=PrL

Week 4: Proofs, Generics, List Operators

CS-214 Software Construction

Outline

Proving Program Properties: Models, Induction, IntList

Proving properties on trees: IntTree

Automated proof checking

Parametric polymorphism, example of list and getting an element
Higher-order list functions defined on toy list

Scala lists: Construction, Patterns, Operations, isort

Tuples and generic methods, merge sort

Nooak~wh =

=PrL

Proving Program Properties

CS-214 Software Construction

Proof by Induction over Integers

Say we wish to prove that some property, P(n), holds for all integers starting from 0:
P(0), P(1), P(2), ...

We need to show all of the above instances.

‘We start by proving P(0). ‘ This is base case.

Often property becomes harder the larger n is. Our strategy is, therefore, to show that
the property extends from smaller to larger n:

‘Given any n > 0, if P(n) then also P(n+ 1). ‘ This is inductive case.

Say we have shown base case and inductive case. Then the property holds for all n. As
an example, take n = 3. We have shown P(0). By inductive case for n = 0, from P(0)
it follows P(1), then similarly from P(1) follows P(2), and from P(2) follows P(3).

Proofs over Integers Starting from a Given Bound

Let a be any integer. To prove Vn > a. P(n), it suffices to show two things:

> Base case: P(a)
» Inductive case: Vn> a. P(n) = P(n+1)

It can be easier to prove P(n+ 1) if we already know P(n) holds.

P(n), for n > 1:

n(n+1)

1+...+n=
+...4n 5

» Base case, P(1) becomes 1 =1-(1+1)/2
» Inductive case: suppose 1+ ...+ n=n(n+1)/2, then
IH n

+(n+1) = (n+1)(§+1) =

(n+1)(n+2)

n(n+1)
2 2

1+...+n+(n+1) =

Inductive Proof about a Function

def sum(n: Int): Int =
if n == 0 then 1
else n + sum(n - 1)

Prove: ‘for every n >= 0, it holds that: sum(n) = n*(n+1)/2 + 1‘

\Base case: n = 0\ Use substitution model to expand sum on the left side:

sum(@) = if 0 == @ then 1
else @ + sum(@ - 1)
=1

Use evaluation of arithmetic operations for the right side:

0%(0+1)/2 + 1 =0%x1/2 + 1 =0/2 +1=0+1=1

Induction Step of sum(n) = nx(n+1)/2 + 1

‘Induction step: n+1 ‘ (where n >= 0):

Assume Inductive Hypothesis (IH): sum(n) = n*(n+1)/2 + 1

sum(n + 1)

if n+1 ==0 then 1
elsen+ 1+ sum((n +1) -1) //

if false then 1 !/
elsen+ 1+ sum(n +1 - 1)

n+1+sum(n +1-1) //
n+ 1+ sum(n) //
n+1+nx(n+t1)/2 + 1 //
(2*n+2 + n*n+n))/2 + 1 //

(n+1)*((n+1)+1)/2 + 1 //

def sum(n: Int): Int =
if n == 0 then 1
else n + sum(n - 1)
symbolic evaluation
n+1>1

if false

cancel ‘+ 1 - 1°¢
Inductive Hypothesis
arithmetic
arithmetic

Functions in Programs vs Math

Calling sum for large values of n may lead to outcomes for which proof does not apply:

» StackOverflow error. Stack is a data structure used to keep track of values of
different recursive invocations of a function, but (especially in Java/Scala, has
limited size), so deeply nested recursive calls result in error during execution.

> integer overflow: Int.MaxValue == 2147483647 but
Int.MaxValue + 1 == -2147483648

Possibly approaches for correct reasoning:

P> use a precise model of machine integers: map results of arithmetic operations to
[—231)231 — 1] modulo 232
P check that values are not too large, then the result is the same as in math

» use unbounded integers for computation (as in Python or Haskell)

Unbounded Integers: Biglnt

def sum(n: BigInt): BigInt = // using BigInt instead of Int as type
if n == 0 then 1
else n + sum(n - 1)

scala> val x: Biglnt = 2147483647
val x: BigInt = 2147483647
scala> x + 1

val res@: BigInt = 2147483648
scala> x*x
val resl: BigInt = 4611686014132420609

scala> BigInt(”7” * 60) + 1
val res2: Biglnt = 7778

Exercise with sumAcc

Test the following function with large values of n > 0:

def sumAcc(s: BigInt, n: BigInt): BigInt = {
if n == 0 then s
else sumAcc(s + n, n - 1)

» Are you obtaining StackOverflow?
> Are you observing integer overflows?
> Propose a specification for the function and prove it by induction.

> Replace Biglnt with Int, then find n such that sumAcc(1, n) returns a negative Int.

