
Lazy Lists

CS-214 Software Construction

Collections and Combinatorial Search

We’ve seen a number of immutable collections that provide powerful operations, in
particular for combinatorial search.
For instance, to find the second prime number between 1000 and 10000:

(1000 to 10000).filter(isPrime)(1)

This is much shorter than the recursive alternative:

def secondPrime(from: Int, to: Int) = nthPrime(from, to, 2)

def nthPrime(from: Int, to: Int, n: Int): Int =

if from >= to then throw Error(”no prime”)

else if isPrime(from) then

if n == 1 then from else nthPrime(from + 1, to, n - 1)

else nthPrime(from + 1, to, n)

Performance Problem

But from a standpoint of performance,

(1000 to 10000).filter(isPrime)(1)

is pretty bad; it constructs all prime numbers between 1000 and 10000 in a list, but only
ever looks at the first two elements of that list.
Reducing the upper bound would speed things up, but risks that we miss the second
prime number all together.

Delayed Evaluation

However, we can make the short-code efficient by using a trick:
Avoid computing the elements of a sequence until they are needed for the
evaluation result (which might be never)

This idea is implemented in a new class, the LazyList.
Lazy lists are similar to lists, but their elements are evaluated only on demand.

Defining Lazy Lists

Lazy lists are defined from a constant LazyList.empty and a constructor LazyList.cons.
For instance,

val xs = LazyList.cons(1, LazyList.cons(2, LazyList.empty))

They can also be defined like the other collections by using the object LazyList as a
factory.

LazyList(1, 2, 3)

The to(LazyList) method on a collection will turn the collection into a lazy list:
(1 to 1000).to(LazyList) > res0: LazyList[Int] = LazyList(<not computed>)

LazyList Ranges

Let’s try to write a function that returns (lo until hi).to(LazyList) directly:

def lazyRange(lo: Int, hi: Int): LazyList[Int] =

if lo >= hi then LazyList.empty

else LazyList.cons(lo, lazyRange(lo + 1, hi))

Compare to the same function that produces a list:

def listRange(lo: Int, hi: Int): List[Int] =

if lo >= hi then Nil

else lo :: listRange(lo + 1, hi)

Comparing the Two Range Functions

The functions have almost identical structure yet they evaluate quite differently.

▶ listRange(start, end) will produce a list with end - start elements and return it.
▶ lazyRange(start, end) returns a single object of type LazyList.
▶ The elements are only computed when they are needed, where “needed” means

that someone calls head or tail on the lazy list.

Methods on Lazy Lists

LazyList supports almost all methods of List.
For instance, to find the second prime number between 1000 and 10000:

LazyList.range(1000, 10000).filter(isPrime)(1)

LazyList Cons Operator

The one major exception is ::.
x :: xs always produces a list, never a lazy list.
There is however an alternative operator #:: which produces a lazy list.

x #:: xs == LazyList.cons(x, xs)

#:: can be used in expressions as well as patterns.

Implementation of Lazy Lists

The implementation of lazy lists is quite subtle.
As a simplification, we consider for now that lazy lists are only lazy in their tail. head

and isEmpty are computed when the lazy list is created.
This is not the actual behavior of lazy lists, but makes the implementation simpler to
understand.
Here’s the trait TailLazyList:

trait TailLazyList[+A] extends Seq[A]:

def isEmpty: Boolean

def head: A

def tail: TailLazyList[A]

...

As for lists, all other methods can be defined in terms of these three.

Implementation of Lazy Lists (2)

Concrete implementations of lazy lists are defined in the TailLazyList companion
object. Here’s a first draft:

object TailLazyList:

def cons[T](hd: T, tl: => TailLazyList[T]) = new TailLazyList[T]:

def isEmpty = false

def head = hd

def tail = tl

override def toString = ”LazyList(” + hd + ”, ?)”

val empty = new TailLazyList[Nothing]:

def isEmpty = true

def head = throw NoSuchElementException(”empty.head”)

def tail = throw NoSuchElementException(”empty.tail”)

override def toString = ”LazyList()”

Difference to List

The only important difference between the implementations of List and (simplified)
LazyList concern tl, the second parameter of TailLazyList.cons.
For lazy lists, this is a by-name parameter.
That’s why the second argument to TailLazyList.cons is not evaluated at the point of
call.
Instead, it will be evaluated each time someone calls tail on a TailLazyList object.

