific
“Another 7-axis (7DoF) Brushless Robot Arm (part 4)a”

aBelt reduction in a robot arm joint

https://www.youtube.com/watch?v=1QHJksTrk8s
How To Mechatronics
“SCARA Robot | How To Build Your Own Arduino Based
Robota”

aSCARA arms are easier to make work than many other designs – no
rotation in a vertical plane

https://www.youtube.com/watch?v=l6xqTcLXXC8
Will Cogley
“3D Printed Biomimetic Mechatronic Hand Explained Part 1”
https://www.youtube.com/watch?v=jKZIvseA1Nk
StanfordCS235, reubotics-dot-com
“CS235: Applied Robot Design, Lecture 7-Introduction to Ca-
ble Transmissions”

https://www.youtube.com/watch?v=QCkl9RMd5-s
https://www.youtube.com/watch?v=cR-YlZ9NdIA
https://www.youtube.com/watch?v=jaQ5AwH7DGk
https://www.youtube.com/watch?v=1QHJksTrk8s
https://www.youtube.com/watch?v=l6xqTcLXXC8
https://www.youtube.com/watch?v=jKZIvseA1Nk

354 CHAPTER 44. ROBOT ARMS

Chapter 45

Legged Robots

This chapter is a stub and will be extended in the future.
When building legged robots, keep in mind that the feasibility depends

extremely heavily on your design choices. The difficulty of making a legged
robot varies on a scale from child’s play to far beyond the scope of this
course.

45.1 Making it Easy
Have a look at the wind-up toys from Figure 45.1. These have a total of
one degree of freedom in their movement, for the entire robot, and their
huge feet eliminate the balancing problem. This is easy.

Now consider the six-legged robot of Figure 45.2 (a design marketed
by several companies under names such as Chipz and Tobbie). This is
a robot that can walk forward, change walking direction, and rotate its
upper body while keeping the legs stationary with just two motors, just a
clever mechanical design. (It’s even more clever if you think on the fact
that it apparently achieves three degrees of freedom with just two motors.1

See also the video in the recommendations at the end of the chapter.) If
we designed the robot “naively”, with individually articulated legs and a
motor per joint, we would arguably need at least three actuators per leg,
and thus 18 for six legs, with lots of resulting challenges related to inverse

1I assembled one once with my godson. If I remember correctly, this is achieved by
rotating the motors against each other; as a consequence, it can only do its walking turn
and its upper body rotation in one direction each.

355

356 CHAPTER 45. LEGGED ROBOTS

Figure 45.1: I received one of these (a properly green one) from Google in
recognition of years of service training students they’d hire. The wind-up
toy walks very well, and we may safely assume that manufacturing it costs
close to nothing.

kinematics, weight, and complexity.

45.2 Making it Hard

At the other end of the complexity scale, we find legged robots like those of
Boston Dynamics, in humanoid shape or the shape of the very popular2

robot dogs. It isn’t possible to make these small, and making them big
causes all kinds of engineering problems. For such projects, there is no
way around big brushless motors and FOC controllers (see Chapter 40)
with complex mechanical solutions that produce enough torque while be-
ing back-driveable (many gearbox designs are unsuitable, see also Chap-
ter 42). Back-driveability is essential here (see the James Bruton video
below).

2Judging by the number of such maker projects to be found on the Web.

45.3. RECOMMENDED VIDEOS 357

Figure 45.2: A six-legged robot with two degrees of freedom.

45.3 Recommended Videos
https://www.youtube.com/watch?v=i2MqvGVsWhU
DIY Trends for kids
“Roboter bauen mit Kindern - Experimentierkasten "Chipz"
von KOSMOS”
https://www.youtube.com/watch?v=QZt3eJzHLSU
EPFL
“Six-Legged Robots Faster Than Nature-Inspired Gait”
https://www.youtube.com/watch?v=xNeZWP5Mx9s
Massachusetts Institute of Technology (MIT)
“Backflipping MIT Mini Cheetah ”
https://www.youtube.com/watch?v=wlkCQXHEgjA
Boston Dynamics
“Spot Launch”

https://www.youtube.com/watch?v=i2MqvGVsWhU
https://www.youtube.com/watch?v=QZt3eJzHLSU
https://www.youtube.com/watch?v=xNeZWP5Mx9s
https://www.youtube.com/watch?v=wlkCQXHEgjA

358 CHAPTER 45. LEGGED ROBOTS

https://www.youtube.com/watch?v=yXA_KeuYpCY
James Bruton
“Robot Dog V3 - 3D Printed & Open Source #1”
https://www.youtube.com/watch?v=fn3KWM1kuAw
Boston Dynamics
“Do You Love Me?”

https://www.youtube.com/watch?v=yXA_KeuYpCY
https://www.youtube.com/watch?v=fn3KWM1kuAw

Chapter 46

Using Lego Parts

This is under construction.

• Pros: nearly complete system for mechanical constructions, widely
available.

• Cons: Expensive, some stigma as a children’s toy, not strong enough
for large and heavy constructions.

Lego is a good source of gears and axles for low-torque gearboxes; it is
tricky to 3d-print gears at sufficient quality. Also, rubber tires.

Do not cut, drill, or glue Lego parts.
Lego Technic dimensions, google.
Bricklink Studio (https://www.bricklink.com/v3/studio/download.page)

is a free, high-quality, high-productivity Lego CAD design tool.

46.1 Recommended Videos
https://www.youtube.com/watch?v=RE5ozOUw5s8
Akiyuki Brick Channel
“Great Ball Contraption(GBC) at Japan Brickfest 2022”
https://www.youtube.com/watch?v=ZSSH-YfKg6I
Akiyuki Brick Channel
“LEGO Harmonic Drive”
https://www.youtube.com/watch?v=cXgB3lIvPHI
TECHNICally Possible
“Little Talks Guitar Cover by Lego Mindstorms EV3”

359

https://www.bricklink.com/v3/studio/download.page
https://www.youtube.com/watch?v=RE5ozOUw5s8
https://www.youtube.com/watch?v=ZSSH-YfKg6I
https://www.youtube.com/watch?v=cXgB3lIvPHI

360 CHAPTER 46. USING LEGO PARTS

https://www.youtube.com/watch?v=7mQGgfgjcYU
VirtualMakerLuca
“Lego Technic Liebherr LTM 11200 Crane Details MOC by
Jeroen Ottens”
https://www.youtube.com/watch?v=lkpCQqt17ZA
Beyond the Brick
“Amazing LEGO Technic Diesel Engines ”
https://www.youtube.com/watch?v=Nqh-1P615CE
Brick Technology
“Building A Card Shooting Lego Tank”
https://www.youtube.com/watch?v=3crQ09q5Jco
Brick Technology
“Can AIR power a Lego Truck?”

https://www.youtube.com/watch?v=7mQGgfgjcYU
https://www.youtube.com/watch?v=lkpCQqt17ZA
https://www.youtube.com/watch?v=Nqh-1P615CE
https://www.youtube.com/watch?v=3crQ09q5Jco

Part VIII

CAD and CAM

361

Chapter 47

CAD Design in Fusion 360
Leo Wolff

Fusion 360 is a very intuitive and practical tool. However, like any tool,
knowing how to use it properly will improve your efficiency and help you
avoid many cumbersome mistakes. The structure of this chapter is as
follows:

1. Getting Started: In this section, you will find a Fusion 360, step-by-
step, tutorial designed for beginners.

2. Project Architecture: This segment aims to help you setup a first
project and give you some insights as to how you can organize your
workspace.

3. History: This portion gives an introduction to the history feature of
Fusion 360, a powerful but not-so-easy-to-use tool for your design.

4. Sketching: Here, we offer good practices and tools you can use to
avoid corrupting your sketch and make it robust to change.

5. Best Practices: This section lists best practices and useful tools among
which some will vastly decrease the time it can take you to create a
part in Fusion 360.

6. Joints: This division contains a tutorial on how to use Joints to ani-
mate different parts of your design relative to each other.

363

364 CHAPTER 47. CAD DESIGN IN FUSION 360

47.1 Getting Started
The following tutorial will guide you through the process required to cre-
ate a flange coupler in Fusion 360. It is designed for newcomers to this
software.

Fusion 360 is a tool one must get used to. Your learning will be much
more efficient if you follow this tutorial along and create this model as well.

1. Here is the final design for the flange coupler: our goal.

47.1. GETTING STARTED 365

2. Let’s open Fusion 360. If you take a look towards the top left of the appli-
cation’s window, you will be able to find the Create Sketch button. This
is the way you will start every design in Fusion 360.

366 CHAPTER 47. CAD DESIGN IN FUSION 360

3. Once this button is clicked, select the plane you would like to start your
design on. The blue axis represents height. The plane formed by the other
two represent the ground.

47.1. GETTING STARTED 367

4. We will start right away with good practices and create some Parameters.
You can think of them as “constants” you can reuse in your design. You will
be able to create such parameters in the Modify > Change Parameters
menu.

368 CHAPTER 47. CAD DESIGN IN FUSION 360

5. By clicking on + User Parameter, you can create a new parameter. It re-
quires a name, an expression and a unit. An expression is either a value
like 2.75 in this case or a mathematical expression involving other param-
eters (Length ∗Depth for example).
Create the same parameters, with the same values, as shown in this fig-
ure.

47.1. GETTING STARTED 369

6. Now, let’s create circles for the base of our flange coupler. We will later
be able to extrude them into volumes. Head to the Create sub-menu and
choose Center Diameter Circle.

370 CHAPTER 47. CAD DESIGN IN FUSION 360

7. Click on the center of the Origin. A text-field prompting you for a radius
measure appears. Enter the value of the different parameters we created
and press enter each time to draw the circle with the given measure. You
should create one circle for each parameter with a name including "Diam-
eter". To create the second boundary for the “wall” of the flange coupler,
we use the expression InnerDiameter + Thickness.

47.1. GETTING STARTED 371

8. We now want to draw the screw holes in the base. We will be able to ex-
clude these holes during the extrusion.
To precisely position things, we must first create some construction lines.
To do so, find the Line button in the Create sub-menu.
This line will only be used to sketch other objects, so we can use the Con-
struction toggle in Linetype in the Sketch Palette on the right. This will
prevent the line from interfering with the rest of our sketch.

372 CHAPTER 47. CAD DESIGN IN FUSION 360

9. Click once in the center of your Origin. Hover over the outer circle and
notice the green cross icon that appears. This lets you know that the line
will clip to the circle and inherently creates a constraints (in this case “co-
incident”) enforcing this behaviour in case of future modifications. This a
very important feature that should use every time you want to do some-
thing precise. Enter 0 for the angle and Click once on the outer circle: A
radius of the circle is drawn as a dashed line (Since of the Construction
line type).

47.1. GETTING STARTED 373

10. Let’s now create another line from the center of the circles but this time
put its second point at a random position (that is, not clipping to any other
object).
We will build the constraints for this line ourselves.

374 CHAPTER 47. CAD DESIGN IN FUSION 360

11. Go to the Constraints sub-menu and select the Coincident constraint.
The constraint menu is used to add geometric constraints to your sketch
to reduce its degrees of freedom. Click on the point of the line we left free
and click a second time on the outer circle in the design. This point now
becomes clipped to the circle.

47.1. GETTING STARTED 375

12. We now use a second type of constraint: Sketch Dimension. You will find
the button under the Create expanded sub-menu (or you can press D).

376 CHAPTER 47. CAD DESIGN IN FUSION 360

13. Click once on the first line we created, then a second time on the second
line. Move the mouse away towards the outer circle. An angle measure
input field appears. Use 45 deg and press enter. This constrains the two
lines to be at 45 degrees angle from each other.

47.1. GETTING STARTED 377

14. To place the hole in the center of the inner and outer diameter, we will need
to create a new line which we can reference the middle point from. Create
a new line at the intersection of the outer diameter and the first radius
and place its end point at a random position.

378 CHAPTER 47. CAD DESIGN IN FUSION 360

15. Select the Constraints > Coincident constraint and select the line’s end
point and then the middle circle. This constrains the line’s endpoint to
this circle.
Select the Constraints (expanded) > Colinear constraint and click on
both the last line we created and the circle’s radius. This makes the line
and the radius co-linear.