From Numbers to Lists

Lists are a generalization of non-negative integers. Take a list of Int-s.

sealed trait IntlList
case object Nil extends IntlList
case class Cons(head: Int, tail: IntList) extends IntlList

For each non-negative integer n, there are (often many) lists of length n.

extension (xs: IntlList)
def length: Biglnt =
xs match
case Nil => 0
case Cons(h, t) => 1 + t.length

Concatenation (++) of Lists

extension (xs: IntList)
def ++(ys: IntList): IntList =
xs match
case Nil => ys
case Cons(h, t) => Cons(h, t ++ ys)

Example:

val 11 = Cons(1, Cons(2, Nil))
val 12 = Cons(10, Cons(20, Cons(30, Nil)))
11 ++ 12 // Cons(1,Cons(2,Cons(10,Cons(20,Cons(30,Nil)))))

Concatenation (++) of Lists

extension (xs: IntList)
def ++(ys: IntList): IntList =
xs match
case Nil => ys
case Cons(h, t) => Cons(h, t ++ ys)

Example:

val 11 = Cons(1, Cons(2, Nil))
val 12 = Cons(10, Cons(20, Cons(30, Nil)))
11 ++ 12 // Cons(1,Cons(2,Cons(10,Cons(20,Cons(30,Nil)))))

As a mathematical operation on sequences, which laws does ++ satisfy?

Concatenation (++) of Lists

extension (xs: IntList)
def ++(ys: IntList): IntList =
xs match
case Nil => ys
case Cons(h, t) => Cons(h, t ++ ys)

Example:

val 11 = Cons(1, Cons(2, Nil))
val 12 = Cons(10, Cons(20, Cons(30, Nil)))
11 ++ 12 // Cons(1,Cons(2,Cons(10,Cons(20,Cons(30,Nil)))))

As a mathematical operation on sequences, which laws does ++ satisfy?

A small shorthand: x :: xs abbreviates Cons(x, xs)

Laws of ++ That Hold by Definition

Two cases in the pattern match

extension (xs: IntList)
def ++(ys: IntList): IntList =

xs match
case Nil => ys // Nil case
case Cons(h, t) => Cons(h, t ++ ys) // Cons case

give us a two mathematical equations that hold by definition:

Nil ++ ys = ys // Nil case - Nil is a left-neutral element
(h :: t) ++ ys == i (t ++ ys) // Cons case

Associativity and Neutral Element of ++

We would like to prove the following additional laws:

xs ++ Nil = xs // Nil is right-neutral element
(xs ++ ys) ++ zs = xs ++ (ys ++ zs) // concatenation is associative

We will use structural induction on lists.

This principle is analogous to induction on non-negative integers.

Structural Induction on Lists

To prove a property P(xs) for all lists xs,

» show that P(Nil) holds (base case),
» for an arbitrary list xs and an element x, show the induction step:

if P(xs) holds, then P(x :: xs) also holds.
Consider any list x, :: (xq—1... 22 (x; :: Nil)...). Then
P(Nil) = P(xq :: Nil) = P(xp 2 (xq 11 Nil)) = ... = P(xq it (Xn—1 13 eee o (xq 12 NiL) L L)
Each implication holds by the induction step.
The first step holds by base case, so the conclusion follows.

It also follows from the fact that each list has a finite non-negative length; we can do
induction on this length.

Proof: Nil is Right-Neutral Element of ++

Remember defining equations:

Nil ++ ys = ys // Nil case - Nil is a left-neutral element
(h :: t) ++ ys == :: (t ++ ys) // Cons case

We show by induction on xs that xs ++ Nil = xs

Base case:

Proof: Nil is Right-Neutral Element of ++

Remember defining equations:

Nil ++ ys = ys // Nil case - Nil is a left-neutral element
(h :: t) ++ ys == :: (t ++ ys) // Cons case

We show by induction on xs that xs ++ Nil = xs

Base case:

Nil ++ Nil = Nil // by Nil case

Proof: Nil is Right-Neutral Element of ++

Remember defining equations:

Nil ++ ys = ys // Nil case - Nil is a left-neutral element
(h :: t) ++ ys == :: (t ++ ys) // Cons case

We show by induction on xs that xs ++ Nil = xs
Base case:

Nil ++ Nil = Nil // by Nil case
Induction Hypothesis: xs ++ Nil = xs

(x :: xs) ++ Nil
= x :: (xs ++ Nil) // by Cons case
=X :: XS // by Induction Hypothesis

Proving Associativity

Let us now show that, for any three lists xs, ys, zs:
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
We again use the defining equations of ++

Nil ++ ys = ys // Nil case - Nil is a left-neutral element
(h :: t) ++ ys == i (t ++ ys) // Cons case

We use structural induction on xs.

Base Case

Proving

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

\Base case: xs is Nil\

For the left-hand side we have:

(Nil ++ ys) ++ zs
= ys ++ zs // by Nil case

Base Case

Proving

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

\Base case: xs is Nil\

For the left-hand side we have:

(Nil ++ ys) ++ zs
= ys ++ zs // by Nil case

For the right-hand side, we have:

Nil ++ (ys ++ zs)
= ys ++ zs // by Nil case, take ys in the case to be (ys ++ zs)

The base case is therefore proven.