Other LazyList Methods

The other lazy list methods are implemented analogously to their list counterparts.
For instance, here’s filter:

extension [T](xs: TailLazyList[T])

def filter(p: T => Boolean): TailLazyList[T] =

if isEmpty then xs

else if p(xs.head) then cons(xs.head, xs.tail.filter(p))

else xs.tail.filter(p)

Exercise

Consider this modification of lazyRange.

def lazyRange(lo: Int, hi: Int): TailLazyList[Int] =

print(lo+” ”)

if lo >= hi then TailLazyList.empty

else TailLazyList.cons(lo, lazyRange(lo + 1, hi))

When you write lazyRange(1, 10).take(3).toList

what gets printed?

O Nothing

O 1

O 1 2 3

O 1 2 3 4

O 1 2 3 4 5 6 7 8 9

Exercise

Consider this modification of lazyRange.

def lazyRange(lo: Int, hi: Int): TailLazyList[Int] =

print(lo+” ”)

if lo >= hi then TailLazyList.empty

else TailLazyList.cons(lo, lazyRange(lo + 1, hi))

When you write lazyRange(1, 10).take(3).toList

what gets printed?

O Nothing

O 1

X 1 2 3

O 1 2 3 4

O 1 2 3 4 5 6 7 8 9

Lazy Evaluation

CS-214 Software Construction

Lazy Evaluation

The proposed implementation suffers from a serious potential performance problem: If
tail is called several times, the corresponding lazy list will be recomputed each time.
This problem can be avoided by storing the result of the first evaluation of tail and
re-using the stored result instead of recomputing tail.
This optimization is sound, since in a purely functional language an expression
produces the same result each time it is evaluated.
We call this scheme lazy evaluation (as opposed to by-name evaluation in the case
where everything is recomputed, and strict evaluation for normal parameters and val

definitions.)

Lazy Evaluation in Scala

Haskell is a functional programming language that uses lazy evaluation by default.
Scala uses strict evaluation by default, but allows lazy evaluation of value definitions
with the lazy val form:

lazy val x = expr

Exercise:

Consider the following program:

def expr =

val x = { print(”x”); 1 }

lazy val y = { print(”y”); 2 }

def z = { print(”z”); 3 }

z + y + x + z + y + x

expr

If you run this program, what gets printed as a side effect of evaluating expr?

O zyxzyx O xzyz

O xyzz O zyzz

O something else

Exercise:

Consider the following program:

def expr =

val x = { print(”x”); 1 }

lazy val y = { print(”y”); 2 }

def z = { print(”z”); 3 }

z + y + x + z + y + x

expr

If you run this program, what gets printed as a side effect of evaluating expr?

O zyxzyx X xzyz

O xyzz O zyzz

O something else

Lazy Vals and Lazy Lists

Using a lazy value for tail, TailLazyList.cons can be implemented more efficiently:

def cons[T](hd: T, tl: => LazyList[T]) = new TailLazyList[T]:

def head = hd

lazy val tail = tl

...

Seeing it in Action

To convince ourselves that the implementation of lazy lists really does avoid
unnecessary computation, let’s observe the execution trace of the expression:

lazyRange(1000, 10000).filter(isPrime).apply(1)

Seeing it in Action

To convince ourselves that the implementation of lazy lists really does avoid
unnecessary computation, let’s observe the execution trace of the expression:

lazyRange(1000, 10000).filter(isPrime).apply(1)

--> (if 1000 >= 10000 then empty // by expanding lazyRange

else cons(1000, lazyRange(1000 + 1, 10000))

.filter(isPrime).apply(1)

Seeing it in Action

To convince ourselves that the implementation of lazy lists really does avoid
unnecessary computation, let’s observe the execution trace of the expression:

lazyRange(1000, 10000).filter(isPrime).apply(1)

--> (if 1000 >= 10000 then empty // by expanding lazyRange

else cons(1000, lazyRange(1000 + 1, 10000))

.filter(isPrime).apply(1)

--> cons(1000, lazyRange(1000 + 1, 10000)) // by evaluating if

.filter(isPrime).apply(1)

Evaluation Trace (2)

Let’s abbreviate cons(1000, lazyRange(1000 + 1, 10000)) to C1.

C1.filter(isPrime).apply(1)

Evaluation Trace (2)

Let’s abbreviate cons(1000, lazyRange(1000 + 1, 10000)) to C1.