47.1. GETTING STARTED 379

16. You can then select the Circle tool again and hover over the middle of the
line segment to observe a new “green triangle” icon which informs you that
the center of the circle will be clipped to the middle of the line segment.

380 CHAPTER 47. CAD DESIGN IN FUSION 360

17. We now created the first hole of the flange coupler and need to create the
three others. If we have a numerous amount of holes to create, this can
become a tedious process. This is why we can make the most of the circular
symmetry of the object to speed up your design process. But first, we keep
practicing good habits and create a new Parameter. This time, we select
No units to indicate this is a quantity. We then input 4 for the value.

47.1. GETTING STARTED 381

18. Head to the Create expanded menu and select the Circular Pattern tool.

382 CHAPTER 47. CAD DESIGN IN FUSION 360

19. This tool allows you to replicate sketch objects or other entities (features,
bodies, components) following a specific pattern. First select the object we
want to replicate: the screw hole. Then, click on the Center Point’s Select
button and select the circle’s center.
Keep the Distribution parameter to Full (Which means the range over
which we replicate the object is 360 degrees) and input ScrewHolesCount
for the Quantity (We create 4 holes over 360 degrees).
Note that the copied object is accounted for in the quantity and is not
copied again.

47.1. GETTING STARTED 383

20. The first sketch is finished! Click on Finish Sketch and select the two
shapes (Outer surface and “wall” of the flange coupler) shown by holding
(Ctrl (Win)/Cmd (Mac)) and clicking on the two surfaces as shown in the
picture.

384 CHAPTER 47. CAD DESIGN IN FUSION 360

21. Go to the Create menu (which is now adapted to volume mode) and select
Extrude (as shown in the picture).

47.1. GETTING STARTED 385

22. For Distance, use a previously created parameter (here, called Outer-
Height with a value of 5mm) and press enter to complete the extrusion.

386 CHAPTER 47. CAD DESIGN IN FUSION 360

23. To create the second extrusion, we must hide the “body” (the volume we
created) and show the sketch so that we can use it again. This can be done
in the hierarchy tab on the left of the screen, by clicking on the “eye” icon.

47.1. GETTING STARTED 387

24. First select the inner ring and click again on Extrude. This time, we need
to select Join under the Operation menu as the extrusion will overlap
with the volume we previously created and the default behaviour is to cut
(use the current extrusion to remove a part of the previous one) through
it. Join will result in the union of the two volumes.

388 CHAPTER 47. CAD DESIGN IN FUSION 360

25. Since the volumes which are not visible at the time of the extrusion are not
taken into account, we first need to make the volume “Body1” (the outer
ring in our design) visible again before completing the extrusion so that it
is joined with our second volume. Now complete the extrusion by clicking
Ok.

47.1. GETTING STARTED 389

26. We now want to create the hole to insert the tightening screw (the hori-
zontal screw which makes contact with the axle which we will mount this
part on). To this end, we can select the Construct (expanded) > Plane
Tangent to Face at Point tool.
Take a moment to note all the possible ways of creating a plane/line from a
reference: These are very handy depending on the situation you find your-
self in and the references you have available.

390 CHAPTER 47. CAD DESIGN IN FUSION 360

27. At this point, the initial sketch we created should still be visible and we
should be able to highlight the point underlined in the figure. This will
serve as a reference to create the plane we need to sketch the screw hole
in.
Complete the plane creation (the point should still be referenced) by se-
lecting the face of the outer ring and clicking Ok.
We can now Create Sketch on the plane we just created.

47.1. GETTING STARTED 391

28. To perfectly place our screw hole in the middle of the upper face, we need
to create more references: by default, only the face directly on the plane is
accessible for references. Go to Create > Project/Include > Project (or
press “P”). This tool enables you to project faces/geometry onto the sketch
plane to use them as references.

392 CHAPTER 47. CAD DESIGN IN FUSION 360

29. Click on the upper face of the design, as shown on the screenshot above
and click Ok to project it.

47.1. GETTING STARTED 393

30. Now that we have our reference, let’s create a new line (in Construction
mode, accessible from the Sketch Palette on the right of the screen). Hover
over the upper segment as shown on the image above to see the Middle
point indicator (green triangle). Click once.
Hover now over the lower line and do the same thing, click a second time
to create the line.

394 CHAPTER 47. CAD DESIGN IN FUSION 360

31. Now that we have everything we need, we can create the screw hole. Create
(with Construction mode disabled) a new circle and click once on the mid-
point of the line segment we just created to place its center. Input the
value of the ScrewHoleDiameter for its diameter and press enter. Click
on Finish Sketch.

47.1. GETTING STARTED 395

32. We can now select our newly created circle and start a new extrusion to
remove the material where we want to create the screw hole.

396 CHAPTER 47. CAD DESIGN IN FUSION 360

33. Since we want it to precisely stop at the inner diameter, we select To Object
under the Extent Type menu. This will tell Fusion 360 that we want the
extrusion to stop at the profile of an object we select.

47.1. GETTING STARTED 397

34. Under Object, select the inner diameter as shown in the picture above.
You’ll see a preview of what Fusion 360 wants to do. Note that because
the extrusion adapts to the profile of the object, its respects the curvature
of the part at the end. (The end of the extrusion is not flat.)
Complete the extrusion by clicking Ok.

398 CHAPTER 47. CAD DESIGN IN FUSION 360

35. We can now start the last part of our design: Creating a nut slot.
Start a new sketch on the upper face of the design.
Project the line from the previous sketch we had put at a 45 degrees angle
(the sketch has to be set visible if it’s not already the case, which can be
accomplished by clicking on the “eye” icon on the left-hand side of the
sketch in the hierarchy).
Create a new line from the two intersection points of the face’s bounding
circles and the projected line as shown in the above picture. Be sure the
points clip to the intersections.

47.1. GETTING STARTED 399

36. Start a line at the middle of the previous segment and position it at a
random position after inputting NutWidth/2 as a length expression.

400 CHAPTER 47. CAD DESIGN IN FUSION 360

37. Select the Constraints (expanded) > Perpendicular constraint and apply
it to the two last segments we created, by clicking on both of them once
the constraint is selected.

47.1. GETTING STARTED 401

38. Use these techniques to create a full rectangle of height NutThickness and
width NutWidth as shown in the picture above.
We don’t use the Rectangle tool here because the design is positioned at
an angle relative to the origin of the sketch.

402 CHAPTER 47. CAD DESIGN IN FUSION 360

39. Since we have to fit an object into the slot we will create, we will use some
margin to be sure it fits correctly. Select the Modify > Offset tool and
select the rectangle your created.

47.1. GETTING STARTED 403

40. As a margin value, input TightMarginParameter (Used when an object
should fight tightly, we would have used simple MarginParameter if it could
be more loose).
Click on Finish Sketch

404 CHAPTER 47. CAD DESIGN IN FUSION 360

41. Select all parts of your sketch (Both inner rectangle and its margin) and
create a new extrusion.
We use To Object as Extent Type with the center of the screw hole se-
lected (available if the sketch is set to visible) to make the extrusion stop
at this point.
Since we want the center of the nut to be aligned with the center of the
screw hole, we still need to add the following expression as an Offset value:

−NutWidth/2−TightMarginParameter

The Operation has to be set to Cut (which should be set by default by
Fusion 360).
Complete the extrusion by clicking Ok.

47.1. GETTING STARTED 405

42. To strengthen the weak points of the design (the right angles) and make
the part more elegant, we use the Modify > Fillet tool.

406 CHAPTER 47. CAD DESIGN IN FUSION 360

43. Select all the edges created by the extrusion as shown in the picture above
and input TightMarginParameter as a fillet value.
Complete the operation by clicking Ok.

47.1. GETTING STARTED 407

44. Now that our design is complete, we realize after all the efforts and time
we put in it that there are things that could be improved.
Considering the torque this part will be subject to, the screw holes should
be further away from the rotation point. The nut slot also creates some
thin walls.
This is the perfect occasion to witness how powerful a tool Fusion 360 is
and to test if our design is robust.

408 CHAPTER 47. CAD DESIGN IN FUSION 360

45. To resolve the issues we previously mentioned, we edit the Parameters we
created as shown in the picture. (Only those underlined were changed to
the new values you can see.)

47.1. GETTING STARTED 409

46. When we edit the parameters, we can see all our design changing and
adapting perfectly to our specifications.
Hence, something that could be tedious such as changing the inner di-
ameter because we changed the axle size in our project, or changing the
screw holes because the screws we planned to use at first are no longer
available, is as simple as changing one value in a field.

410 CHAPTER 47. CAD DESIGN IN FUSION 360

47. Finally, in case you want to 3D print this piece or any other, you can do so
by going to File (icon) > 3D Print.

47.1. GETTING STARTED 411

48. Select your design as the Selection input and un-check Send to 3D Print
Utility (As we want to save our STL file). Click Ok.

412 CHAPTER 47. CAD DESIGN IN FUSION 360

49. Finally, check the Save to my computer option and save your STL file.
You will be able to import this file into PrusaSlicer or any other Slicer to
3D print it.

47.2. PROJECT ARCHITECTURE: ALONE OR FOR A TEAM 413

47.2 Project Architecture: Alone or for a Team
Fusion 360 offers a versioning tool which allows you to work together with
your team on different parts of a design. While you do not have the pos-
sibility to edit the same file at the same time, you can however import all
parts of your design (each in a different file) in an additional “assembly”
file. Each time one of the part is modified by a team member and saved,
you will be able to update your assembly with its last version.
A Possible architecture for your team Fusion 360 project directory could
be:

Root:
|-- Components/.. (Directory)
|-- Parts/.. (Directory)
|-- Assembly (Fusion 360 File)

• Components: The imported models of pieces of hardware you use in
your design.

• Parts: The parts of your design you will import in your assembly file.
This enables each team member to work on one of the "part" file at
the same time.

• Assembly: A Fusion 360 which only contains imported parts, used
to visualize assembly and possibly joint between parts.

Some caveats

One of the trouble you will have if you choose to work with multiple files is
keeping parameters synchronized.Parameters will not be imported along
with the part your bring into your assembly by default. This makes it
difficult to keep an harmonized set of parameters between the different
parts of your design.

There is however a way to deal around this issue that you are invited to
discover in the following video:

https://www.youtube.com/watch?v=VsqRV7JvBKc
Product Design Online
“Global Parameters in Fusion 360 | Explained in 5 minutes”

https://www.youtube.com/watch?v=VsqRV7JvBKc

414 CHAPTER 47. CAD DESIGN IN FUSION 360

Another drawback of this architecture is the inability to directly edit
your assembly file. Indeed, the final assembly file in which you import all
the parts of your design your team and you created should solely be used
for joining your design together. No additional sketches/volumes should
be created in this file. Doing the latter will most likely mean you will have
to do a ton of work fixing your assembly if you update one of the part’s
version, because most references to the modified object will have been de-
stroyed/corrupted.

Organizing Objects in the Hierarchy

Another element to organize in Fusion 360 is the hierarchy in Fusion 360
files. Parts of your design that move relative to one another or that are as-
sembled and fixed into place should be Bodies grouped under units called
Components. You can later assemble components with the Assemble >
As-Built Joint (see the section on joints for more details) tool which en-
ables the components to move in specified ways or be fixed (using the Rigid
joint) relative to another component.

Components in Fusion 360

In Fusion 360, bodies and components represent two different granularity
at which you can work.

Bodies are the smallest granularity, it enables you to create basic to
more advanced volumes.

Components offer a way to aggregate and organize these bodies, as well
as modify them all at once (resizing, moving, ...). They have their own
origin and history, which you can isolate by clicking on the radio button
appearing on the right of the component while hovering its name in the
hierarchy.

Here are some basic guidelines on the creation of components and bod-
ies and when one should be preferred over the other:

• Separate components for different parts: If you have different parts
in your design, like a wheel on a car, each part should be represented
as a different component. This enables you to isolate each part to
work on them separately.

47.3. HISTORY FEATURE IN FUSION 360 415

• Single component for simple shapes: Simple shapes should be kept
in a single body or under the same component.

• Separate components for reusable objects: If a part of your design
should be reused, like wheels in a car, then this part should be kept
in a separate component, which modification you can propagate to all
its duplicate easily.

