=PrL

Week 6: Wednesday.par

CS-214 Software Construction

Outline

P Associativity vs Commutativity

» Work and Depth Analysis of Parallel Programs

=PrL

Associativity vs Commutativity - Continued

CS-214 Software Construction

Example: function composition is not commutative

val f = (x:Int) => x*x
val g = (x:Int) => x + 1
val fg = f andThen g
val gf = g andThen f
val L = fg(5) // 26

val R = gf(5) // 36

Example: Ben Bitdiddle wants to optimize the sum of squares

a.par.map(x => x*x).reduce(_ + _)

To avoid using both map and reduce, he introduces
def f(x:T, y:T) = x*x + y*y

and computes this sum as:

def sumsq(a: Array[T]1): T = a.par.reduce(f)

Is his result correct?

sumsq(Array (1)) /71

sumsq(Array(1,2)) // 5

sumsq(Array(1,2,3)) // 170, but could also be e.g. 34

Many operations are commutative but not associative

This function is commutative:

fix,y) = x* 4y
Indeed fix,y) = x* +y* = y* + x> = fly, x) But
fixy),z) = (C+y)2+2
fixfy,2) = X+ (V¥ +2)

These are polynomials of different growth rates with respect to different variables and
are easily seen to be different for many x, y, z.

Proving commutativity alone does not prove associativity and does not guarantee that
the result of reduce is always the same on a parallel collection.

Floating point addition is commutative but not associative

scala> val e = 1e-200
e: Double = 1.0E-200
scala> val x = 1e200
x: Double = 1.0E200
scala> val mx = -x
mx: Double = -1.0E200

scala> (x + mx) + e

res2: Double = 1.0E-200

scala> x + (mx + e)

res3: Double = 0.0

scala> (x + mx) + e == x + (mx + e)
res4: Boolean = false

Floating point multiplication is also commutative but not associative

scala> val e = 1e-200
e: Double = 1.0E-200

scala> val x = 1e200
x: Double = 1.0E200

scala> (e*x)*x
res@: Double = 1.0E200

scala> ex(x*x)
resl: Double = Infinity

scala> (e*x)*x == e*(Xx*X)
res2: Boolean = false

Making an operation commutative is easy

Suppose we have a binary operation g and a strict total ordering less
(e.g. lexicographical ordering of bit representations).

Then this operation is commutative:
def f(x: A, y: A) = if less(y,x) then g(y,x) else g(x,y)
Indeed f(x,y)==f(y,x) because:

» if x==y then both sides equal g(x,x)
> if less(y,x) then left sides is g(y,x) and it is not less(x,y) so right side is also

gy, x)
P if less(x,y) then it is not less(y,x) so left sides is g(x,y) and right side is also

g(x,y)

We know of no such efficient general trick for associativity

Associative operations on tuples

Theorem.
Suppose that f1: (A1,A1) => A1 and f2: (A2,A2) => A2 are associative

Then f: ((A1,A2), (A1,A2)) => (A1,A2) defined by

FOx1,x2), (y1,y2)) = (F1(x1,y1), f2(x2,y2))
is also associative.

Proof:

fF((x1,x2), (y1,y2)), (z1,z2)) ==

fO(f1(x1,y1), f2(x2,y2)), (z1,z2)) ==

(F1(F1(x1,y1), z1), f2(f2(x2,y2), z2)) == (because f1, f2 are associative)
(f1(x1, fi1(y1,z1)), f2(x2, f2(y2,z2))) ==

f((x1 x2), (f1(y1,z1), f2(y2,z2))) ==

f((x1 x2), f((yl,y2), (z1, z2)))

Example: rational multiplication

Suppose we use 32-bit numbers to represent numerator and denominator of a rational
number.
We can define multiplication working on pairs of numerator and denominator

times((x1,y1), (x2, y2)) = (x1*x2, yl*xy2)

Because multiplication modulo 232 is associative, so is times

Example: average

Given a collection a of integers, compute the average of its values

def average(a: List[Int]) =
val sum = a.par.reduce(_ + _)
val length = a.par.map(x => 1).reduce(_ + _)
sum/length

This uses two reductions: one for sum, one for length.

Is there a solution using a single map and a single reduce?