C1.filter(isPrime).apply(1)

--> (if C1.isEmpty then C1 // by expanding filter

else if isPrime(C1.head) then cons(C1.head, C1.tail.filter(isPrime))

else C1.tail.filter(isPrime))

.apply(1)

Evaluation Trace (2)

Let’s abbreviate cons(1000, lazyRange(1000 + 1, 10000)) to C1.

C1.filter(isPrime).apply(1)

--> (if C1.isEmpty then C1 // by expanding filter

else if isPrime(C1.head) then cons(C1.head, C1.tail.filter(isPrime))

else C1.tail.filter(isPrime))

.apply(1)

--> (if isPrime(C1.head) then cons(C1.head, C1.tail.filter(isPrime))

else C1.tail.filter(isPrime)) // by eval. if

.apply(1)

Evaluation Trace (2)

Let’s abbreviate cons(1000, lazyRange(1000 + 1, 10000)) to C1.
C1.filter(isPrime).apply(1)

--> (if C1.isEmpty then C1 // by expanding filter

else if isPrime(C1.head) then cons(C1.head, C1.tail.filter(isPrime))

else C1.tail.filter(isPrime))

.apply(1)

--> (if isPrime(C1.head) then cons(C1.head, C1.tail.filter(isPrime))

else C1.tail.filter(isPrime)) // by eval. if

.apply(1)

--> (if isPrime(1000) then cons(C1.head, C1.tail.filter(isPrime))

else C1.tail.filter(isPrime)) // by eval. head

.apply(1)

Evaluation Trace (3)

-->> (if false then cons(C1.head, C1.tail.filter(isPrime)) // by eval. isPrime

else C1.tail.filter(isPrime))

.apply(1)

Evaluation Trace (3)

-->> (if false then cons(C1.head, C1.tail.filter(isPrime)) // by eval. isPrime

else C1.tail.filter(isPrime))

.apply(1)

--> C1.tail.filter(isPrime).apply(1) // by eval. if

Evaluation Trace (3)

-->> (if false then cons(C1.head, C1.tail.filter(isPrime)) // by eval. isPrime

else C1.tail.filter(isPrime))

.apply(1)

--> C1.tail.filter(isPrime).apply(1) // by eval. if

-->> lazyRange(1001, 10000) // by eval. tail

.filter(isPrime).apply(1)

The evaluation sequence continues like this until:

Evaluation Trace (3)

-->> (if false then cons(C1.head, C1.tail.filter(isPrime)) // by eval. isPrime

else C1.tail.filter(isPrime))

.apply(1)

--> C1.tail.filter(isPrime).apply(1) // by eval. if

-->> lazyRange(1001, 10000) // by eval. tail

.filter(isPrime).apply(1)

The evaluation sequence continues like this until:

-->> lazyRange(1009, 10000)

.filter(isPrime).apply(1)

--> cons(1009, lazyRange(1009 + 1, 10000)) // by eval. lazyRange

.filter(isPrime).apply(1)

Evaluation Trace (4)

Let’s abbreviate cons(1009, lazyRange(1009 + 1, 10000)) to C2.

C2.filter(isPrime).apply(1)

Evaluation Trace (4)

Let’s abbreviate cons(1009, lazyRange(1009 + 1, 10000)) to C2.

C2.filter(isPrime).apply(1)

--> cons(1009, C2.tail.filter(isPrime)).apply(1)

Evaluation Trace (4)

Let’s abbreviate cons(1009, lazyRange(1009 + 1, 10000)) to C2.

C2.filter(isPrime).apply(1)

--> cons(1009, C2.tail.filter(isPrime)).apply(1)

--> if 1 == 0 then cons(1009, C2.tail.filter(isPrime)).head // by eval. apply

else cons(1009, C2.tail.filter(isPrime)).tail.apply(0)

Assuming apply is defined like this in LazyList[T]:

def apply(n: Int): T =

if n == 0 then head

else tail.apply(n-1)

Evaluation Trace (4)

Let’s abbreviate cons(1009, lazyRange(1009 + 1, 10000)) to C2.