• Single component for small details: Sometimes, small details can
be kept under the same component if having no movement relative to
each other.

47.3 History feature in Fusion 360

Why should you care ?

The History feature of Fusion 360 is a list of all the steps which resulted
in your current design. Each time an object is created, a feature added or
a component moved, a new element will be added to this list.

Note that “sketches” are added as one aggregated element once com-
pleted, and not as different ones for each existing shape, line or con-
straints.

It is useful to think of the history as a stack: It is very easy to remove
(pop) the last element from the history because it has no other features
depending on it. However, when you pile up multiple features and want to
remove one in the middle, every references to it (located in the elements
above it in the stack) will be destroyed.

This leads to two different scenarios:

1. The design looks fine after the removal. However, because of the de-
stroyed reference, the relations between features will not be preserved
in case of a change. Moving the design/Re-scaling it/Changing the
value of a parameter will most likely break your design.

2. The design is broken, some components are not where they should
be, or strange artifacts are left floating in the air.

416 CHAPTER 47. CAD DESIGN IN FUSION 360

How to use the History

On a double-click on one of the elements in the timeline, Fusion 360 will
rollback your design in time. You can think of it as hiding all steps above
this elements in the stack.

This should be used before removing an element of the timeline to un-
derstand the context in which it has been created and the way its reference
could be replaced once it is removed.

Before removing this element, you will want to create, in most cases,
a “placeholder” object which will resolve all dependency issues once the
object has been removed.

Once this placeholder object is created and the initial element removed,
all features with lost references will be highlighted in yellow with a timeline
and a right-click on them will prompt you to resolve the conflict, which you
will then be able to do using your placeholder object.

Note that the history can be isolated for each component in Fusion 360.
For this reason, you should try to plan out the components you will have to
create in your design and start each first sketch in the correct component
to isolate the entire history of the component from the beginning. This will
greatly de-complexify the relations between objects in the history, making
it easier to modify it later.

While doing so, don’t forget to select the component you are working
and verify you are not directly modifying your design through the top level
component of the hierarchy (this can be seen with the “checked” on the
right of the component’s name in the hierarchy).

Keeping the History clean

A good rule of thumb to avoid headaches around dependencies in the his-
tory is to try to make it into the most simple, minimalist recipe possible
on how to create your component:

1. All unnecessary steps should be removed from the history

2. All redundant steps should be merged into one use of a feature when
possible.

The example provided in Figure 47.1 makes the problem obvious and
yet it often occurs as we progress through our design, since it evolves as

47.4. SKETCHING 417

(a) This design includes
a lot of redundant steps
in the history

(b) Cleaning up the his-
tory results in the same
design with only one ex-
trusion and sketch.

Figure 47.1: Cleaning up the history

we go and wasn’t entirely planned from the beginning. It can often happen
that unnecessary or redundant steps are created as we don’t find the right
design on the first try and start to reiterate on top of what we built.

47.4 Sketching

Locked vs Unlocked Sketches

Sketches in Fusion 360 can be either locked (Displayed as black with a
small “Lock” icon next to the sketch’s name) or unlocked (Some part of the
sketch is displayed blue). A locked sketch means it is fully constrained and
no dimension is left unspecified.

It is important to try your best to have only locked sketches as unlocked
sketches are very fragile and can be easily broken by any change. This is
even more important when modifying sketches far away in the timeline: A
broken sketch would result in a chain reaction corrupting your design.

Using existing components in your design

Often times, you will have to design a part which interacts with either other
parts or existing components you already have or plan on having.

In the latter case, you can do several things to make your life easier:

418 CHAPTER 47. CAD DESIGN IN FUSION 360

• Find the 3D design of the component online and import it into your
Fusion 360 file. This way, you can visualize in advance the position
of your component and the way it fits into your design. You can also
extract dimensions from the component’s design (A useful feature to
do that is to press “P” (for project), once in sketch mode, on an ob-
ject/shape you want to project onto your sketch).

• Measure the component’s dimension with a caliper as precisely as
possible. When measuring an inner diameter, use the maximal mea-
sure you read on the caliper. When measuring an outer diameter, use
the minimal measure you read.

• Think of the way the component will be inserted into your design: it
must have a way to be placed in its place and to be fixed (A screwdriver
must finds its way to screws).

47.4.1 Parametric Design
General Rule: Fusion 360 is a tool which rewards precise and clean
design and severely punishes approximations.

Having all measurements defined as parameters and good organization
of both bodies, components and feature references will result in very robust
and dynamic designs.

On the contrary, forgetting constraints where they should exist, in-
putting “magic numbers” as distance measures where a reference to an
object would be better (In an extrusion for example), will result in a fragile
design.

Parametric design in Fusion 360 enables you to edit specific dimension
in your file and have the rest of your design gracefully adapt to the new
dimensions. It is useful when you realize the scale isn’t right, some part
is too small, etc...

To create and use parameters, you can use - either in sketch or volume
mode - the “Modify > Parameters > Create New” menu. Once you created
some parameter for your file, you can use it in any input field of the cor-
responding unit along with a mathematical expression involving it: From
measurements in sketch mode to extrusion length in volume mode or even
number of repetitions in patterns.

Since each parameter has a predefined unit, some operations may not
be allowed: Dividing a length (mm) by another length (mm) will result in

47.5. BEST PRACTICES 419

a unit-less expression which may not be allowed in an input field which
expects a length.

In case you use Parametric design, it is even more important to have
Locked sketches so that your design doesn’t get destroyed when you change
the parameter’s value.

47.5 Best Practices

Minimalist Design

Plastic is way more robust than one can think at first, and creating box-
shaped designs with an extensive amount of filling only wastes materials
and makes the design heavier. As a general rule, designing minimalist-
looking parts, like a skeleton of the shape you first envisioned, will lead to
a smaller printing time, minimal material use and lighter design. Think
first about the functions you want your design to accomplish. The design
will come afterwards.

(a) A design for a robotic arm which
took time to create and ended up be-
ing useless because of its weight.

(b) A design for a robotic arm which
was created in a day and worked
flawlessly.

Figure 47.2: Example illustrating “minimalist designs”

For the same reason, when creating big parts, it is best to design them
in such a way they can be assembled (screwed into place, glued, ...) after
they are printed, instead of using an extensive amount of support material
to print parts with complex geometry.

420 CHAPTER 47. CAD DESIGN IN FUSION 360

47.5.1 Mesh vs. Solid-based modeling
If you ever used Blender, ZBrush or similar software before, you are already
familiar with mesh-based modeling. Points in space called “vertices” form
faces which aggregate into a surface or volume.

Fusion 360 uses a different type of modeling based on solids. By cre-
ating only primitive shapes and assembling them into something more
complex, we get a model which is more precise, and easier to modify in a
controlled manner.

For this reason, there are operations in Fusion 360 which are more ef-
ficient and useful than they would be in a mesh-based modeling software.

• Boolean operations: Boolean operations between bodies are very
efficient in solid-based modeling. They produce a more accurate rep-
resentation than they would in a mesh-based modeling software.

• Parametric modeling: This feature enables the design to be easily
and accurately modified, and ensures a consistent result. This is
crucial in CAD applications where precision and an ability to quickly
iterate on your design matter.

• Analysis: Unlike mesh-based modeling, solid-based modeling offers
powerful analysis capabilities. The section analysis tool is one of
them.

• Simulation: A more advanced type of analysis are simulations. Sim-
ulations in solid-based modeling are much more effective since they
don’t have as much computation to do as in a configuration with nu-
merous vertices.

47.5.2 Useful Fusion 360 tools
• Solid > Inspect > Section Analysis: Once a face is selected, displays

a section of the object along the face. This enables your to see hidden
parts of your design or remove ones which are in the way. Example
here

• Solid > Inspect > Measure: Displays the measurements of an object
(radius if it is a circle, length if a line segment, etc...) or the distance
between two objects. If two points are selected, it can display both the

47.5. BEST PRACTICES 421

distance between them in a straight line and the distances projected
on the x,y,z axes.

• Solid > Construct > Plane: Builds a plane from different geometry
references. Useful if there is no clear way of selecting your sketching
plan on existing geometry.

• Solid/Sketch > Create > Pattern > Circular: Reproduces a sketched
object/geometric feature/body/component following a circular pat-
tern. It avoids circumvents a considerable amount of work when you
are working on a cylindrical geometry.

• Solid > Modify > Split Body: Cuts bodies along a specified plan.
Can be used to split parts which move relative to one another or for
other purposes.

• Solid > Modify > Combine: Creates a new body from a union of
multiple bodies. Especially useful when trying to recombine bodies
you cut with the split tool

47.5.3 Thinking about Assembly
When designing in Fusion 360, it is important to bear numerous consid-
erations in mind in order to have a successful first assembly.

Always keep in mind which parts of your design must be removable or
fixed in place. For parts which must be screwed in place, a screwdriver
must be able to reach the screws. This can seem obvious when said out
loud but it can also be easy to forget while working on your design.

Some electronic parts must also have their wires routed through your
design and find their way to the other components they are connected
to. This is especially important when importing electronic components’
models as the wires are often not visible.

Screw holes must be created before assembling your design. Leaving
them to be drilled in a laser-cut part is not a good practice and should
only be done as a quick and temporary fix. Drilling holes for screws in 3D
printed parts will not work at all because of the infill layers having a much
lower filling density.

422 CHAPTER 47. CAD DESIGN IN FUSION 360

(a) The stepper is completely sur-
rounded by plastic and has big
chances of overheating.

(b) Even though it does not appear
in the imported model, this servo
has cables here, making the design
wrong.

(c) If you want to screw these two
parts in place, you will not be able to
insert a screwdriver here because of
the upper part’s increasing radius.

(d) Only a section analysis enables
us to see that the joint is wrong and
the two components will be stuck at
an angle.

Figure 47.3: Possible design mistakes

47.6. JOINTS IN FUSION 360 423

47.6 Joints in Fusion 360
To create interaction between Fusion 360 components, we can use the
Joint functionality. Here is a tutorial on how to use this functionality to
create a mechanical piece which converts rotary movement into a trans-
lation. Note that this tutorial builds on top of the knowledge acquired
with the getting-started tutorial and it is recommended to complete it first
before starting the joints tutorial.

1. Once a new design has been created, head over to the hierarchy part of
the window and create all the components we will need (via the Right-
click on root component > New Component menu). In our case, every
components are a part which will move relative to the others.

424 CHAPTER 47. CAD DESIGN IN FUSION 360

2. Our five components are:
(a) Driving shaft: The axle which transmits the rotational motion.
(b) Crank: The first part driven by the shaft.
(c) Rod: The second part, driven by the crank.
(d) Slider: A third part which, while linked to the rod by its axle, will be

constrained to slide along one of the sliding rail’s axes.
(e) Sliding rail: The rail which constrains the movement of the slider.

47.6. JOINTS IN FUSION 360 425

3. To start your design, activate the DrivingShaft component by clicking on
the radio buttons which appears on hover (You can also use Right-click on
Driving Shaft > Activate Component). This will isolate the component
from the others so that you can work on it exclusively.

426 CHAPTER 47. CAD DESIGN IN FUSION 360

4. Let’s create the parameters we will use in our design as shown above.

47.6. JOINTS IN FUSION 360 427

5. Create a new sketch (note that you should still have the DrivingShaft ac-
tivated) and draw a circle of diameter axleDiameter.

428 CHAPTER 47. CAD DESIGN IN FUSION 360

6. Extrude the sketch with a depth value of partThickness. This rudemen-
tary representation of the driving shaft is complete.

47.6. JOINTS IN FUSION 360 429

7. Select the crank component and activate it.

430 CHAPTER 47. CAD DESIGN IN FUSION 360

8. Create a sketch on top of the extruded face of the first component as shown
above.

47.6. JOINTS IN FUSION 360 431

9. On this sketch, draw a new circle, using the center of the referenced axle
(Driving shaft). Give it a diameter value of partDiameter.

432 CHAPTER 47. CAD DESIGN IN FUSION 360

10. With the construction line mode active (shortcut X by default), sketch a line
from the center of the axle, with an angle of 90 degrees and a length value of
partLength. Using the new end of the created line segment as the center,
draw two circles of diameter value axleDiameter and partDiameter.