P also, avoid using fractions in intermediate steps

Average using only one reduction

Use pairs that compute sum and length at once
f((suml,lenl), (sum2, len2)) = (suml + suml, lenl + len2)

Function f is associative by the theorem, because + is associative.

A solution is then:

def average2(a: List[Int]) =
def f(x: (Int,Int), y: (Int,Int)) = (x._1 +y._1, x._2 +y._2)
val (sum,length) = a.map(x => (x,1)).reduce(f)
sum/length

Exercise: express average2 using only one call to aggregate method. Prove that the
arguments to aggregate satisfy the necessary algebraic properties (see the exercise
session for properties of aggregate).

Another design of collections library may need different laws

Consider the following implementation of sort-reduce:

extension[E] (arr: Array[E])
def sreduce(less: (E,E) => Boolean)(op: (E,E) => E) =
val shuffled = arr.sortWith(less) // may use another way to reorder
shuffled.par.reduce(op)

What laws does op need to satisfy?
val arr1 = Array(10,3,100).sreduce(_ <= _)(_ + _) // 113

In general, is associativity enough to get same result as reduce ?

Take a collection of integers with a lexicographic order

def lexLess(1l1: List[Int], 12: List[Int]): Boolean = (11, 12) match
case (Nil, _) => true
case (_, Nil) => false
case (h1::t1, h2::t2) =>
if h1 < h2 then true
else if h1 > h2 then false
else lexLess(t1, t2)

val arrOfLists = Array(List(1,2), List(30,20,10), List(7))
val arr2 = arrOfLists.sreduce(lexLess)(_ ++ _)

// === arrOfLists.sortWith(lexLess).reduce(_ ++ _)
// === Array(List(1,2), List(7), List(30,20,10)).reduce(_ ++ _)
// === List(1, 2, 7, 30, 20, 10)

Different from: arrOfList.reduce == Array(1, 2, 30, 20, 10, 7)

Operations that reorder elements arbitrarily vs Scala parallel sequences

Consider reduce that may change the order of elements, e.g. sreduce

val shuffled = arr.sortWith(less) // may use another way to reorder
shuffled.par.reduce(op)

including changing the order in response to when tasks complete.

Such operations require both:

P associativity
> commutativity

reduce in Scala’s parallel sequences (ParArray, ParVector) do not shuffle arbitrarily;
only vary the way they split sequences during reduction — only need associativity.

> we can use them to .par.reduce with operations such as matrix multiplication

=PrL

How Fast are (Parallel) Programs?

CS-214 Software Construction

How long does our computation take?

Performance: a key motivation for parallelism
How to estimate it?

» empirical measurement:

» can use System.currentTimeMillis, repeat and find average
» impact of JIT, GC, class loading, thread scheduling, caches, frequency scaling
» for caches, see https://gist.github.com/jboner/2841832

P> asymptotic analysis
Asymptotic analysis is important to understand how algorithms scale when:

P inputs get larger
> we have more hardware parallelism available

Asymptotic analysis of sequential running time

You may have previously learned how to concisely characterize behavior of functions
and programs using the number of operations they perform as a function of arguments.

> inserting into an integer into a sorted linear list takes time O(n), for list storing n
integers

> inserting into an integer into a balanced binary tree of n integers takes time
O(log n), for tree storing n integers

More information: Kenneth H. Rosen, Discrete Mathematics And Its Applications, 8th
ed., 2019

» 3.2 Growth of Functions
> 3.3 Complexity of Algorithms

and you will expand on this in CS-250 (Algorithms).

Let us review worst-case complexity on the sum-segment example

Asymptotic analysis of sequential running time

Find time bound on sequential sumSegment as a function of s and t

def sumSegment(a: Array[Int], p: Double, s: Int, t: Int): Int =
var i=s; var sum: Int = 0
while i < t do
sum= sum + power(a(i), p)
i= i +1

sum

The answer is: O(t — s), bounded by a function of the form: ¢;(t — s) 4 ¢z for some
constants ¢j, ¢

> t— s loop iterations
» a constant amount of work in each iteration

Big O notation

Definition: We say that a function p(n) is O(g(n)) if there is a constant M and some
strating point ng such that

p(n) < M- g(n)
for all n> ng.

For example, 100n is O(n?) because 100n < n? for n > 10.
100n is also O(n) because 100n < 100 - n (so, M = 100) for all n > 0.