C2.filter(isPrime).apply(1)

-->> cons(1009, C2.tail.filter(isPrime)).apply(1) // by eval. filter

--> if 1 == 0 then cons(1009, C2.tail.filter(isPrime)).head // by eval. apply

else cons(1009, C2.tail.filter(isPrime)).tail.apply(0)

--> cons(1009, C2.tail.filter(isPrime)).tail.apply(0) // by eval. if

Evaluation Trace (4)

Let’s abbreviate cons(1009, lazyRange(1009 + 1, 10000)) to C2.

C2.filter(isPrime).apply(1)

-->> cons(1009, C2.tail.filter(isPrime)).apply(1) // by eval. filter

--> if 1 == 0 then cons(1009, C2.tail.filter(isPrime)).head // by eval. apply

else cons(1009, C2.tail.filter(isPrime)).tail.apply(0)

--> cons(1009, C2.tail.filter(isPrime)).tail.apply(0) // by eval. if

--> C2.tail.filter(isPrime).apply(0) // by eval. tail

Evaluation Trace (4)

Let’s abbreviate cons(1009, lazyRange(1009 + 1, 10000)) to C2.

C2.filter(isPrime).apply(1)

-->> cons(1009, C2.tail.filter(isPrime)).apply(1) // by eval. filter

--> if 1 == 0 then cons(1009, C2.tail.filter(isPrime)).head // by eval. apply

else cons(1009, C2.tail.filter(isPrime)).tail.apply(0)

--> cons(1009, C2.tail.filter(isPrime)).tail.apply(0) // by eval. if

--> C2.tail.filter(isPrime).apply(0) // by eval. tail

--> lazyRange(1010, 10000).filter(isPrime).apply(0) // by eval. tail

Evaluation Trace (5)

The process continues until

...

--> lazyRange(1013, 10000).filter(isPrime).apply(0)

Evaluation Trace (5)

The process continues until

...

--> lazyRange(1013, 10000).filter(isPrime).apply(0)

--> cons(1013, lazyRange(1013 + 1, 10000)) // by eval. lazyRange

.filter(isPrime).apply(0)

Let C3 be a shorthand for cons(1013, lazyRange(1013 + 1, 10000).

== C3.filter(isPrime).apply(0)

Evaluation Trace (5)

The process continues until

...

--> lazyRange(1013, 10000).filter(isPrime).apply(0)

--> cons(1013, lazyRange(1013 + 1, 10000)) // by eval. lazyRange

.filter(isPrime).apply(0)

Let C3 be a shorthand for cons(1013, lazyRange(1013 + 1, 10000).

== C3.filter(isPrime).apply(0)

-->> cons(1013, C3.tail.filter(isPrime)).apply(0) // by eval. filter

Evaluation Trace (5)

The process continues until

...

--> lazyRange(1013, 10000).filter(isPrime).apply(0)

--> cons(1013, lazyRange(1013 + 1, 10000)) // by eval. lazyRange

.filter(isPrime).apply(0)

Let C3 be a shorthand for cons(1013, lazyRange(1013 + 1, 10000).

== C3.filter(isPrime).apply(0)

-->> cons(1013, C3.tail.filter(isPrime)).apply(0) // by eval. filter

--> 1013 // by eval. apply

Only the part of the lazy list necessary to compute the result has been constructed.

RealWorld Lazy List

The simplified implementation shown for LazyList has a lazy tail, but not a lazy head,
nor a lazy isEmpty.
The real implementation is lazy for all three operations.
To do this, it maintain a lazy state variable, like this:

class LazyList[+T](init: => State[T]):

lazy val state: State[T] = init

enum State[T]:

case Empty

case Cons(hd: T, tl: LazyList[T])

Computing with Infinite Sequences

CS-214 Software Construction

Infinite Lists

You saw that the elements of a lazy list are computed only when they are needed to
produce a result.
This opens up the possibility to define infinite lists!
For instance, here is the (lazy) list of all integers starting from a given number:

def from(n: Int): LazyList[Int] = n #:: from(n+1)

The list of all natural numbers:

Infinite Lists

You saw that the elements of a lazy list are computed only when they are needed to
produce a result.
This opens up the possibility to define infinite lists!
For instance, here is the (lazy) list of all integers starting from a given number:

def from(n: Int): LazyList[Int] = n #:: from(n+1)

The list of all natural numbers:

val nats = from(0)

The list of all multiples of 4:

Infinite Lists

You saw that the elements of a lazy list are computed only when they are needed to
produce a result.
This opens up the possibility to define infinite lists!
For instance, here is the (lazy) list of all integers starting from a given number:

def from(n: Int): LazyList[Int] = n #:: from(n+1)

The list of all natural numbers:

val nats = from(0)

The list of all multiples of 4:

nats.map(_ * 4)

The Sieve of Eratosthenes

The Sieve of Eratosthenes is an ancient technique to calculate prime numbers.
The idea is as follows:

▶ Start with all integers from 2, the first prime number.
▶ Eliminate all multiples of 2.
▶ The first element of the resulting list is 3, a prime number.
▶ Eliminate all multiples of 3.
▶ Iterate forever. At each step, the first number in the list is a prime number and

we eliminate all its multiples.

The Sieve of Eratosthenes in Code

Here’s a function that implements this principle:

def sieve(s: LazyList[Int]): LazyList[Int] =

s.head #:: sieve(s.tail.filter(_ % s.head != 0))

val primes = sieve(from(2))

To see the list of the first N prime numbers, you can write

primes.take(N).toList

Back to Square Roots

Our previous algorithm for square roots always used a isGoodEnough test to tell when to
terminate the iteration.
With lazy lists we can now express the concept of a converging sequence without
having to worry about when to terminate it:

def sqrtSeq(x: Double): LazyList[Double] =

def improve(guess: Double) = (guess + x / guess) / 2

lazy val guesses: LazyList[Double] = 1 #:: guesses.map(improve)

guesses

Termination

We can add isGoodEnough later.

def isGoodEnough(guess: Double, x: Double) =

((guess * guess - x) / x).abs < 0.0001

sqrtSeq(2).filter(isGoodEnough(_, 2))

Exercise:

Consider two ways to express the infinite list of multiples of a given number N:

val xs = from(1).map(_ * N)

val ys = from(1).filter(_ % N == 0)

Which of the two lazy lists generates its results faster?

O from(1).map(_ * N)

O from(1).filter(_ % N == 0)

O there’s no difference

Exercise:

Consider two ways to express the infinite list of multiples of a given number N:

val xs = from(1).map(_ * N)

val ys = from(1).filter(_ % N == 0)

Which of the two lazy lists generates its results faster?

X from(1).map(_ * N)

O from(1).filter(_ % N == 0)

O there’s no difference

Case Study

CS-214 Software Construction

The Water Pouring Problem

▶ You are given some glasses of different sizes.
▶ Your task is to produce a glass with a given amount of water in it.
▶ You don’t have a measure or balance.
▶ All you can do is:

▶ fill a glass (completely)
▶ empty a glass
▶ pour from one glass to another until the first glass is empty or the second glass is full.

Example task:
You have two glasses. One holds 7 units of water, the other 4. Produce a glass filled
with 6 units of water.

States and Moves

Representations:
Glass: Int (glasses are numbered 0, 1, 2)
Levels State: Vector[Int] (one entry per glass)

I.e. Vector(2, 3) would be a levels state where we have two glasses at index 0 and 1
that have 2 and 3 units of water in it.
Moves:

Empty(glass)

Fill(glass)

Pour(from, to)

Strategy

Strategy

1. Define a set of all possible moves,
and how they transform a state

2. Enumerate all possible paths of moves from
some set of initial states.
▶ Each path consists of a sequence of moves

and an end state
▶ Don’t consider paths that lead to a state

that we have seen before
▶ Shorter paths come before longer ones in

the enumeration. We compute a ListList[Set[Path]]

‘ where the n’the entry contains all paths of length n
▶ The length of this list is unbounded.

3. To find a solution, pick the shortest path
with an end state that contains a glass with
the required filling level.

Strategy

1. Define a set of all possible moves,
and how they transform a state

2. Enumerate all possible paths of moves from
some set of initial states.
▶ Each path consists of a sequence of moves

and an end state
▶ Don’t consider paths that lead to a state

that we have seen before
▶ Shorter paths come before longer ones in

the enumeration. We compute a ListList[Set[Path]]

‘ where the n’the entry contains all paths of length n
▶ The length of this list is unbounded.

3. To find a solution, pick the shortest path
with an end state that contains a glass with
the required filling level.

Strategy

1. Define a set of all possible moves,
and how they transform a state

2. Enumerate all possible paths of moves from
some set of initial states.
▶ Each path consists of a sequence of moves

and an end state
▶ Don’t consider paths that lead to a state

that we have seen before
▶ Shorter paths come before longer ones in

the enumeration. We compute a ListList[Set[Path]]

‘ where the n’the entry contains all paths of length n
▶ The length of this list is unbounded.