Induction Step: Assume (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

‘Induction step: first argument is x :: xs‘

For the left-hand side, we have:

((x :: Xx8) ++ ys) ++ zs
= (x :: (Xs ++ ys)) ++ zs // by Cons case
= X :: ((xs ++ ys) ++ zs) // by Cons case

= X :: (xs ++ (ys ++ zs)) // by Induction Hypothesis
For the right hand side we have:

(x :: xs) ++ (ys ++ zs)
= X :: (xs ++ (ys ++ zs)) // by Cons case

Left side equals right side because they are both equal to the same thing:

((x :: x8) ++ ys) ++ zs = x :: (xs ++ (ys ++ zs))

Substitution Model Review: List length

def length: BigInt = xs match
case Nil => 0 // Nil case
case Cons(h, t) => 1 + t.length // Cons case

Defining equations:

Nil.length = 0 // Nil case
(h :: t).length = 1 + t.length // Cons case

Evaluation using substitution model:

(42 :: (69 :: Nil)).length

=1+ (69 :: Nil).length // Cons case
=1+ (1 + Nil.length) // Cons case
=1+ (1 +0) // Nil case

2 // arithmetic

Symbolic Execution

Let x, y be arbitrary values. Then using the same steps:

(x :: (y :: Nil)).length
1+ (y :: Nil).length
1+ (1 + Nil.length)

1+ (1 +0)

2

// Cons case
// Cons case
// Nil case

// arithmetic

Symbolic Execution

Let x, y be arbitrary values. Then using the same steps:

(x :: (y :: Nil)).length

=1+ (y :: Nil).length // Cons case
=1+ (1 + Nil.length) // Cons case
=1+ (1 +20) // Nil case

=2 // arithmetic

We proved the following theorem: for every x, y
(x :: (y :: Nil)).length == 2

We can hence extend the substitution model to work not only with concrete inputs to
functions, but also symbolic values and establish certain simple theorems. We call this
symbolic execution.

Summary: Where Valid Equations Come From

SANESL A A

Symbolic execution of functions (using defining equations)
reflexivity: E = E

symmetry: if E = F then F = E

transitivity: if E = F and F = G, then E = G (chaining: E = F = G)
instantiation: if A = B holds for all values of symbolic x, then
ALC/x] = B[C/x] where C is any expression denoting a value.

Example: if (x :: (y :: Nil)).length = 2 then (42 :: (y :: Nil)).length = 2
. substituting E by its equal F in another equality: if E = F and A = B then also

ALF/E] = B[F/E].
Example: if f(x) = x + 1then 3 + f(x) =3 + x + 1

Using structural induction to prove new equalities

=PrL

Structural Induction on Trees

CS-214 Software Construction

Structural Induction on Trees

Structural induction is not limited to lists; it applies to any tree structure.
The general induction principle is the following:
To prove a property P(t) for all trees t of a certain type,

» show that P(1f) holds for all leaves 1f of a tree,

» for each type of internal node t with subtrees s, ..., s,, show that
P(s1) A ... AP(sn) implies P(t).

Example: IntSets

Define binary trees that store sets of integers, faster than linear search:

sealed trait IntSet
case object Leaf extends IntSet
case class Node(left: IntSet, elem: Int, right: IntSet) extends IntSet

extension (s: IntSet)
def contains(x: Int): Boolean = // is an element in the set?
s match

case Leaf => false

case Node(l, e, r) =>
if x < e then l.contains(x)
else if x > e then r.contains(x)
else true

Inserting into InSet: Preserving the Order

extension (s: IntSet)
def incl(x: Int): IntSet = // a new set extended with a given element
s match

case Leaf => Node(Leaf, x, Leaf)

case Node(l, e, r) =>
if x < e then Node(l.incl(x), e, r)
else if x > e then Node(l, e, r.incl(x))
else s

The Laws of IntSet

What does it mean to prove the correctness of this implementation?

One way to define and show the correctness of an implementation consists of proving
the laws that it respects.

In the case of IntSet, the following three laws of interest:

For any set s, and elements x and y:

Leaf.contains(x) = false
s.incl(x).contains(x) = true // included x is present
s.incl(x).contains(y) = s.contains(y), if x !=y

This will show that IntSet behaves as a set with incl as operation that inserts an
element into the set, and contains as set membership relation.

The first law follows by symbolic execution. We prove the other two by induction.

Included Present: s.incl(x).contains(x)

Structural induction on s.

\ Base case: Leaf \ follows by symbolic execution:

Leaf.incl(x).contains(x)
Node(Leaf, x, Leaf).contains(x) // case Leaf of incl

true // case Node, x=e of contains

Induction step: s = Node(l, e, r)| assuming the inductive hypotheses:

l.incl(x).contains(x) = true
r.incl(x).contains(x) = true

We have three cases: x< e, x> e, x = e.

Included Present: s.incl(x).contains(x), cases x < e, x > e

‘Induction step: s = Node(1, e, r) where x < e‘

Node(l, e, r).incl(x).contains(x)

Node(l.incl(x), e, r).contains(x) // case Node of incl, x < e

r.incl(x).contains(x) // case Node of contains, x < e

= true // Inductive Hypothesis

Induction step: s = Node(l, e, r) where x > e|is analogous:

Node(l, e, r).incl(x).contains(x)
Node(l, e, r.incl(x)).contains(x) // case Node of incl, x >

[¢]

r.incl(x).contains(x) // case Node of contains, x > e

true // Inductive Hypothesis

Included is Present: s.incl(x).contains(x) = true, case x = e

‘Induction step: s = Node(l, e, r) ‘ X = e

Node(l, e, r).incl(x).contains(x)

Node(l, x, r).contains(x) // case Node of incl, x = e
X

true // case Node of contains, =e
This completes the proof by structural induction that, for all trees s and elements x,

s.incl(x).contains(x) = true

Others Remain Present

We now wish to prove the second key property of incl: if x != y then
s.incl(x).contains(y) = s.contains(y)

(Elements other than x remain in or out of the extended set, as in s itself.)
Proof is by structural induction on s. Assume that x <y

(The case x > y is analogous.)