47.6. JOINTS IN FUSION 360 433

11. From the circle’s center, draw two construction lines with a length value
of partDiameter/2 and angles of 0 and 180 degrees. This will create the
construction points we need.

434 CHAPTER 47. CAD DESIGN IN FUSION 360

12. Draw two lines, from the points we just created to the tangents of the other
circle (as shown above). The tangent is indicated by a green “tangent”
(tangent line to a circle) symbol.

47.6. JOINTS IN FUSION 360 435

13. Extrude the faces as shown above, while being sure to keep the bottom
inner circle unselected. The depth value of the extraction is partThick-
ness.

436 CHAPTER 47. CAD DESIGN IN FUSION 360

14. On the extruded part, show the last sketch again and extrude the top inner
circle by a value of partThickness. The crank component is complete.

47.6. JOINTS IN FUSION 360 437

15. Select the Rod component and activate it.

438 CHAPTER 47. CAD DESIGN IN FUSION 360

16. Create a new sketch on the face of the crank’s extruded axle.

47.6. JOINTS IN FUSION 360 439

17. Repeat the same operations from the crank to the rod. This time, the
bottom outer circle will have a diameter of partDiameter · 0.75. The bottom
inner circle keeps the same diameter value of axleDiameter. Finish the
sketch.

440 CHAPTER 47. CAD DESIGN IN FUSION 360

18. Extrude the last sketch, while keeping the top inner circle unselected, with
a depth value of −partThickness.

47.6. JOINTS IN FUSION 360 441

19. Show the last sketch again and extrude the bottom inner circle with a depth
value of −2 · partThickness, such that the created axle overlaps with the
Crank component (which you should now hide).

442 CHAPTER 47. CAD DESIGN IN FUSION 360

20. With the driving shaft and crank components hidden and slider activated,
create a new sketch, on the extruded axle of the rod component.

47.6. JOINTS IN FUSION 360 443

21. Using the Rectangle from Center sketching functionality and the center
of the axle, create a square with the sliderDimension parameter value.
Extrude the square (without the axle’s face selected) in the direction of the
axle, with a depth value of partThickness.

444 CHAPTER 47. CAD DESIGN IN FUSION 360

22. Lastly, activate the SlidingRail component and, using the slider’s face as
reference, draw a rectangle of height value sliderDimension and length
railLength. Extrude the whole rectangle, with a depth value of partThick-
ness in the opposite direction of the slider.

47.6. JOINTS IN FUSION 360 445

23. Once all previous steps are completed, you should obtain the result shown
above.

446 CHAPTER 47. CAD DESIGN IN FUSION 360

24. To create the joint, we must first select the components which should be
grounded. These components will not be able to move at all. Ground
the DrivingShaft and SlidingRail components using the Right-Click on
component > Ground menu.

47.6. JOINTS IN FUSION 360 447

25. Navigate to the Assemble > As-Built Joint menu (shortcut Shift/Cmd+J).
Contrary to the basic Joint, the As-Built Joint will try to create a joint
without moving any of the components, leaving them as they are built.

448 CHAPTER 47. CAD DESIGN IN FUSION 360

26. The first component selected with this functionality will be the one moving
relative to the second component. Select the Crank component first.

47.6. JOINTS IN FUSION 360 449

27. Select the DrivingShaft component second.

450 CHAPTER 47. CAD DESIGN IN FUSION 360

28. For the joint type, select Revolute, since this is the type of movement we
want between the crank and the driving shaft.

47.6. JOINTS IN FUSION 360 451

29. The last step is choosing the joint’s origin. For our revolute joint, we must
choose a point on the driving shaft’s axis, which we can do by clicking on
its face. Since it is a disk, Fusion 360 will identify its center as the joint’s
origin.

452 CHAPTER 47. CAD DESIGN IN FUSION 360

30. Repeat the same operation for the Rod (selected first) to Crank (selected
second) revolute joint. You can click on the face of the extruded axle of the
crank component for the joint origin.

47.6. JOINTS IN FUSION 360 453

31. Our third revolute joint is from the Slider (selected first) to the Rod (se-
lected second). Its origin is also selected by clicking on the rod’s axle’s
face.

454 CHAPTER 47. CAD DESIGN IN FUSION 360

32. Lastly, we should add a slider constraint. Select the Slider, followed by
the SlidingRail.

47.6. JOINTS IN FUSION 360 455

33. Select the Slider joint type.

456 CHAPTER 47. CAD DESIGN IN FUSION 360

34. As a joint origin, we can select the center of one of the faces of the Slidin-
gRail component, along its main axis.

47.6. JOINTS IN FUSION 360 457

35. This is the final result should obtain once all previous steps are completed.
You can now your mouse to drag the Slider component left and right and
see all components move accordingly or use the slider joint’s value (by
double-clicking on it) and edit it precisely.

458 CHAPTER 47. CAD DESIGN IN FUSION 360

Chapter 48

Laser-Cutting
Leo Wolff

In the course, you must study the feasibility of using the laser cutter
to bring your design to life, before considering 3D printing.

48.1 Why you should consider it
• Time: Cutting parts with the laser cutter is much faster than using

the 3D printer. This means you can quickly iterate on prototypes
version and even rebuild your project from scratch in record time.

• Quality of Finish: Laser-cut items have smoother and more exact
surfaces than 3d-printed parts.

• Size: The laser cutter is able to cut pieces of up to size 1600x1000
mm, which is larger than the 300x300 mm of the Prusa printers.

• Quick fixes: If you make a mistake during the design and see it dur-
ing assembly, there are chances you can correct it by sawing/drilling/...
into the MDF (Medium Density Fibreboard, the material you will most
likely use with the laser cutter) parts and fix it in the computer design
so that you can still use the part you just cut, and it will be corrected
next time your rebuild your prototype.

• Robustness: MDF is often more robust that one may think, depend-
ing on its thickness.

459

460 CHAPTER 48. LASER-CUTTING

48.2 Designing Parts for Laser Cutting
Creating the tabs and matching cutouts used for mounting parts to ea-
chother requires some work in Fusion 360. You can use the "Sketch >
Create > Patterns > Rectangular Pattern" tool to create them more effi-
ciently.

48.3 From Fusion 360 to the Laser Cutter
Once you have something ready to be cut in Fusion 360, it is time to export
it to a format which can be handled by LightBurn, the software used at
DLLEL for laser cutting. You learn how to use LightBurn in the mandatory
laser-cutting tutorial.

To export a shape, left-click on the surface (of a body in Fusion 360)
you want to cut, create a new sketch from it and click on “Finish Sketch”
without any further modification.

Navigate to where your sketch is located in your hierarchy and rename
it something meaningful. An example would be “Box-PosXNegY” for a side
of a box facing the positive x and negative y direction.

Right-click on the sketch and click “Save As DXF”. Save the file either
directly on a USB key or somewhere in your file system. This is the file you
will have to the import into LightBurn. Now you can go laser cutting.1

48.4 Assembly
Once the parts have been cut, a specialized glue must be used, otherwise,
the MDF parts will not stick together well. You can use the bar clamps (You
can find them at the DLL EL’s welcome desk or in your personal drawers)
to hold parts in place while the glue dries.

1After the required training, you are allowed to do this yourself.

Chapter 49

3D-Printing
Leo Wolff

Only use 3D printing when laser cutting is not suitable for your design:
Laser cutting is much faster.

49.1 Basics

There are several things to consider while using a 3D printer :

• Goal : When printing a part, the primary objective is to have a suc-
cessful print. Once this is ensured, you should also try to minimize
the printing time and material used while maintaining the success of
the print.

• Constraints : The printing nozzle melts plastic to lay it as different
layers. Because the plastic takes time to dry and solidify, this has
several implications discussed below.

In light of this, and before printing, you must get feedback on your
design, once imported and set up into PrusaSlicer, either from assis-
tants of the course, or from the DDLEL’s staff, until you are yourself able
to confidently identify the problems with your design.

461

462 CHAPTER 49. 3D-PRINTING

49.1.1 Print Failures
When a print failed, it is very frequently at the start of a print. The plastic
may not adhere to the printing bed, might not get out of the nozzle, etc...
For this reason, it is in your best interest to stay at the beginning of the
print to verify everything is starting correctly. You should also check on
your print periodically for the same reason.

Even if the print doesn’t fail catastrophically, it can still have important
flaws that will make it completely useless. Hence, there is a number of
situations you can take a look at yourself to help you pinpoint issues with
your arrangement:

• Elephant Foot phenomenon: The material on the first layer gets
displaced outwards if the distance of the nozzle to the bed is set
poorly. This can be a big problem when printing something such
as a cog, rendering its teeth useless. A mild elephant foot is almost
unavoidable and may require post-processing (sanding) the part. If
the phenomenon is very pronounced, the printer may need to be re-
calibrated.

• Vertical skew: When printing a hole with its axis not orthogonal to
the printing bed’s plane, the gravity will make the hole collapse a
little. In some situation, this is harmless but when the hole needs to
be of precise dimensions, it can make the design useless. In case of
an axle fitting through the hole for example, this phenomenon may
cause the axle to be stuck in the hole.

• Thin vertical structures: Building tower-looking parts may not leave
the time for plastic to cool down between multiple layers, making the
print collapse on itself and leaving the nozzle printing plastic in the
air.

To be sure to avoid such failures, read the next section: 3D printing
checklist.

49.1.2 3D Printing Checklist
Here is a non-exhaustive list of things to check before starting a print:

1. In PrusaSlicer:

49.1. BASICS 463

Figure 49.1: Example of a way a print can fail

(a) Flaws: Read the section on print failures to make sure your
design doesn’t have flaws that could lead to failing print.

(b) Overhangs and Supports: Verify if your design has overhangs
or unsupported areas that might require support structures for
successful printing.

(c) Quality setting: Double-check that the print settings in PrusaSlicer
(Panel located on the right-hand side in the software) are the one
you should use for the type of prints you want (Low quality for a
rough, fast print or higher quality for something more polished).

(d) Infill density setting: Determine the infill percentage based on
the desired weight and strength of your printed object.

(e) Support structure: Adjust the support structure settings ac-
cording to your analysis from 1a

(f) Filament setting: Set the filament setting to the type of filament
you will use.

2. Before using the printer:

(a) Correct type of filament: Ensure the correct type of filament is
already plugged into the machine (PETG in our case). If it is not
the case, ask for directions on how to change the filament to one
of the teaching assistants or the DLLEL staff.

(b) Changing the printer’s filament : The filament needs to be
fed properly to the printer. If you must change the filament of

464 CHAPTER 49. 3D-PRINTING

the printer, a good practice is to use cutting pliers on the end of
the filament you will feed the printer to decrease the chances of
it getting stuck in the printer’s nozzle.

(c) Amount of filament: Verify that the remaining amount of fil-
ament seems enough for your print. In the case it seems un-
certain, you can plug out the filament, weigh the spool with the
filament and subtract the weight of the spool (which should be
written on it) to compare it to the weight of filament used an-
nounced in PrusaSlicer.

(d) Clean bed: If the previous user of the printer you want to use
is not a student of CS-358, it might happen that they forgot to
clean the printing bed after retrieving their print. In this case,
you should make sure the printing bed is clean before starting
your impression.

(e) Monitor your print: Stay while the printer prints the first layer
and come back to check on your print often.

3. After having used the printer:

(a) Removing your print: Take the printing bed out of the printer
and, while wearing protection glasses, remove your print from
the bed, using the tools available in the 3D printing room.

(b) Removing the support: While wearing glasses, remove the sup-
port from your print, and collect all the plastic to put it in the bin
reserved for this purpose.

(c) Clean the bed: Wash thoroughly the printing bed with water,
soap and a sponge and leave it to dry in the 3D printing room.

49.2 Design for 3D Printing : DOs and DONTs

As previously mentioned in this section, the goal of 3D printing, after mak-
ing sure your print will be successful, is to save material and printing time.
This means that your prints should be the result of your best efforts to
minimize these two quantities. There are multiple reasons for doing so.

49.2. DESIGN FOR 3D PRINTING : DOS AND DONTS 465

49.2.1 Printing Time
You are not alone to use the 3D printers: May it be other teams from
CS-358 or students working on other projects in DLL, they all have work
and deadlines they are subject to. Considering this, they should have the
same opportunity to use printers as you have. This is especially important
given the large number of people taking this course.