3. To find a solution, pick the shortest path
with an end state that contains a glass with
the required filling level.

First Step

Define a the type of possible moves, and how they transform a state:

type Glass = Int

type Levels = Vector[Int]

class Pouring(capacity: Levels):

enum Move:

case Empty(glass: Glass)

case Fill(glass: Glass)

case Pour(from: Glass, to: Glass)

def apply(levels: Levels): Levels = ...

First Step

Define a set of all possible moves, and how they transform a state:

def apply(levels: Levels): Levels = this match

case Empty(glass) =>

First Step

Define a set of all possible moves, and how they transform a state:

def apply(levels: Levels): Levels = this match

case Empty(glass) =>

levels.updated(glass, 0)

First Step

Define a set of all possible moves, and how they transform a state:

def apply(levels: Levels): Levels = this match

case Empty(glass) =>

levels.updated(glass, 0)

case Fill(glass) =>

First Step

Define a set of all possible moves, and how they transform a state:

def apply(levels: Levels): Levels = this match

case Empty(glass) =>

levels.updated(glass, 0)

case Fill(glass) =>

levels.updated(glass, capacity(glass))

First Step

Define a set of all possible moves, and how they transform a state:

def apply(levels: Levels): Levels = this match

case Empty(glass) =>

levels.updated(glass, 0)

case Fill(glass) =>

levels.updated(glass, capacity(glass))

case Pour(from, to) =>

First Step

Define a set of all possible moves, and how they transform a state:

def apply(levels: Levels): Levels = this match

case Empty(glass) =>

levels.updated(glass, 0)

case Fill(glass) =>

levels.updated(glass, capacity(glass))

case Pour(from, to) =>

val amount = levels(from) min (capacity(to) - levels(to))

First Step

Define a set of all possible moves, and how they transform a state:

def apply(levels: Levels): Levels = this match

case Empty(glass) =>

levels.updated(glass, 0)

case Fill(glass) =>

levels.updated(glass, capacity(glass))

case Pour(from, to) =>

val amount = levels(from) min (capacity(to) - levels(to))

levels.updated(from, levels(from) - amount)

.updated(to, levels(to) + amount)

end Move

Second Step:

Define the set of all moves (as a list):

val glasses = 0 until capacity.length

val moves =

Second Step:

Define the set of all moves (as a list):

val glasses = 0 until capacity.length

val moves =

(for g <- glasses yield Move.Empty(g))

Second Step:

Define the set of all moves (as a list):

val glasses = 0 until capacity.length

val moves =

(for g <- glasses yield Move.Empty(g))

++ (for g <- glasses yield Move.Fill(g))

Second Step:

Define the set of all moves (as a list):

val glasses = 0 until capacity.length

val moves =

(for g <- glasses yield Move.Empty(g))

++ (for g <- glasses yield Move.Fill(g))

++ (for g1 <- glasses; g2 <- glasses if g1 != g2 yield Move.Pour(g1, g2))

Second Step:

Define the set of all moves (as a list):

val glasses = 0 until capacity.length

val moves =

(for g <- glasses yield Move.Empty(g))

++ (for g <- glasses yield Move.Fill(g))

++ (for g1 <- glasses; g2 <- glasses if g1 != g2 yield Move.Pour(g1, g2))

Define a class for paths of moves:

class Path(history: List[Move], val endContent: Levels):

def extend(move: Move) =

Path(move :: history, move.apply(endContent))

override def toString =

s”${history.reverse.mkString(” ”)} --> $endContent”

Third Step:

Define how to extend a set of initial state with all possible paths that don’t repeat
already encountered states.

def from(paths: Set[Path], explored: Set[Levels]): LazyList[Set[Path]] =

Third Step:

Define how to extend a set of initial state with all possible paths that don’t repeat
already encountered states.

def from(paths: Set[Path], explored: Set[Levels]): LazyList[Set[Path]] =

if paths.isEmpty then LazyList.empty

else

Third Step:

Define how to extend a set of initial state with all possible paths that don’t repeat
already encountered states.