\ Base case: Leaf\

Leaf.incl(y).contains(x)

Node(Leaf, x, Leaf).contains(x) // case Leaf of incl

Leaf.contains(x) // case Node of contains, e=x

Others Remain Present: Inductive Cases

Proving: s.incl(x).contains(y) = s.contains(y) when x <y

‘Induction step: s = Node(l, e, r) ‘ Inductive hypotheses:

l.incl(x).contains(y) 1.contains(y)

r.incl(x).contains(y) = r.contains(y)

We distinguish five cases:

l.e=y
2. e =x
3.e<x<y
4. x <e<y
h. x<y<e

First Two Cases

‘Induction step: Node(l, e, r), e =y, x <y (sox < e)

Node(l, e, r).incl(x).contains(y)

Node(l.incl(x), e, r).contains(y) // case Node of incl, x < e
true // case Node of contains, y=e
Node(l, e, r).contains(y) // case Node of contains, y=e

Induction step: Node(l, e, r), e = x, x <y (soe <y)

Node(l, e, r).incl(x).contains(y)
= Node(l, e, r).contains(y) // case Node of incl, e=x

Casee < x <y

‘Induction step: Node(l, e, r)|, e < x <y

Node(l, e, r).incl(x).contains(y)

Node(l, e, r.incl(x)).contains(y)
r.incl(x).contains(y)
r.contains(y)

Node(l, e, r).contains(y)

//
//
/7
/7

case Node
case Node
Induction
case Node

of incl, e < X

of contains, e <y
Hypothesis

of contains, e <y

Case x < e <y

‘Induction step: Node(l, e, r)|, x <e <y

Node(l, e, r).incl(x).contains(y)

Node(l.incl(x), e, r).contains(y) // case Node of incl, x < e
r.contains(y) // case Node of contains, e <y
Node(l, e, r).contains(y) // case Node of contains, e <y

Casex <y <e

‘Induction step: Node(l, e, r)|, x <y <e

Node(l, e, r).incl(x).contains(y)
Node(l.incl(x), e, r).contains(y) // case Node of incl, x < e

= 1l.incl(x).contains(y) // case Node of incl, x < e
= 1l.contains(y) // Induction Hypothesis
= Node(l, e, r).contains(y) // case Node of contains, y < e

These are all the cases, so the proposition is established.

=PrL

Automated Proof Checking and Search

CS-214 Software Construction

Proof Checking

It is easy to make a mistake when doing long proofs with many cases.

Proof checkers are programs that examine proof steps and make sure that each step is
valid according to rules of logic.

Proof checkers are a basis of proof assistants, such as:

» Coq proof assistant: https://coq.inria.fr/

Isabelle proof assistant: https://isabelle.in.tum.de/

| 2

» HOL prover: https://hol-theorem-prover.org/
» Lean proof assistant: https://lean-lang.org/
| 2

Lisa proof framework: https://github.com/epfl-lara/lisa

In exercises you will use a small Scala library that checks proofs such as the ones you
saw today when you execute it. Internally, it relies on Lisa.

Proof Search

Programs that automatically and systematically search for proofs are called Automated
Theorem Provers (ATPs).

First-Order Logic Provers are based on first-order logic with equality.

Examples include provers called: E, SPASS, Vampire

A proof format, collection of challenges and a competition: https://www.tptp.org/
SMT Solvers are implemented on top of SAT solvers.

Contain specialized algorithms for solving constraints in, e.g., linear arithmetic
(Simplex), non-linear arithmetic, equality, theories of arrays, case classes, strings, ...

Examples SMT solvers: z3, cvcb, Princess (written in Scala)

A proof format, challanges, and a competition: https://smt-1lib.org/

Program Verifiers

Use SMT solvers to automate proving properties of programs.

Examples:

> Stainless verifier (for Scala): https://github.com/epfl-lara/stainless/
» Dafny verifier for Dafny language, used in Amazon: https://dafny.org/
» F* verifier for an ocaml-like functional language: https://fstar-lang.org/

» Liquid Haskell: a verifier for Haskell,
https://ucsd-progsys.github.io/liquidhaskell/

Proof assistants can also be used to verify programs.

=PrL

Generics (Parametric Polymorphism)

CS-214 Software Construction

Type Parameters

Instead of defining list only for Int as in IntList, we can define it in general.
For this, we use generics: type parameters.
Type parameters are written in square brackets, e.g. [T]
> correspond approximately to <T> of Java
We can now generalize IntList using a type parameter:

sealed trait List[T]
case class Nil[T]() extends List[T] // made Nil a class to make T known
case class Cons[T](head: Int, tail: List[T]) extends List[T]

Many List Methods Do Not Care about Type

extension[T] (xs: List[T])
def length: Biglnt =
xs match
case Nil() => 0
case Cons(h, t) => 1 + t.length

def ++(ys: List[T]): List[T] =
xs match
case Nil() => ys
case Cons(h, t) => Cons(h, t ++ ys)

Generic Functions

Like classes, functions can have type parameters.
def singleton[T](elem: T) = Cons[T1(elem, Nil[T1())
We can then write:

singleton[Int](1)
singleton[Boolean](true)

Scala compiler can often deduce the correct type parameters from the value arguments
of a function call, so we can write simply:

singleton(1)
singleton(true)

Exercise with Generics
Write a function nth that takes a list and an integer n and selects the n’th element of
the list.
Elements are numbered from 0.