Low printing time means faster iteration: It often happens that you
design a part, print it, and then realize that your design doesn’t work.
You then correct your mistake and start this process all over again. A
lower printing time means you can iterate faster on your design, which is
convenient especially when deadlines approach.

49.2.2 Material Use
Common Sense: The goal here is to reduce waste of plastic.

Reducing printing time: Minimizing the amount of material used is often
useful to reduce the printing time and therefore benefits of the advantages
mentioned above. This can be achieved by cutting more holes in your de-
sign. However, this is not always the case:

Support material: Another big source of material waste is support
material. This can often be reduced by finding clever ways to print your
design.

466 CHAPTER 49. 3D-PRINTING

(a) A basic filled cube (b) We cut a hole
through the cube to try
to reduce material.

(c) All the blue parts
will be using Perime-
ter print settings : This
will result in higher ma-
terial density and over-
all more material being
used than for the filled
cube.

Figure 49.2: Cutting holes doesn’t always result in less material used

49.3. SLICING IN PRUSASLICER 467

(a) The design to print (b) Bad, it uses way too much
support material.

(c) We can drastically reduce the
amount of support material by
printing it on another side.

(d) We can cut the part in mul-
tiple pieces to reassemble later.
This uses no support material
and makes smooth surfaces on
the print.

Figure 49.3: Example of reducing support material

49.3 Slicing in PrusaSlicer

A number of options are available in the PrusaSlicer software to be sure
your prints succeeds and is least wasteful in term of time and material.

49.3.1 Expert Mode

To access the full potential of the application, you can set the application as
expert mode by clicking on the Configure > Mode > Expert mode button
from the top menu.

468 CHAPTER 49. 3D-PRINTING

(a) Angles are a weak
point in the design and
will be the first place
that breaks.

(b) We can use cham-
fer or fillet to strengthen
these points.

Figure 49.4: Weak points in designs must be addressed properly.

49.3.2 Painting Tool
Once expert mode is enabled, you will be able to use the "Paint-on support"
(’L’ shortcut) tool.

Using this tool, you will be able to paint parts of your design where
support is allowed to appear. To then use this options for the location of
your support material, you have to select "For support enforcers only" in
the "Supports" menu on the right panel in the software.

49.3.3 Infill
The infill drop-down menu on the right panel of the application allows you
to choose the density of material the inner part of your design should have.

Settings a high value for this field may be required when your part needs
to be robust, whereas a low value would be better suited for first prototypes
with need of a low printing time or parts where robustness is not a problem.

49.3.4 Brim and Skirt
PrusaSlicer creates a line of material, within a configurable margin of your
print’s boundaries. This has multiple uses :

• Make sure the material sticks to the bed when the print starts.

49.3. SLICING IN PRUSASLICER 469

• Check your design’s bounds is as expected and you did not miss
something while modifying the print settings.

• Leave additional time for the nozzle and its material to reach the cor-
rect temperature.

See https://make.epfl.ch/3dprint/download/training_V4.1.pdf for more
information on 3D-printing in DLLEL. Here is a tutorial video on changing
the filament: https://mediaspace.epfl.ch/media/Filament+change+SPOT/
0_gh5ko09h

https://make.epfl.ch/3dprint/download/training_V4.1.pdf
https://mediaspace.epfl.ch/media/Filament+change+SPOT/0_gh5ko09h
https://mediaspace.epfl.ch/media/Filament+change+SPOT/0_gh5ko09h

470 CHAPTER 49. 3D-PRINTING

Part IX

More Programming

471

Chapter 50

Adding Computer Vision
Alexander Müller

50.1 Overview
This section will include some basic concepts in computer vision, some
libraries to consider using, some example code using computer vision, and
a case study of a project that used computer vision.

50.2 Basics
Computer vision is how computers derive information from images or videos.
The first step is to take an image. This is not the place to go over all of the
optics involved, but overall a lens focuses light onto a sensor. This may
seem trivial but is an important consideration, as the lens will cause dis-
tortions as it tries to fit the 3D world in front of it onto the 2D sensor
behind it.

50.2.1 Colors
Now, we need to have a digital representation of the image. Typically, this
is a 2D array of 3 valued-tuples, with the first 2 dimensions representing
a location in the image and the 3 values representing the color at that
location. Here, we have a choice of base for the color system. The default
on many computers and for many programmers is RGB, where the first

473

474 CHAPTER 50. ADDING COMPUTER VISION

value represents how red the pixel is, on a scale of 0 (no red) to 255 (max
red), and the same for G (green) and B (blue)1.

But you have to ask yourself: what does max red mean? What if Alice’s
screen manufacturer used a different chemical or LED than Bob’s, and
therefore the red doesn’t get as bright? Would one tuple (r,g,b) show the
same color on two different screens? The answer is no, and you should
avoid RGB colors in almost every computer vision application.

So what other choices do we have? While there are many, the main
one used in computer vision is known as HSL. The three letters stand for
hue, saturation, and lightness. The main advantage of this system is that
colors’ hue does not change depending on how much light is being shined
on them (as opposed to RGB, where are all three values will change). This
makes it a much more reliable base for computer vision, as you can specify
a color filter without worrying about how well lit your target is.

50.2.2 Blurring
One of the most useful ideas in Computer Vision is blurring. There are
many functions used to achieve this, but if your filter ever has problems
with noise, consider filtering the input, output or both. Try low pass filters
for noise reduction, high pass filters for sharpening edges, etc.

50.3 Libraries

50.3.1 OpenCV
The main library to be familiar with is OpenCV. This library, originally writ-
ten for C++, has been ported to python, android, and iOS, and is completely
open source. It provides the whole computer vision suite, from capturing
images / videos, filtering the images, extracting shapes, and recently, even
machine learning / deep neural networks. Their website offers a plethora
of tutorials, algorithms and forums.

To help visualize and generate OpenCV pipelines, I recommend GRIP,
which allows you to drag and drop different filters provided by OpenCV and

1The reason the primary colors on computers includes green instead of yellow is be-
cause computer screens are an additive color system, i.e mixing all colors makes white,
whereas with paints mixing all colors makes black.

https:\opencv.org
https://docs.wpilib.org/en/2022/docs/software/vision-processing/grip/introduction-to-grip.html

50.4. CODE EXAMPLES 475

immediately see the result. Clicking through the filter options may help
you understand some of the functions OpenCV provides more quickly than
reading OpenCV’s documentation.

50.3.2 April Tags
April tags are a fiducial marker system, which allows us to easily detect,
locate, orientate, and identify QR-code like patterns. The lab that devel-
ops them offers a library in C, but I recommend using Pupil lab’s python
bindings (note: this library is no longer being maintained and is difficult to
set up on python versions >= 3.8. Although possible, I recommend using
python 3.7).

50.4 Code Examples

50.4.1 OpenCV
Let’s make a basic program to detect red squares using OpenCV’s python
bindings. First, to download OpenCV for python:

> pip install opencv-python
> pip install numpy

We also install numpy, as many OpenCV functions rely on numpy. Now,
in a python file:

import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while True:

ret, frame = cap.read()
cv2.imshow('frame',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):

break

Running this code will show a video stream captured live from your web-
cam. Pressing ’q’ will end the program. ’ret’ is a boolean which indicates
whether or not the frame was read correctly, so it can be useful to check
this value before performing any calculations with frame.

https://github.com/AprilRobotics/apriltag
https://github.com/pupil-labs/apriltags
https://github.com/pupil-labs/apriltags

476 CHAPTER 50. ADDING COMPUTER VISION

Now we will write the code to detect everything in the frame which is
red. First, we convert the frame to HSV (a similar color base to HSL).

hsv_frame = cv2.cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Now, we are going to apply a mask to our image. A mask takes each pixel
and makes it either white, if it fulfills a certain condition, or black if it
doesn’t. We will use cv2’s inRange method.

#outside the loop
min_hue = -15
max_hue = 15
min_sat = 100
max_sat = 256
min_val = 100
max_val = 256
#inside the loop
lower_red = np.array([min_hue, min_sat, min_val])
upper_red = np.array([max_hue, max_sat, max_val])
mask = cv2.inRange(hsv_frame, lower_red, upper_red)
res = cv2.bitwise_and(frame,frame, mask= mask)

Then, when we have the mask, we can use the ’bitwise and’ function be-
tween the mask and the original image to filter out only the parts we want.
This works because doing ’and’ with black parts of the mask, represented
with all 0 bits, will make every color in the original image black, too. On
the other hand, every white pixel, which is represented with all 1 bits, will
make the parts of the image we want stay the same. We can see the result
using the following code:

cv2.imshow('res',res)

Here I am holding a google search for "color red" to the camera:

50.4. CODE EXAMPLES 477

Now, to detect if it’s a square or not. We will use several methods from
opencv, including findContours, contourArea, approxPolyDP and bound-
ingRect. Lets go through them quickly:
findContours will allow us to find a curve that denotes the boundary be-
tween two different colors. For this to work, it’s better if the image is black
and white, to increase the difference in colors, so we’ll apply it to the mask.
Then, we can use approxPolyDP to make sure it’s a quadrilateral. Finally,
we will use boudingRect to get the rectangle that bounds the contour, and
check if the side lengths are equal. The code will looks as follows:

contours = cv2.findContours(mask,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)[-2]

for cnt in contours:
area = cv2.contourArea(cnt)
if area > 200:

approx = cv2.approxPolyDP(cnt,
0.01*cv2.arcLength(cnt,True),True)

x1,y1 = cnt[0][0]
approx = cv2.approxPolyDP(cnt,

0.01*cv2.arcLength(cnt, True), True)
if len(approx) == 4:

x, y, w, h = cv2.boundingRect(cnt)
ratio = float(w)/h
if ratio >= 0.9 and ratio <= 1.1:

img = cv2.drawContours(frame, [cnt], -1, (0,255,255), 3)
cv2.putText(frame,

'Square', (x1, y1),
cv2.FONT_HERSHEY_SIMPLEX,
0.6, (255, 255, 0), 2)

else:
cv2.putText(frame, 'Rectangle', (x1, y1),

cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
img = cv2.drawContours(frame, [cnt], -1, (0,255,0), 3)

50.4.2 AprilTags
This section contains an extended example using the AprilTags library.
The first thing to do is install the library:

478 CHAPTER 50. ADDING COMPUTER VISION

>pip install pupil-apriltags

Then we can use the following code to draw blue squares around tags as
well as number them:

#imports
from pupil_apriltags import Detector
import cv2
#instantiate detector
at_detector = Detector(families='tag36h11',

nthreads=1,
quad_decimate=1.0,
quad_sigma=0.0,
refine_edges=1,
decode_sharpening=0.25,
debug=0)

#open webcam
cap = cv2.VideoCapture(0)
while True:

ret, frame_in = cap.read()
#we give the detected a greyscale image
grey = cv2.cvtColor(frame_in, cv2.COLOR_BGR2GRAY)
#get an array of tags
tags = at_detector.detect(grey)
#iterate over every tag we found
for tag in tags:

#get the id from the QR code
cv2.putText(frame_in, str(tag.tag_id),

(int(tag.corners[1][0]),
int(tag.corners[1][1])),
cv2.FONT_HERSHEY_SIMPLEX, 1,
(255,0,0), 3,cv2.LINE_AA)

cv2.rectangle(frame_in,
(int(tag.corners[0][0]),
int(tag.corners[0][1])),
(int(tag.corners[2][0]),
int(tag.corners[2][1])),
(255,0,0), 2)

cv2.waitKey(1) & 0xFF == ord('q'):

50.4. CODE EXAMPLES 479

break
cv2.imshow('camera', frame_in)

Finally, in many applications, we want to be able to find how much the
April Tag has been rotated in the plane of the camera. Luckily, this is very
easy, as the library always returns the corners in the same order. We just
take the average position of two pairs of adjacent corners:

pt1 = [int(x) for x in [(tag.corners[3][0]+tag.corners[0][0])/2,
(tag.corners[3][1]+tag.corners[0][1])/2]]

pt2 = [int(x) for x in [(tag.corners[1][0]+tag.corners[2][0])/2,
(tag.corners[1][1]+tag.corners[2][1])/2]]

cv2.line(frame_in, pt1, pt2,(0,255,255), 3)

Many more position calculations are possible using linear algebra, such
as how rotated the April Tag is w.r.t to the plane of the camera.