> we often state the best O(f(n)) we know, but that is not part of the definition

Functions are ordered hierarchically from slower growing ones to faster growing ones:

log(n), n, nlog(n), n* n®, 2"

Work and depth

We would like to speak about the asymptotic complexity of parallel code

» but this depends on available parallel resources (e.g. number of CPU cores)
P> we introduce two measures for a program

Work W(e): number of steps e would take if there was no parallelism

P this is simply the sequential execution time
P> treat all parallel(el,e2) as (el,e2) because all work still needs to be done

Depth D(e): number of steps if we had unbounded parallelism (infinitely many cores)

> we take maximum of running times for arguments of parallel
> if we split work into two, we may be done twice as soon

Key insight: if the depth is large, no amount of parallel processors will make code fast

Rules for depth and work

Key rules are:

> W(parallel(e;, e2)) = W(e1) + W(e2) + c2
» D(parallel(er, e2)) = max(D(e;1), D(e)) + ¢

If we divide work in equal parts, for depth it counts only once!

For parts of code where we do not use parallel explicitly, we must add up costs. For
function call or operation f(ey, ..., e,):

> W(flei,....,en)) = W(er) + ... + W(en) + W(H)(vi, ..., va)
> D(fle1,...,en)) = D(e1) + ... + D(en) + D(f)(vi, ..., Vn)

Here v; denotes values of e;. If fis primitive operation on integers, then W(f) and D(f)
are constant functions, regardless of v;.

Note: we assume (reasonably) that constants are such that D < W

Analysis of work and depth for segmentPar

We used the following recursive function to illustrate divide and conquer parallelism.

In this version, | replace until parameter with len (just for the analysis)

def segmentPar(xs: Array[T], p: Double, from: Int, len: Int): Int =
if len < threshold then sumSegment(xs, p, from, from + len)
else val (1, r) = parallel(segmentPar(xs, p, from, len/2),
segmentPar(xs, p, from + len/2, len - len/2))
l+r

Computation Tree: work (W) is its size, depth (D) is its height

def segmentPar(xs: Array[T], p: Double, from: Int, len: Int): Int =
if len < threshold then sumSegment(xs, p, from, from + len)
else val (1, r) = parallel(segmentPar(xs, p, from, len/2),
segmentPar(xs, p, from + len/2, len - len/2))
1+r

Analyzing work of segmentPar

Work only depends on len, denote it by L (assume L is a power of two):

- O(L), if L < threshold
ML) = { 2W(L/2) + ¢ otherwise

For L = 2N:

W2N) = c+ 2W(@2N-1) = c+ 2(c + 2W(2V2)) =
= (1421 422 4 .. 4 2N=k=1) 4 oN=kQ(2k) =
(work of recursive calls) + (work in leaves)
= 2Nk — 1) + 0(2V)
= 02Ny = O(L)

We split the work, but both parts need to be done, so work remains linear.

Analyzing depth of segmentPar

def segmentPar(xs: Array[T], p: Double, from: Int, len: Int): Int =
if len < threshold then sumSegment(xs, p, from, from + len)
else val (1, r) = parallel(segmentPar(xs, p, from, len/2),
segmentPar(xs, p, from + len/2, len - len/2))

O(L), if L < threshold
D(L) = { max(D(L/2), D(L/2)) + ¢ otherwise

O(L), if L < threshold
D(L/2) 4+ ¢ otherwise

D2NYy = c+ D@2V = c+ c+ D(2VN?) = ... = (N — k— 1) + O(threshold) = O(N)

Bounding depth of segmentPar

Since L = 2V, we have N = log(L)
The depth is only logarithmic, O(log(L))

Note: if the input is given to one processor, we cannot transform, e.g., a linear-time
algorithm into a constant time one using the parallel construct.

» you need to spend time dividing the work and combining the results
P divide and conquer algorithms are a way to do it

Another Example

Suppose the input to sumAll is an N times N matrix, represented as a list of lists:

def sumAll(m: List[List[Int]]): Int =

m match
case Nil => @
case X :: XS =>
val (k, ks) = parallel(x.sum, sumAll(xs))
k + ks

What is the work and depth of sumAll as a function of N ?

Assume x.sum is sequential (does not use parallel)