If index is outside the range from @ up the the length of the list minus one, a
IndexOutOfBoundsException should be thrown.

def nth[TI(xs: List[T], n: Int): T =

Exercise with Generics

Write a function nth that takes a list and an integer n and selects the n’th element of
the list.

Elements are numbered from 0.

If index is outside the range from @ up the the length of the list minus one, a
IndexOutOfBoundsException should be thrown.

def nth[TI(xs: List[T], n: Int): T =

xs match
case Nil() => throw new IndexOutOfBoundsException()
case Cons(h, t) =>
if n == 0 then h
else nth(t, n - 1)

Types and Evaluation

Type parameters do not affect evaluation in Scala.

We can assume that all type parameters and type arguments are removed before
evaluating the program.

This is also called type erasure.
Languages that use type erasure include Java, Scala, Haskell, ML, OCaml.

Some other languages keep the type parameters around at run time, for example, C#

=PrL

Higher-Order List Functions

CS-214 Software Construction

Recurring Patterns for Computations on Lists

Examples in labs and exercises have shown that functions on lists often have similar
structures.

We can identify several recurring patterns, like,

> transforming each element in a list in a certain way,
> retrieving a list of all elements satisfying a criterion,
P> combining the elements of a list using an operator.

Scala allows programmers to write generic functions that such patterns once using
polymorphic higher-order functions.

Proper use of higher-order functions may make code clearer and shorter.

Applying a Function to Elements of a List

A common operation is to transform each element of a list and then return the list of
results.

For example, to multiply each element of a list by the same factor, you could write:

def scalelList(xs: List[Doublel], factor: Double): List[Double] = xs match
case Nil => Xs
case y :: ys =>y * factor :: scalelList(ys, factor)

Mapping

This scheme can be generalized to the method map of the List class. A simple way to
define map is as follows:

extension [T](xs: List[T])
def map[UI(f: T => U): List[U] = xs match
case Nil => Xxs
case x :: xs => f(x) :: xs.map(f)

Using map, scalelList can be written more concisely.

def scalelList(xs: List[Double], factor: Double) =
xs.map(x => x * factor)

We Need Type Parameters to Define map

In the boid lab so far, we avoided type parameters.
This required us to duplicate functions.
For example, you can apply mapBoid to many functions f but they all must accept a
Boid:
def mapBoid(f: Boid => Boid): BoidSequence =
this match

case BoidNil() => BoidNil()
case BoidCons(head, tail) => BoidCons(f(head), tail.mapBoid(f))

Exercise

Consider a function to square each element of a list, and return the result
the two following equivalent definitions of squarelList.

def squareList(xs: List[Int]): List[Int] = xs match
case Nil => 777
case y :: ys => 777

def squareList(xs: List[Int]): List[Int]
xs.map(???)

. Complete

Exercise

Consider a function to square each element of a list, and return the result. Complete
the two following equivalent definitions of squarelList.

def squareList(xs: List[Int]): List[Int] = xs match
case Nil => Nil
case y :: ys =>y *y :: squareList(ys)

def squareList(xs: List[Int]): List[Int] =
xs.map(x => x * Xx)

Filtering

Another common operation on lists is the selection of all elements satisfying a given
condition. For example:

def posElems(xs: List[Int]): List[Int] = xs match
case Nil => Xs
case y :: ys => if y > 0 then y :: posElems(ys) else posElems(ys)

Filter

This pattern is generalized by the method filter of the List class:

extension [T1(xs: List[T1)
def filter(p: T => Boolean): List[T] = this match
case Nil => this
case X :: xs => if p(x) then x :: xs.filter(p) else xs.filter(p)

Using filter, posElems can be written more concisely.

def posElems(xs: List[Int]): List[Int] =
xs.filter(x => x > 0)

Variations of Filter

Besides filter, there are also the following methods that extract sublists based on a
predicate:

xs.filterNot(p) Same as xs.filter(x => !p(x)); The list consist-
ing of those elements of xs that do not satisfy the
predicate p.

xs.partition(p) Same as (xs.filter(p), xs.filterNot(p)), but
computed in a single traversal of the list xs.

xs.takeWhile(p) The longest prefix of list xs consisting of elements
that all satisfy the predicate p.

xs.dropWhile(p) The remainder of the list xs after any leading ele-
ments satisfying p have been removed.

xs.span(p) Same as (xs.takeWhile(p), xs.dropWhile(p)) but
computed in a single traversal of the list xs.

Reduction of Lists

Another common operation on lists is to combine the elements of a list using a given
operator.