480 CHAPTER 50. ADDING COMPUTER VISION

Chapter 51

GRBL and LinuxCNC

To be added. These are software packages to create plotters, 3D printers
and CNC mills. LinuxCNC also has support for inverse kinematics in (6-
DOF) robot arms.

481

482 CHAPTER 51. GRBL AND LINUXCNC

Chapter 52

MCU Operating systems:
FreeRTOS and ROS

To be added.

483

484 CHAPTER 52. MCU OPERATING SYSTEMS: FREERTOS AND ROS

Chapter 53

Mobile App Control
Giovanni Ranieri

In this chapter, we show how to talk to an ESP8266 from a mobile phone
app with React Native. We also give different resources for other frame-
works. You can use any microcontroller with WiFi capabilities, you will
just need to find the corresponding libraries.

53.1 React Native App and ESP8266
React1 is a web JavaScript framework that aims to create basic web pages
and apps. React Native2 is a derived framework build on top of React to
build native apps for Android and iOS.
The easiest approach for an app with React Native is to create a NodeJS
project and install the react and react native packages using the package
manager of your choice (npm, yarn, ...). Then, your application and the
microcontroller mainly communicate through HTTP requests.

53.1.1 Expo CLI
React Native is platform dependent, i.e. you need to write different code
for each targeted development platform (iOS, Android, ...). To avoid this,
you can use Expo which is an ecosystem of tools to build complete apps

1https://fr.legacy.reactjs.org/
2https://reactnative.dev/

485

https://fr.legacy.reactjs.org/
https://reactnative.dev/

486 CHAPTER 53. MOBILE APP CONTROL

for both iOS and Android in one project: you just need to install it in your
project. The last thing to add for your project will be the mobile Expo Go
app which will compile and create your app.

53.1.2 Creation of the Project

This tutorial follows the detailed documentation of Expo: 3. Follow the in-
structions on this page to create your project. If you want to use TypeScript
instead of Javascript, refer to this page 4 but be aware that it requires more
work.

When the project is created, you can enter into it’s root directory and open
the project. Like every NodeJS project, you’ll find the node modules folder
that will hold the packages installed for your app. The last thing to do
to have your app on your phone is to start the app using npx expo start.
This will print a QR code that you will scan from the Expo Go app. At this
point, you should have your app on your screen with a welcome message.

53.1.3 HTTP Requests

HTTP, which stands for Hypertext Transfert Protocol, is a application pro-
tocol in the model OSI that uses TCP as transport protocol to enable stable
client-server communication. The communication setup that you would
like to have is indeed a client-server where the server is hosted on your
microcontroller and the client that sends requests is your app. Your mi-
crocontroller needs to be connected to a network and you’re going to have
two options. If you’re at the SPOT in the DLL building at EPFL, then you
can use a private network specially created for connecting embedded sys-
tems (please refer to the section 29.2). If you’re not there, then you can
use the hotspot of your phone. In any case, your chip will be connected to
a network to enable the framework for HTTP requests to work. Obviously,
your microcontroller needs a WIFI module and if not then you need to use
an external WIFI module for your chip (see the reference for all chips 25).

Many frameworks exist to send HTTP requests but we’ll show you one of

3https://docs.expo.dev/tutorial/create-your-first-app/
4https://docs.expo.dev/guides/typescript/

https://docs.expo.dev/tutorial/create-your-first-app/
https://docs.expo.dev/guides/typescript/

53.1. REACT NATIVE APP AND ESP8266 487

the simplest called axios: 5. Just install the package with

npm install axios

When you use HTTP requests, you can specify the type of request you
want, for example POST and GET requests. If you already used this kind of
framework then it should not be hard to use this one. Here is simple POST
request using axios with JSON format to the IP address 193.245.45.3 with
the route "root" it’s simply

function sendRequests(key: string, val: string, root: string) {
axios.post('http://193.245.45.3/' + root, {

[key]: val
}, {

headers: {
'Content-Type': 'application/x-www-form-urlencoded'

}
}).then((response) => {

console.log(response);
}, (error) => {

console.log(error);
});

}
}

53.1.4 Handle HTTP Requests
Now on the side of your microcontroller we need first to import some li-
braries to instantiate a web server, enable WIFI and handle requests. For
the ESP8266 you can use ESP8266WiFi, ESPAsyncTCP and ESPAsyncWeb-
Server.

To send requests to your chip, we need the IP address of it and this can be
done simply by connecting the chip to the network you have chosen. The
Access Point (your phone) will give an IP address to your chip that can be
printed in the terminal like in the example below

5https://axios-http.com/docs/intro

https://axios-http.com/docs/intro

488 CHAPTER 53. MOBILE APP CONTROL

void setup() {
Serial.begin(9600);

Serial.print("WIFI ...");
IF YOU USE THE HOTSPOT
WiFi.begin(ssid, password);
IF YOU ARE IN THE DLL BUILDING
WiFi.setHostname("your_host_name");
Serial.print("Connecting to Wifi...");
Serial.print("\n");

while (WiFi.status() != WL_CONNECTED) {
Serial.print(".");
delay(500);

}

Serial.println("");
Serial.println("Wifi connected");
Serial.println(WiFi.localIP());

}

You can copy this IP address printed and use it for your HTTP requests
framework. Warning: this IP address can change

After that, always on the server-side, you can instantiate a web server and
define, in the setup function, routes that will handle communications. In
the example below, we have this AsyncWebServer instance on port 80.

AsyncWebServer server(80);

void setup() {
Serial.begin(9600);

Serial.print("WIFI ...");
IF YOU USE THE HOTSPOT
WiFi.begin(ssid, password);
IF YOU ARE IN THE DLL BUILDING
WiFi.setHostname("your_host_name");
Serial.print("Connecting to Wifi...");

53.2. OTHER MOBILE APP FRAMEWORKS 489

Serial.print("\n");

while (WiFi.status() != WL_CONNECTED) {
Serial.print(".");
delay(500);

}

Serial.println("");
Serial.println("Wifi connected");

server.on("/mode", HTTP_POST, [](AsyncWebServerRequest *request){
if(request->hasParam("value", true)) {

AsyncWebParameter* p = request->getParam("value", true);
int value = p->value().toInt();

update_mode(value);
request->send(200, "text/html", "good");

} else {
request->send(404, "text/html", "Error mode");

}
});

server.begin();
}

with this you have a route called "/mode" that can handle POST requests.
It checks if the data sent contains a key called "value" with the value true.
You can send now a request to your chip with your app with the previous
code of your NodeJS project.

53.2 Other Mobile App Frameworks
Many other frameworks/programming languages has been developed for
mobile app control. We let you here references to these ones:

• Flutter: https://flutter.dev/

• NativeScript: https://nativescript.org/

https://flutter.dev/
https://nativescript.org/

490 CHAPTER 53. MOBILE APP CONTROL

• Swift (iOS): https://developer.apple.com/swift/

• Kotlin (Android): https://developer.android.com/codelabs/build-your-first-android-app-kotlin#
0

https://developer.apple.com/swift/
https://developer.android.com/codelabs/build-your-first-android-app-kotlin#0
https://developer.android.com/codelabs/build-your-first-android-app-kotlin#0

Part X

More Hardware

491

Chapter 54

Using Gamepad Controllers
Dylan Vairoli

Gamepad controllers provide an intuitive way to interact with your compo-
nents, especially with vehicles. This section will introduce two differents
ways to interact with controllers.

• Using a WiFi connection with an ESP8266 microcontroller

• Using a direct Bluetooth connection with an ESP32 microcontroller

54.1 WiFi connection

You can connect a controller to your computer and transmit its inputs to
an ESP8266 microcontroller using HTTP requests via WiFi. Note that with
this alternative you can’t interact with the controller (vibrations, change
LEDs colour, ...). Consider using a Bluetooth connection instead if you
need these functionalities.

This section is based on the official Using the Gamepad API Mozilla
tutorial1.

1https://developer.mozilla.org/en-US/docs/Web/API/Gamepad_API/Using_the_
Gamepad_API

493

https://developer.mozilla.org/en-US/docs/Web/API/Gamepad_API/Using_the_Gamepad_API
https://developer.mozilla.org/en-US/docs/Web/API/Gamepad_API/Using_the_Gamepad_API

494 CHAPTER 54. USING GAMEPAD CONTROLLERS

54.1.1 Connect a gamepad in the browser
All this section content has been tested on the Safari, Google Chrome and
Firefox browsers and using a PS4 controller.

First, download the Github repository 2 associated with the tutorial.
We will use it to make sure your gamepad is detected in your browser and
its outputs are correctly fetched.

You then need to connect your gamepad to your computer. Check online
how to connect your specific gamepad to your personal computer using ei-
ther wireless connectivity or a physical cable. For reference, we connected
a PS4 controller to a macOS computer using bluetooth.

Once your gamepad is connected, if you open the index.html file from
the repository you downloaded and press any buttons on your gamepad,
an interface should show up. It displays a mapping between the buttons
and their ID in code, joysticks values are also displayed.

54.1.2 Retrieve the gamepad data
You can find the base code template in the class resources repository 3.
In this section, we will go through a minimalistic JavaScript example to
retrieve the gamepad input.

const haveEvents = "ongamepadconnected" in window;
const controllers = {};

function connecthandler(e) {
console.log("Gamepad connected: " + e.gamepad.id);
addgamepad(e.gamepad);

}

function addgamepad(gamepad) {
controllers[gamepad.index] = gamepad;
requestAnimationFrame(updateStatus);

}

// [...]

2https://github.com/luser/gamepadtest/tree/master
3https://github.com/epfl-cs358/cs358-resources

https://github.com/luser/gamepadtest/tree/master
https://github.com/epfl-cs358/cs358-resources

54.1. WIFI CONNECTION 495

function disconnecthandler(e) {
console.log("Gamepad disconnected: " + e.gamepad.id);
removegamepad(e.gamepad);

}

function removegamepad(gamepad) {
delete controllers[gamepad.index];

}

// [...]

function scangamepads() {
// Scan through all gamepads and add them to controllers

}

window.addEventListener("gamepadconnected", connecthandler);
window.addEventListener("gamepaddisconnected", disconnecthandler);

if (!haveEvents) {
setInterval(scangamepads, 500);

}

This piece of code subscribes to gamepad connection and disconnection
events (if any) and call the appropriate handlers. If no event is available,
it just scans repeatedly through the navigator gamepads every 0.5 sec-
onds. When adding a gamepad, the requestAnimationFrame function asks
the navigator to execute updateStatus as soon as possible.

function updateStatus() {
scangamepads();

Object.entries(controllers).forEach(([i, controller]) => {
controller.buttons.forEach((button, i) => {

let val = button;
let pressed = val === 1.0;
if (typeof button === "object") {

pressed = button.pressed;
val = button.value;

496 CHAPTER 54. USING GAMEPAD CONTROLLERS

}
// Do something with val and pressed

}

controller.axes.forEach((axis, i) => {
const val = axis // axis is the axis value directly
// Do something with axis

}
}

requestAnimationFrame(updateStatus);
}

This is our main loop, in which we fetch the button values. The controllers
variable contains Gamepad objects, which provides some useful properties:

• id: A string containing some information about the controller (USB
vendor, product id, name, ...)

• index: An integer that is unique for each gamepad currently con-
nected to the system

• buttons: An array of GamepadButton objects representing the buttons
present on the device

– GamepadButton.pressed: A boolean indicating whether the button
is currently pressed (true) or unpressed (false)

– GamepadButton.value: a floating point value used to represent
analog buttons, such as the triggers on many modern gamepads.
The values are normalized from 0.0 (not pressed) to 1.0 (fully pressed)

• axes: An array representing the controls with axes (e.g. analog thumb
sticks). Each entry in the array is a floating point value from −1.0
(lowest value) to 1.0 (highest value)

Note that updateStatus calls itself recursively on the next animation frame.