def from(paths: Set[Path], explored: Set[Levels]): LazyList[Set[Path]] =

if paths.isEmpty then LazyList.empty

else

val extensions =

for

path <- paths

move <- moves

next = path.extend(move)

if !explored.contains(next.endContent)

yield next

Third Step:

Define how to extend a set of initial state with all possible paths that don’t repeat
already encountered states.

def from(paths: Set[Path], explored: Set[Levels]): LazyList[Set[Path]] =

if paths.isEmpty then LazyList.empty

else

val extensions =

for

path <- paths

move <- moves

next = path.extend(move)

if !explored.contains(next.endContent)

yield next

paths #:: from(extensions, explored ++ extensions.map(_.endContent))

Fourth Step:

Define the set of solutions.

def solutions(target: Int): LazyList[Path] =

Fourth Step:

Define the set of solutions.

def solutions(target: Int): LazyList[Path] =

val initialContent: Levels = capacity.map(_ => 0)

val initialPath = Path(Nil, initialContent)

Fourth Step:

Define the set of solutions.

def solutions(target: Int): LazyList[Path] =

val initialContent: Levels = capacity.map(_ => 0)

val initialPath = Path(Nil, initialContent)

for

paths <- from(Set(initialPath), Set(initialContent))

path <- paths

if path.endContent.contains(target)

yield path

end Pouring

Fourth Step:

Define the set of solutions and add a main program.
def solutions(target: Int): LazyList[Path] =

val initialContent: Levels = capacity.map(_ => 0)

val initialPath = Path(Nil, initialContent)

for

paths <- from(Set(initialPath), Set(initialContent))

path <- paths

if path.endContent.contains(target)

yield path

end Pouring

@main def Test(target: Int, capacities: Int*) =

val problem = Pouring(capacities.toVector)

println(s”Moves: ${problem.moves}”)

println(s”Solution: ${problem.solutions(target).headOption}”)

Tricks To Remember

1. Turn actions into data.

▶ type Move representing moves
▶ type Path representing sequences of moves

2. Define the possibly infinite set of possible action sequences as a lazy data
structure (in our case a LazyList).

3. This makes it possible to traverse and search concisely and legibly.

Variants

In a program of the complexity of the pouring program, there are many choices to be
made.
Choice of representations.

▶ Specific classes for moves and paths, or some encoding?
▶ Object-oriented methods, or naked data structures with functions?

The present elaboration is just one solution, and not necessarily the shortest one.

Guiding Principles for Good Design

▶ Name everything you can.
▶ Put operations into natural scopes.
▶ Keep degrees of freedom for future refinements.

Lazy List Traversals

CS-214 Software Construction

Folding Lists

Note: In a strict language like Scala, lazyness and by-name are only local.
For instance, consider the functions foldRight and exists:

extension [A](xs: List[A])

def foldRight1[B](z: B)(f: (A, B) => B): B = xs match

case Nil => z

case x :: xs1 =>

f(x, xs1.foldRight1(z)(f))

def exists1(p: A => Boolean): Boolean =

xs.foldRight1(false): ((x, acc) => p(x) || acc)

Folding Lists

When asking

List(1, 2, 3, 4).exists1(_ % 2 == 0)

there would be no need to traverse the whole list – we can stop at the second element
to return true.

Folding Lists

But when we instrument foldRight1 like this:

extension [A](xs: List[A])

def foldRight1[B](z: B)(f: (A, B) => B): B = xs match

case Nil => z

case x :: xs1 =>

println(s”testing $x”)

f(x, xs1.foldRight1(z)(f))

We get the following output to our question:

testing: 1

testing: 2

testing: 3

testing: 4

true

The Problem

The problem lies in the signature of foldRight1:

extension [A](xs: List[A])

def foldRight1[B](z: B)(f: (A, B) => B): B = xs match

Even though || is lazy in its right operand, the function passed to foldRight1 isn’t

The Solution

We can make foldLeft1 take a function parameter that is itself lazy (by-name) in its
right operand:

extension [A](xs: List[A])

def foldRight1[B](z: B)(f: (A, => B) => B): B = xs match

Then the list is traversed only as much as needed, and we get:

testing: 1

testing: 2

true

Question

Can we do a similar trick with foldLeft?

What other possibilities could we explore to get lazy fold-left like operations?

Question

Can we do a similar trick with foldLeft?

What other possibilities could we explore to get lazy fold-left like operations?