For example:

0 +x1 + ...+ xn
T *x1 * ... % Xxn

sum(List(x1, ..., xn))
product(List(x1, ..., xn))

We can implement this with the usual recursive schema:

def sum(xs: List[Int]): Int = xs match
case Nil =>0
case y :: ys =>y + sum(ys)

Reducel eft

This pattern can be abstracted out using the generic method reducelLeft:

reducelLeft inserts a given binary operator between adjacent elements of a list:
List(x1, ..., xn).reduceLeft(op) = x1.0p(x2).op(xn)

Using reduceLeft, we can simplify:

def sum(xs: List[Int])
def product(xs: List[Int])

(0 :: xs).reduceLeft((x, y) => x +vy)
(1 :: xs).reduceLeft((x, y) => x *y)

A Shorter Way to Write Functions

Instead of ((x, y) => x * y)), one can also write shorter:
(- *)

Every _ represents a new parameter, going from left to right.

The parameters are defined at the next outer pair of parentheses (or the whole
expression if there are no enclosing parentheses).

So, sum and product can also be expressed like this:

def sum(xs: List[Int]) = (0 :: xs).reduceLeft(_ + _
def product(xs: List[Int]) (1 :: xs).reduceLeft(_ * _

)
)

FoldLeft

The function reduceLeft is defined in terms of a more general function, foldLeft.

foldLeft is like reducelLeft but takes an accumulator, z, as an additional parameter,
which is returned when foldLeft is called on an empty list.

List(x1, ..., xn).foldLeft(z)(op) = z.op(x1).opop(xn)

So, sum and product can also be defined as follows:

def sum(xs: List[Int]) xs.foldLeft(@)(_ + _)
def product(xs: List[Int]) = xs.foldLeft(1)(_ * _)

Implementations of Reduceleft and FoldlLeft

foldLeft and reducelLeft can be implemented in class List as follows.

abstract class List[T]:

def reduceLeft(op: (T, T) => T): T = this match
case Nil => throw IllegalOperationException(”Nil.reducelLeft”)
case x :: xs => xs.foldLeft(x)(op)

def foldLeft[UJI(z: U)(op: (U, T) => U): U = this match
case Nil =>z
case x :: xs => xs.foldLeft(op(z, x))(op)

FoldRight and ReduceRight

Applications of foldLeft and reducelLeft create computation trees that lean to the left.

They have two dual functions, foldRight and reduceRight, which produce trees which
lean to the right, e.g.,

List(x1, x2, x3).reduceRight(op)
List(x1, x2, x3).foldRight(z)(op)

x1.0op(x2.0p(x3))
x1.op(x2.0p(x3.0p(z2)))

Implementation of FoldRight and ReduceRight

They are defined as follows

def reduceRight(op: (T, T) => T): T = this match

case Nil => throw UnsupportedOperationException(”Nil.reduceRight”)
case x :: Nil => x
case X :: Xxs => op(x, xs.reduceRight(op))

def foldRight[UJ(z: U)(op: (T, U) => U): U = this match
case Nil =z
case x :: xs => op(x, xs.foldRight(z)(op))

Difference between FoldLeft and FoldRight

For operators that are associative and commutative, foldLeft and foldRight are
equivalent (even though there may be a difference in efficiency).

But sometimes, only one of the two operators is appropriate.

Exercise

def foldLeft[UJ(z: U)(op: (U, T) => U): U = this match
case Nil => z
case x :: xs => xs.foldLeft(op(z, x))(op)

def foldRight[UJ(z: U)(op: (T, U) => U): U = this match
case Nil => z
case x :: xs => op(x, xs.foldRight(z)(op))

Here is another formulation of concat:

def concat[T](xs: List[T], ys: List[T]): List[T] =
xs.foldRight(ys)(_ :: _)

Here, it isn't possible to replace foldrRight by foldLeft. What would go wrong?

Back to Reversing Lists

We now develop a function for reversing lists which has a linear cost.
The idea is to use the operation foldlLeft:
def reverse[T](xs: List[T]): List[T] = xs.foldLeft(z?)(op?)

All that remains is to replace the parts z? and op?.

Let's try to compute them from examples.

Deduction of Reverse (1)

To start computing z?, let's consider reverse(Nil).

We know reverse(Nil) == Nil, so we can compute as follows:

Nil

Deduction of Reverse (1)

To start computing z?, let's consider reverse(Nil).

We know reverse(Nil) == Nil, so we can compute as follows:
Nil

= reverse(Nil)

Deduction of Reverse (1)

To start computing z?, let's consider reverse(Nil).

We know reverse(Nil) == Nil, so we can compute as follows:

Nil

reverse(Nil)

Nil.foldLeft(z?)(op)

Deduction of Reverse (1)

To start computing z?, let's consider reverse(Nil).

We know reverse(Nil) == Nil, so we can compute as follows:

Nil

reverse(Nil)

Nil.foldLeft(z?)(op)
= z?

Consequently, z? = Nil

Deduction of Reverse (2)

We still need to compute op?. To do that let's plug in the next simplest list after Nil
into our equation for reverse:

List(x)

Deduction of Reverse (2)

We still need to compute op?. To do that let's plug in the next simplest list after Nil
into our equation for reverse:

List(x)

= reverse(List(x))

Deduction of Reverse (2)

We still need to compute op?. To do that let's plug in the next simplest list after Nil
into our equation for reverse:

List(x)

= reverse(List(x))

List(x).foldLeft(Nil)(op?)

Deduction of Reverse (2)

We still need to compute op?. To do that let's plug in the next simplest list after Nil
into our equation for reverse:

List(x)

= reverse(List(x))

List(x).foldLeft(Nil)(op?)