54.1. WIFI CONNECTION 497

54.1.3 Communication with an ESP8266

JavaScript client

Once you fetched the gamepad data, you need to send it to your microcon-
troller. In this section, we will use an ESP8266.

We will extend the previous script to send data to our ESP8266 over
HTTP. Note that both your computer and your microcontroller need to be
connected over the same WiFi. The EPFL WiFi won’t work because of ad-
ditional security, you should use a personal hotspot or a regular WiFi.

We want to reduce as much as possible the ongoing traffic, to do so we
define new variables that will contain the last values we sent. We will send
POST requests only if the values actually changed this frame.

// Remember last values to send POST requests on change only
const lastVal = {};
const lastPressed = {};
const lastAxis = {};

We use the Fetch API 4 along with the JSON object 5 to send HTTP POST
requests in the JSON format to the ESP8266:

async function postData(url, data) {
console.log("POST DATA " + JSON.stringify(data));
const response = await fetch(url, {

method: "POST",
headers: {

"Content-Type": "application/json",
},
body: JSON.stringify(data),

});
return response;

}

In our main loop, we first retrieve the ESP8266 IP address from an input
field (defined in index.html) and then create our JSON object.

4https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
5https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/JSON

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON

498 CHAPTER 54. USING GAMEPAD CONTROLLERS

function updateStatus() {
scangamepads();

if (ipInput == null)
ipInput = document.getElementById('ip-input');

const url = `http://${ipInput.value}/data`;

const controllersData = createControllersData(controllers)
if (controllersData.length > 0)

postData(url, {controllers: controllersData });

requestAnimationFrame(updateStatus);
}

In this example, we send data only on updates with the following format:

{
controllers: [{

id: 0,
buttons: [{ id: 7, val: 1, pressed: true }],
axes: [{ id: 0, val: 0.66 }]

}]
}

Take a look at the implementation of createControllersData, you might
adjust it for your specific needs.

Arduino server

On the ESP8266, we need to:

• Connect to WiFi (using the ESP8266WiFi library 6) Be careful as you
will have troubles for connecting to the normal epfl WiFi. Please refer
to the WiFi section 29.2

• Create and start a web server handling POST requests arriving at
/data (using the ESP8266WebServer library 7)

6https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html
7https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WebServer

https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WebServer

54.2. BLUETOOTH CONNECTION 499

• Parse the received JSON data to extract the meaningful information
(using the ArduinoJson library 8)

Take a look at the ESP8266 code in the resources repository. It should
be pretty straightforward. Whenever you don’t understand something, look
it up in the corresponding library documentation.

54.2 Bluetooth connection
You can directly connect a controller to an ESP32 via Bluetooth. This
method is more precise than WiFi, allow you to interact with the controller
(vibrations, change LEDs color, ...) and retrieve more data such as the
internal gyroscope of the gamepad. Moreover, it removes the need of an
intermediary computer to pass the data.

We recommend using the Bluepad32 library by Ricardo Quesada 9. It
supports a lot of gamepads and is well integrated in the Arduino IDE en-
vironment.

Follow this tutorial 10 to run the simple test example.
You should be able to adapt this example to your specific use cases.

54.2.1 Troubleshooting
• If you have an ESP32-CAM without any USB port, you’ll need to use

an FTDI or an ESP8266 to upload your code and read the serial mon-
itor.

8https://arduinojson.org
9https://bluepad32.readthedocs.io

10https://www.youtube.com/watch?v=0jnY-XXiD8Q

https://arduinojson.org
https://bluepad32.readthedocs.io
https://www.youtube.com/watch?v=0jnY-XXiD8Q

500 CHAPTER 54. USING GAMEPAD CONTROLLERS

Part XI

Case Studies

501

Chapter 55

The Prusa i3 MK3S 3D Printer

This is the main model of 3D printer that you will use in your project.
But let us now consider this machine as a maker project. In fact, creating
such a 3D printer is not beyond the scope of this course. Even though
Prusa is a for-profit company, all parts of the printer’s design (i.e., it is
hardware too) are open-source. The printer is a refined version of a series
of open-source, non-profit efforts to create 3D printers that you can make
yourself, and that can “replicate” themselves. As you can verify yourself,
most of the non-standard parts of the printer are 3D-printed (on the same
model of printer).

55.1 Mechanical Frame
The frame consists of three parts cut from a thick steel plate (most promi-
nently, the large donut-shaped part arranged vertically) and some alu-
minium 2020 extrusions. These are connected to each other using screws.
One could make these parts oneself from wood or by 3D printing, but it is
extremely important that particularly these parts are precisely machined
and very rigid.

Actuated by the X and Y axis motors, the print head moves (not abso-
lutely, but relatively to a point on the print bed) in a plane parallel to the
print bed. It is vital for consistently successful prints that these planes
are parallel with an error of no more than about 10 micrometers! Dur-
ing mechanical assembly, we need to get the donut-shaped steel part to
be perpendicular to the base plane with an error of a small fraction of a
millimeter at the far end; if that succeeds, the remaining precision can be

503

504 CHAPTER 55. THE PRUSA I3 MK3S 3D PRINTER

Figure 55.1: The printer’s x, y, and z axes.

achieved through calibration (i.e., to make the software compensate for er-
rors). These printers are also sold as kits for self-assembly, and getting the
frame precisely right is somewhat tricky. The order in which one tightens
the screws matters a lot!

55.2 Actuation
Not counting the fans, whose speed is also program-controlled while print-
ing (for instance, it is increased when bridges and overhangs are printed,
to make those lines of plastic solidify faster to minimize the effects of grav-
ity), this printer has four degrees of freedom, implemented using 5 stepper
motors (we have motors of the same specification in the parts library).
There is an X axis (left-right when you look at the printer from the front), a
Y axis (forward-backward), a Z axis (up-down, using two stepper motors),
and an E axis which extrudes filament. It may seem that a stepper motor is
overkill for extrusion, but in fact the speed of extrusion varies a lot during
a print for good outcomes, and even the direction of this motor reverses
frequently.

Only X and Z move the print head, while Y moves the print bed. This
is different from some other printers, which have a stationary print bed
and move the print head with X, Y, and Z. A design in which Z moves
the print bed down while X and Y move the print head would also be an
imaginable option.1 By this decoupling (not all degrees of freedom move
the print head), one may create a more precise machine, and the motors
may potentially have to move less mass.

1Resin printers do something a little bit like that: They have only one mechanically
moving axis – Z – moving a plate to which the printed parts are attached up and away
from UV light matrix and liquid resin.

55.3. ELECTRONICS 505

All five stepper motors are of the same kind, and have a torque rating
of about 0.4 Nm. That wouldn’t be much if we, say, had to move a vehicle
with large-diameter wheels. But this is not what we are doing here. Let
us see how power is transmitted to the axes. X and Y use timing belts,
in both cases without reduction (the belt runs over gears/spindles of the
same diameter). Z uses worm gears.

Timing belts need the right amount of tensioning, and this may need
to be adjusted over time as the belt stretches. The timing belt of the Y axis
is manufactured as a loop and is tensioned by a facility to shift the front
spindle a little and then fix it in place. The timing belt of the X axis is open-
ended and the two ends are fixed with the right tension in a 3D-printed
contraption on the back side of the print head.

So what is the linear force transmitted by the timing belts to bed and
print head? It depends on the diameter of the gears, which is about 1cm.
We can calculate a force of

0.4Nm/(0.01m ∗ π) ≈ 10N

TODO calculate how much is needed to overcome inertia.
TODO calculate linear force of Y axes via worm gear. Point out that the

two motors are not so much in place to create sufficient force but to move
both ends of the X-axis and print head assembly equally fast to avoid shear
forces (check term). To avoid these shear forces, an alternative would be
to mount a single Y-axis motor with worm gear centered below the X-axis
assembly, but obviously that would be absurd – it would be in the way of
the print head, the print bed, and the object to be printed.

55.3 Electronics

The printer uses a 24V power supply and can supply a significant amount
of current. This power supply is probably the most expensive individual
component of the printer. It is mounted in a box on the right side of the
frame.

The main board with the stepper motor drivers is housed in a 3D printed
box on the left side of the frame. The board is an EINSI RAMBO board,
which is specially made to contain all the essential electronics of such a
printer on one board (though it isn’t exclusive to Prusa printers). You could

506 CHAPTER 55. THE PRUSA I3 MK3S 3D PRINTER

achieve essentially the same functionality with an Arduino, five A4988
stepper drivers, and a few additional components.

The display and SD card reader are in an orange printed box in front,
but all the related processing is done on the main board.

55.4 Cable Management
Cable management is a significant problem here, also because some of the
cables (those leading to the print head and the X axis stepper) constantly
move and bend while printing, making them age quickly. Typically, the
cables are where these printers fail first.

There is also a huge number of cables (on the order of 20 lines to the
print head), and it is thanks to the clever cable management (and protective
sleeves) that the cables are more prominent. You can but these printers
as kits for self-assembly, and if you do that, you spend a significant part
of the assembly time on cable management, and it is necessary to get a
usable machine.

55.5 3D-Printed Parts of the Printer
The 3D-printed parts are done using PETG. Compared to, say, PLA, PETG
has a slightly higher melting point (still, some of the 3D printed parts of
the print head sometime melt when a misprint happens and a big ball of
filament sticks to the print head) and is tougher (breaks or splinters less
easily). However, it is less rigid than PLA, and if you chose to 3d print the
frame of the printer (in any case a bad idea), PLA would be better than
PETG.

Chapter 56

The Making Intelligent Traffic
Project
Alexander Müller

In this chapter, I will discuss some stories, insights and reflections from
one of the projects from the first year of this course, Making Intelligent Traf-
fic. The idea of the project was a swarm-like traffic system, where model
autonomous cars could navigate a small city and communicate between
themselves to avoid crashes while reducing traffic.

56.1 Backup Plans

56.2 Problem Solving: Localisation
In this section, we will look at the process we went through to localize
the cars. One of the biggest hurdles during the project was localising the
cars. We considered many systems, some of which you may consider using
yourselves for your project.

56.2.1 Problem Definition
The first thing we did was set up some criterion to find a good solution.
This may seem like listing the obvious, but it can really help filtering out
solutions or coming up with unique approaches. In our system, we needed

507

508 CHAPTER 56. THE MAKING INTELLIGENT TRAFFIC PROJECT

to localize the cars in 2 dimensions. The cars, being less than 10cm long,
needed to be localized with 1 or 2cm. Although we didn’t know it at the
time, the system should also work underground, as we had our set up in
a basemen with no reception of any kind for most of the semester. Lastly,
we needed to be able to identify each vehicle so that we could keep track
of who’s who, and orientate them so we knew which way they were going.

56.2.2 GPS
Probably the most well-known localization system worldwide. Using satel-
lites in strategic points in space, it is possible to triangulate your position
anywhere in the world. It was quite easy to discard as an idea, because
even relatively good GPS trackers have more than one meter of error, and
this only worsens when indoors.

56.2.3 Bluetooth
Similar to GPS, Bluetooth (and other related systems using WiFi, ultra-
wideband) based systems use several transmitters to triangulate a receiver
by measuring how long it takes to send packets. Unfortunately, it is not
possible to orient the vehicles, and most of these systems have ∼ 1m error.

56.2.4 CHILI Cellulos
EPFL’s CHILI Lab created a positioning system for their Cellulo robots,
based on an array of dots printed on a paper. The robots use downward
facing cameras to identify the unique patterns in the dots, allowing for
sub-millimeter accuracy. However, we planned to run the demo on the
floor on a 2x2 meter area, which would have used a massive amount of
paper, and we could not find any publicly available resources for setting it
up ourselves.1

56.2.5 OpenCV
We also considered using OpenCV to detect colored shapes on our vehicles.
However, this proved to be challenging as there was often interference from

1It may be worth it look into this depending on your project.