= op?(Nil, x)

Consequently, op?(Nil, x) = List(x) = x :: Nil

This suggests to take for op? the operator :: but with its operands swapped.

Deduction of Reverse(3)

We thus arrive at the following implementation of reverse.

def reverse[T]1(xs: List[T]): List[T] =
xs.foldLeft(Nil)((xs, x) => x :: Xs)

Exercise
Complete the following definitions of the basic functions map and length on lists, such
that their implementation uses foldRight:

def mapFun[T, UJ(xs: List[T], f: T => U): List[U] =
xs.foldRight(Nil)(77?7)

def lengthFun[TJ(xs: List[T]): Int =
xs.foldRight(@)(7?7)

Exercise
Complete the following definitions of the basic functions map and length on lists, such
that their implementation uses foldRight:

def mapFun[T, UJ(xs: List[T], f: T => U): List[U] =
xs.foldRight(Nil)((y, ys) => f(y) :: ys)

def lengthFun[TJ(xs: List[T]): Int =
xs.foldRight(@)((y, n) => n + 1)

=PrL

More on Scala Lists

CS-214 Software Construction

More on Lists in Scala

The list is a fundamental data structure in functional programming. In Scala, Lists are
defined in the standard library.

A list having xi, ..., x, as elements is written List(x,, ..., Xn)
Example

val fruit = List(”apples”, ”oranges”, ”pears”)

val nums = List(1, 2, 3, 4)

val diag3 = List(List(1, 0, 0), List(@, 1, @), List(e, 0, 1))
val empty = List()

There are two important differences between lists and arrays.

P Lists are immutable — the elements of a list cannot be changed.
> Lists are recursive, while arrays are flat.

Lists

val fruit
val diag3

List(”apples”, ”oranges”, ”pears”)
List(List(1, @, @), List(o, 1, 0), List(e, 0, 1))

The List Type

The type of a list with elements of type T is written scala.List[T] or shorter just

List[T]

Each element of such list has type T

Example

val fruit:
val nums :
val diag3:
val empty:

List[String]
List[Int]
List[List[Int]]
List[Nothing]

List(”apples”, ”oranges”, ”pears”)

List(1, 2, 3, 4)

List(List(1, 0, @), List(o, 1, @), List(@, 0, 1))
List()

Constructors of Lists

All lists are constructed from:

P> the empty list Nil, and
> the construction operation :: (pronounced cons):
x :: xs gives a new list with the first element x, followed by the elements of xs.

For example:

fruit = ”apples” :: (oranges” :: (”pears” :: Nil))
T ::0 (2 :: (3 :: (4 ::NiD))
empty = Nil

nums

Right Associativity

Convention: Operators ending in associate to the right.
A :: B :: Cisinterpreted as A :: (B :: C).
We can thus omit the parentheses in the definition above.

Example

val nums =1 :: 2 :: 3 :: 4 :: Nil

Operations on Lists

All operations on lists can be expressed in terms of the following three:

head the first element of the list
tail the list composed of all the elements except the first.
isEmpty ‘true' if the list is empty, ‘false’ otherwise.

These operations are defined as methods of objects of type List. For example:

fruit.head == "apples”
fruit.tail.head == ”oranges”
diag3.head == List(1, 0, 0)

empty.head == throw NoSuchElementException(”head of empty list”)

Decomposing Lists using Patterns

myList match
case p =>

Patterns p look analogous to operations to construct lists:

Nil The Nil constant
p :: ps A pattern that matches a list with a head matching p and
a tail matching ps.
List(pl, ..., pn) sameaspl :: ... :: pn :: Nil
Example

1 ::2 :: xs Lists of that start with 1 and then 2

x :: Nil Lists of length 1
List(x) Same as x :: Nil
List() The empty list, same as Nil

List(2 :: xs) List that contains as only element a list starting with 2

Exercise

Consider the pattern x :: y :: List(xs, ys) :: zs

What is the condition that describes most accurately the length L of the lists it
matches?

0 L ==3
0 L==4
0 L==5
0 L>3
0 L >=4
0 L>5

Exercise

Consider the pattern x :: y :: List(xs, ys) :: zs.

What is the condition that describes most accurately the length L of the lists it
matches?

0 L ==3
0 L==4
0 L==5
X L>3
0 L >=4
0 L>5

Sorting Lists

Suppose we want to sort List(7, 3, 9, 2) in ascending order:

1. One way is to sort the tail, List(3, 9, 2) to obtain List(2, 3, 9)
2. Then, insert the head 7 in the right place to obtain List(2, 3, 7, 9).