56.2. PROBLEM SOLVING: LOCALISATION 509

the floor, which was somewhat colorful with lots of little shapes. This is
probably mitigable with careful filter tuning, using filters, etc. Additionally,
it would be difficult (although possible) to orient the cars. However, while
we were looking into this option, we also found a library that solved all of
our problems:

56.2.6 AprilTags
AprilTags are such a powerful tool, there is an entire section in this book
dedicated to them. I will not discuss the specifics of how they work here,
but rather how much effort it ended up taking to get it installed. The first
thing to note is that the original

510 CHAPTER 56. THE MAKING INTELLIGENT TRAFFIC PROJECT

Chapter 57

Previous Team Projects

57.1 2022

Autonomous Sailboat
https://zeck69.github.io/autopilot_boat/

Brain/Computer Interface
https://github.com/EPFL-EEG-Team

Swarm of Autonomous Cars
https://github.com/AnirudhhRamesh/Intelligent-Traffic-Backend

Magic Chessboard
https://github.com/Wizard-s-Chess/Wizards-Chess

Mobile Robot Arm / Shopping Assistant
https://github.com/WollfieGitHub/MIT_Robotic_Arm

Motion tracking glove
https://github.com/nfelber/IMU-Motion-Tracking-Glove

Portable Arcade
https://thecl3m.github.io/PortableArcade/

Sand Plotter
https://github.com/Sand-Table/table-block

Smart Glasses
https://vigarov.github.io/SmartGlass/

511

https://zeck69.github.io/autopilot_boat/
https://github.com/EPFL-EEG-Team
https://github.com/AnirudhhRamesh/Intelligent-Traffic-Backend
https://github.com/Wizard-s-Chess/Wizards-Chess
https://github.com/WollfieGitHub/MIT_Robotic_Arm
https://github.com/nfelber/IMU-Motion-Tracking-Glove
https://thecl3m.github.io/PortableArcade/
https://github.com/Sand-Table/table-block
https://vigarov.github.io/SmartGlass/

512 CHAPTER 57. PREVIOUS TEAM PROJECTS

57.2 2023
Autonomous Forklift
https://github.com/loicmisenta/Autonomous_Forklift

Face-controlled 2D Plotter
https://facedoodle-docs.netlify.app/

Mario Kart
https://github.com/MIT-Mario-Kart/MIT-Mario-Kart

Robotic Snake
https://youtu.be/mGbinKsSFXk

Self-balancing Unicycle
https://mit-unicycle.github.io/mit-unicycle/

SLAM Vehicle
https://github.com/kreslotim/Wall-SLAM

StruMaster (self-playing guitar)
https://github.com/pmdlt/Strumaster

57.3 2024 and Later
Projects from Spring 2024 and later can be found in the github organiza-
tion epfl-cs358, see https://github.com/epfl-cs358/.

https://github.com/loicmisenta/Autonomous_Forklift
https://facedoodle-docs.netlify.app/
https://github.com/MIT-Mario-Kart/MIT-Mario-Kart
https://youtu.be/mGbinKsSFXk
https://mit-unicycle.github.io/mit-unicycle/
https://github.com/kreslotim/Wall-SLAM
https://github.com/pmdlt/Strumaster
https://github.com/epfl-cs358/

	I The Course
	Introduction
	The Makers Revolution
	A Course for Software-Savvy Makers
	The Place of the Course in the Curriculum
	Deciding Whether to Take the Course

	Course Organisation
	Course Structure
	Grading
	Contact Hours and Contacting Us
	Materials and Ownership
	Time Plan and Deadlines
	Forming a Team
	The End of the Project and Course
	After the Course

	Good Citizenship
	Stay Informed
	Safe Conduct
	Do not Compromise your Team's Success
	Find Like-minded Teammates
	The Tragedy of the Commons
	The Long-Term Perspective
	Captain Obvious' Guide to Conduct

	Getting Started
	Course Prerequisites
	Software Setup
	Course-specific Tutorials
	Handbook Reading and Watching Videos

	The Individual Project
	Design Philosophy and Learning Goals
	Design or Execution – Which is the Problem?
	The Need to Tinker

	The Component Bag
	The Spring 2024 Project: a 2D Plotter
	Tasks
	Required Items
	How to Proceed
	Initial Mechanical Build
	Deliverables and Grading

	Team Project Proposals
	Finding a Suitable Project Idea
	Exclusion Criteria
	The Project Proposal Document
	How we grade and select proposals

	Team Project Documents
	CAD Design
	Source Code and GitHub Repository
	The Bill of Materials
	Risk Assessment
	The Revised Team Project Proposal
	The Work Breakdown
	Making the Thing
	Creating Instructions

	Weekly Scrum Meetings
	Safety Hazards
	Mandatory Safety Training
	(Power) Tools
	High Voltages
	Actuators
	(Electro)magnets
	Electrostatic Discharges
	High Currents
	Fire/Explosions
	Chemicals
	Recommended Videos

	How to use this handbook

	II Design Considerations
	Beauty
	Goodness
	Intelligence
	Intelligence by Obscurity
	Intelligence by Reactivity
	Intelligence by Emergence
	Bounded Rationality and Resource-Bounded AI

	Complexity
	Scale
	Bigger is not better
	Small is Hard, too

	Design Checklist

	III Basic Electronics
	Electric Circuits
	Charge, Voltage, Current, and Power
	Kirchhoff's Laws
	Resistors and Ohm's Law
	Voltages are Relative

	Making Circuits
	Breadboards
	The Soldering Practice Kit on a Breadboard

	Soldering
	Soldering the Practice Kit

	Making PCBs
	Recommended Videos

	Supplying Power
	Mains Power Supply Units (PSUs)
	Batteries
	Voltage Conversion
	Supplying Multiple Voltages
	Designing your Power Supplying Solution
	Cabling
	Connectors (Plugs)
	Recommended Videos

	Lithium-Polymer (LIPO) Batteries
	LIPOs are Dangerous
	LIPO Ratings
	Recharging a LIPO
	LIPO Protection Circuit Setup
	Rules for using LIPOs
	What to do in Case of an Accident

	Cable Management
	Keeping Order
	Avoiding Broken Cables

	Debugging Electronic Circuits
	Be Organized
	Debugging Checklist
	Measurement using Multimeters
	Oscilloscopes

	IV Microcontrollers and Programming
	Digital Signals
	Logic Levels and Logic Gates
	Logic-level Conversion
	``No Connection'' is Different from Digital Zero
	Pulse Width Modulation (PWM)

	Microcontrollers
	Recommended Videos

	Choosing a Microcontroller
	Microcontroller Families
	Microcontroller Comparison Chart
	ATMEL AVR MCU Boards
	Arduino UNO R3
	Arduino Mega 2560

	Expressif MCU Boards
	NodeMCU ESP8266
	Wemos D1 R32
	ESP32-CAM

	STM32 MCU Boards
	STM32 Blue Pill
	STM32 Nucleo64 F401RE

	Recommended Videos
	Parts in Stock for CS358
	MCUs in Disguise

	Setting up the Arduino IDE
	For the Arduino Uno
	For the ESP8266
	For the ESP32-CAM
	In case you can't get it to work
	Other IDEs

	Microcontroller Programming
	Language Syntax
	Structure of a Program
	Word Length and Numerical Data Types
	Serial Communication and Debugging
	I/O
	Interrupts
	Porting Code to other Microcontrollers
	Getting to the Bare Metal

	Interfacing and Communication
	GPIO Pins
	RX/TX Serial (TTL, UART)
	Universal Serial Bus (USB)
	I2C
	Serial Peripheral Interface (SPI)
	CAN-Bus
	Parts in Stock for CS358

	Wireless Communication
	Bluetooth
	Wifi
	ESP-Now
	Radio
	Parts in Stock for CS358

	V Sensors
	Introduction to Sensors
	Super-simple Sensors
	Simple Sensors
	Challenging Sensors
	Accelerometers
	GPS Sensors
	LIDAR
	Cameras/Vision

	Recommended Videos
	Parts in Stock for CS358
	Sensor Pitfalls

	The HC-SR04 Ultrasonic Distance Sensor
	Recommended Videos

	Making your own Sensors
	Resistor-based Sensors
	Amplifying Small Changes
	Recommended Videos
	Parts in Stock for CS358

	VI Actuators
	Electromagnetism
	Inductance and Back-EMF
	Making Electromagnets
	Solenoid Actuators
	Parts in Stock for CS358

	Electric Motors
	Power, Speed, and Torque
	Acceleration
	The Case of Stepper Motors

	Safety Hazards
	Blunt Trauma
	Current Draw
	Counter-Electromotive Force (Back-EMF)
	Radio Frequency Interference

	Motor Types
	Brushed Motors
	Motor Drivers: H-Bridges
	Recommended Videos

	Brushless Motors
	Motor Characteristics
	Brushless Motor Drivers (ESCs)
	Gimbal Motors
	Recommended Videos

	Stepper Motors
	Recommended Videos

	Inrunners vs. Outrunners
	Parts in Stock for CS358

	Bipolar Steppers: 17HS4401 + A4988
	Setup
	Safety
	Programming
	Stepping by PWM Signal
	Troubleshooting
	Stepper Motor Music
	Recommended Videos

	Unipolar Steppers: 28BYJ-48 + ULN2003
	Programming: The Low-Level Method
	Programming: The AccelStepper / MultiStepper Libraries
	Turning the 28BYJ-48 into a Bipolar Stepper

	Servos
	Brushed Servos
	Operating many servos

	Brushless Servos
	Closed-loop Steppers
	Recommended Reading and Videos
	Parts in Stock for CS358

	Control Loops
	Closed Control Loop
	Building a Smart Closed Control Loop

	PID Tuning
	Additional Notes
	PID Code Example
	Example Application: Phone-Controlled Car

	Field-Oriented Control
	Control Feedback and Customization
	Features
	SimpleFOC
	STM32 B-G431B-ESC1 and a Brushless Motor
	L298N and a Bipolar Stepper

	An ODrive Example
	Parts in Stock for CS358
	Current Needs and Ratings
	Ease of Use
	Choosing a FOC Solution

	Caveats and Debugging
	FOC in Industrial Robots
	Recommended Videos

	VII Mechanical Engineering
	Mounting Motors
	Machine Elements and Patterns
	Coupling
	Creating Mechanical Advantage (Increasing Torque)
	Using Gearboxes
	Using Belt Reduction
	Recommended Videos

	Turning Rotary into Linear Motion
	Ball Bearings and Turntables
	Parts in Stock for CS358

	Inverse Kinematics
	Recommended Videos

	Robot Arms
	Not Arms
	Arms
	Hands
	Recommended Videos

	Legged Robots
	Making it Easy
	Making it Hard
	Recommended Videos

	Using Lego Parts
	Recommended Videos

	VIII CAD and CAM
	CAD Design in Fusion 360
	Getting Started
	Project Architecture: Alone or for a Team
	History feature in Fusion 360
	Sketching
	Parametric Design

	Best Practices
	Mesh vs. Solid-based modeling
	Useful Fusion 360 tools
	Thinking about Assembly

	Joints in Fusion 360

	Laser-Cutting
	Why you should consider it
	Designing Parts for Laser Cutting
	From Fusion 360 to the Laser Cutter
	Assembly

	3D-Printing
	Basics
	Print Failures
	3D Printing Checklist

	Design for 3D Printing : DOs and DONTs
	Printing Time
	Material Use

	Slicing in PrusaSlicer
	Expert Mode
	Painting Tool
	Infill
	Brim and Skirt

	IX More Programming
	Adding Computer Vision
	Overview
	Basics
	Colors
	Blurring

	Libraries
	OpenCV
	April Tags

	Code Examples
	OpenCV
	AprilTags

	GRBL and LinuxCNC
	MCU Operating systems: FreeRTOS and ROS
	Mobile App Control
	React Native App and ESP8266
	Expo CLI
	Creation of the Project
	HTTP Requests
	Handle HTTP Requests

	Other Mobile App Frameworks

	X More Hardware
	Using Gamepad Controllers
	WiFi connection
	Connect a gamepad in the browser
	Retrieve the gamepad data
	Communication with an ESP8266

	Bluetooth connection
	Troubleshooting

	XI Case Studies
	The Prusa i3 MK3S 3D Printer
	Mechanical Frame
	Actuation
	Electronics
	Cable Management
	3D-Printed Parts of the Printer

	The Making Intelligent Traffic Project
	Backup Plans
	Problem Solving: Localisation
	Problem Definition
	GPS
	Bluetooth
	CHILI Cellulos
	OpenCV
	AprilTags

	Previous Team Projects
	2022
	2023
	2024 and Later