This idea describes Insertion Sort :

def isort(xs: List[Int]): List[Int] = xs match
case List() => List()
case y :: ys => insert(y, isort(ys))

Exercise

Complete the definition insertion sort by filling in the ??7?s in the definition below:

def insert(x: Int, xs: List[Int]): List[Int] = xs match
case List() => List(x)
case y :: ys =>

Exercise

Complete the definition insertion sort by filling in the ??7?s in the definition below:

def insert(x: Int, xs: List[Int]): List[Int] = xs match
case List() => List(x)
case y :: ys =>
if x <y then x :: xs else y :: insert(x, ys)

Exercise

Complete the definition insertion sort by filling in the ??7?s in the definition below:

def insert(x: Int, xs: List[Int]): List[Int] = xs match
case List() => List(x)
case y :: ys =>
if x <y then x :: xs else y :: insert(x, ys)

What is the asymptotic worst-case complexity of isort relative to the length of the
input list N7

constant time: 0(1)
linear time: O(N)
O(N * log(N))

O(N * N)

O O O O

Exercise

Complete the definition insertion sort by filling in the ??7?s in the definition below:

def insert(x: Int, xs: List[Int]): List[Int] = xs match
case List() => List(x)
case y :: ys =>
if x <y then x :: xs else y :: insert(x, ys)

What is the asymptotic worst-case complexity of isort relative to the length of the
input list N7

o} constant time: 0(1)
o} linear time: O(N)
o O(N * log(N))

==> O(N * N)

Lists so far: Recap

Lists are the core data structure we will work with over the next weeks.
Type: List[Fruit]

Construction:

val fruits = List(”Apple”, ”Orange”, ”Banana”)

val nums =1 :: 2 :: Nil
Decomposition:

fruits.head // "Apple”

nums.tail // 2 :: Nil

nums.isEmpty // false

nums match

case X :: Yy :: =>x+y //3

List Methods (1)

Sublists and element access:

xs.length
xs.last
Xs.init

xs.take(n)

xs.drop(n)
xs(n)

The number of elements of xs.

The list’s last element, exception if xs is empty.
A list consisting of all elements of xs except the
last one, exception if xs is empty.

A list consisting of the first n elements of xs, or xs
itself if it is shorter than n.

The rest of the collection after taking n elements.
(or, written out, xs.apply(n)). The element of xs
at index n.

List Methods (2)

Creating new lists:

XS ++ ys The list consisting of all elements of xs followed
by all elements of ys.

XS.reverse The list containing the elements of xs in reversed
order.

xs.updated(n, x) Thelist containing the same elements as xs, except
at index n where it contains x.

Finding elements:

xs.index0f (x) The index of the first element in xs equal to x, or
-1 if x does not appear in xs.
Xxs.contains(x) same as xs.index0f(x) >= 0

Exercise

Remove the n'th element of a list xs. If n is out of bounds, return xs itself.
def removeAt[TI(n: Int, xs: List[T]) = ???
For example:

removeAt(1, List(’a’, ’b’, ’c’, ’d’))

should give:

List(a, c, d)

=PrL

Merge Sort. Tuples and Generic Methods

CS-214 Software Construction

Sorting Lists Faster

As a non-trivial example, let’s design a function to sort lists that is more efficient than
insertion sort.

A good algorithm for this is merge sort. The idea is as follows:
If the list consists of zero or one elements, it is already sorted.

Otherwise,

P Separate the list into two sub-lists, each containing around half of the elements of
the original list.

» Sort the two sub-lists.

> Merge the two sorted sub-lists into a single sorted list.

First MergeSort Implementation

Here is the implementation of that algorithm in Scala:

def msort(xs: List[Int]): List[Int] =
val n = xs.length / 2
if n == 0 then xs
else
def merge(xs: List[Int], ys: List[Int]) = ???
val (fst, snd) = xs.splitAt(n)
merge(msort(fst), msort(snd))

The SplitAt Function

The splitAt function on lists returns two sublists

P the elements up the the given index
P> the elements from that index

The lists are returned in a pair.

Detour: Pair and Tuples

The pair consisting of x and y is written (x, y) in Scala.
Example
val pair = (“answer”, 42) > pair : (String, Int) = (answer,42)
The type of pair above is (String, Int).
Pairs can also be used as patterns:
val (label, value) = pair > label: String = answer, value: Int = 42
This works analogously for tuples with more than two elements.

If pis a pair, we can get its first element with p._1, second by p._2

Definition of Merge

Here is a definition of the merge function:

def merge(xs: List[Int], ys: List[Int]) = (xs, ys) match
case (Nil, ys) => ys
case (xs, Nil) => xs
case (x :: xs1, y :: ysl) =>
if x <y then x :: merge(xsl, ys)
else y :: merge(xs, ysl)

Making Sort More General
Problem: How to parameterize msort so that it can also be used for lists with elements
other than Int?

def msort[T](xs: List[T]): List[T] = ??7?
does not work, because the comparison < in merge is not defined for arbitrary types T.

Idea: Parameterize merge with the necessary comparison function.

Parameterization of Sort
The most flexible design is to make the function sort polymorphic and to pass the
comparison operation as an additional parameter:

def msort[T](xs: List[T1)(1t: (T, T) => Boolean) =

merge(msort(fst)(1t), msort(snd)(1t))
Merge then needs to be adapted as follows:

def merge[TJ(xs: List[T], ys: List[T]) = (xs, ys) match

case (x :: xsl1, y :: ysl) =
if 1t(x, y) then ...
else ...

Calling Parameterized Sort

We can now call msort as follows:

val xs = List(-5, 6, 3, 2, 7)
val fruits = List(”apple”, ”pear”, ”orange”, ”pineapple”)

msort(xs)((x: Int, y: Int) => x <y)
msort(fruits)((x: String, y: String) => x.compareTo(y) < 0)

Or, since parameter types can be inferred from the call msort(xs):

msort(xs)((x, y) => x <y)

