
Class Hierarchies

CS-214 Software Construction

Abstract Classes

Consider the task of writing a class for sets of integers with the following operations.

abstract class IntSet:

def incl(x: Int): IntSet

def contains(x: Int): Boolean

IntSet is an abstract class.
Abstract classes can contain members which are missing an implementation (in our
case, both incl and contains); these are called abstract members.
Consequently, no direct instances of an abstract class can be created, for instance an
IntSet() call would be illegal.

Class Extensions

Let’s consider implementing sets as binary trees.
There are two types of possible trees: a tree for the empty set, and a tree consisting of
an integer and two sub-trees.
Here are their implementations:

class Empty() extends IntSet:

def contains(x: Int): Boolean = false

def incl(x: Int): IntSet = NonEmpty(x, Empty(), Empty())

Class Extensions (2)

class NonEmpty(elem: Int, left: IntSet, right: IntSet) extends IntSet:

def contains(x: Int): Boolean =

if x < elem then left.contains(x)

else if x > elem then right.contains(x)

else true

def incl(x: Int): IntSet =

if x < elem then NonEmpty(elem, left.incl(x), right)

else if x > elem then NonEmpty(elem, left, right.incl(x))

else this

end NonEmpty

Terminology

Empty and NonEmpty both extend the class IntSet.
This implies that the types Empty and NonEmpty conform to the type IntSet, i.e.

▶ an object of type Empty or NonEmpty can be used wherever an object of type IntSet

is required.

Base Classes and Subclasses

IntSet is called the superclass of Empty and NonEmpty.
Empty and NonEmpty are subclasses of IntSet.
In Scala, any user-defined class extends another class.
If no superclass is given, the standard class Object in the Java package java.lang is
assumed.
The direct or indirect superclasses of a class C are called base classes of C.
So, the base classes of NonEmpty include IntSet and Object.

Implementation and Overriding

The definitions of contains and incl in the classes Empty and NonEmpty implement the
abstract functions in the base trait IntSet.
It is also possible to redefine an existing, non-abstract definition in a subclass by using
override.
Example

abstract class Base: class Sub extends Base:

def foo = 1 override def foo = 2

def bar: Int def bar = 3

Object Definitions

In the IntSet example, one could argue that there is really only a single empty IntSet.
So it seems overkill to have the user create many instances of it.
We can express this case better with an object definition:

object Empty extends IntSet:

def contains(x: Int): Boolean = false

def incl(x: Int): IntSet = NonEmpty(x, Empty, Empty)

end Empty

This defines a singleton object named Empty.
No other Empty instance can be (or needs to be) created.
Singleton objects are values, so Empty evaluates to itself.

Companion Objects

An object and a class can have the same name. This is possible since Scala has two
global namespaces: one for types and one for values.
Classes live in the type namespace, whereas objects live in the term namespace.
If a class and object with the same name are given in the same sourcefile, we call them
companions. Example:

class IntSet ...

object IntSet:

def singleton(x: Int) = NonEmpty(x, Empty, Empty)

This defines a method to build sets with one element, which can be called as
IntSet.singleton(elem).
A companion object of a class plays a role similar to static class definitions in Java
(which are absent in Scala).

Programs

So far we have executed all Scala code from the REPL or the worksheet.
But it is also possible to create standalone applications in Scala.
Each such application contains an object with a main method.
For instance, here is the “Hello World!” program in Scala.

object Hello:

def main(args: Array[String]): Unit = println(”hello world!”)

Once this program is compiled, you can start it from the command line with

> scala Hello

Programs (2)

Writing main methods is similar to what Java does for programs.
Scala also has a more convenient way to do it.
A stand-alone application is alternatively a function that’s annotated with @main, and
that can take command line arguments as parameters:

@main def birthday(name: String, age: Int) =

println(s”Happy birthday, $name! $age years old already!”)

Once this function is compiled, you can start it from the command line with

> scala birthday Peter 11

Happy Birthday, Peter! 11 years old already!

Exercise

Write a method union for forming the union of two sets. You should implement the
following abstract class.

abstract class IntSet:

def incl(x: Int): IntSet

def contains(x: Int): Boolean

def union(other: IntSet): IntSet

end IntSet

Dynamic Binding

Object-oriented languages (including Scala) implement dynamic method dispatch.
This means that the code invoked by a method call depends on the runtime type of
the object that contains the method.
Example

Empty.contains(1)

Dynamic Binding

Object-oriented languages (including Scala) implement dynamic method dispatch.
This means that the code invoked by a method call depends on the runtime type of
the object that contains the method.
Example

Empty.contains(1)

→ [1/x] [Empty/this] false

Dynamic Binding

Object-oriented languages (including Scala) implement dynamic method dispatch.
This means that the code invoked by a method call depends on the runtime type of
the object that contains the method.
Example

Empty.contains(1)

→ [1/x] [Empty/this] false

= false

Dynamic Binding (2)

Another evaluation using NonEmpty:
(NonEmpty(7, Empty, Empty)).contains(7)

Dynamic Binding (2)

Another evaluation using NonEmpty:
(NonEmpty(7, Empty, Empty)).contains(7)

→ [7/elem] [7/x] [new NonEmpty(7, Empty, Empty)/this]

if x < elem then this.left.contains(x)

else if x > elem then this.right.contains(x) else true

Dynamic Binding (2)

Another evaluation using NonEmpty:
(NonEmpty(7, Empty, Empty)).contains(7)

→ [7/elem] [7/x] [new NonEmpty(7, Empty, Empty)/this]

if x < elem then this.left.contains(x)

else if x > elem then this.right.contains(x) else true

= if 7 < 7 then NonEmpty(7, Empty, Empty).left.contains(7)

else if 7 > 7 then NonEmpty(7, Empty, Empty).right

.contains(7) else true

Dynamic Binding (2)

Another evaluation using NonEmpty:
(NonEmpty(7, Empty, Empty)).contains(7)

→ [7/elem] [7/x] [new NonEmpty(7, Empty, Empty)/this]

if x < elem then this.left.contains(x)

else if x > elem then this.right.contains(x) else true

= if 7 < 7 then NonEmpty(7, Empty, Empty).left.contains(7)

else if 7 > 7 then NonEmpty(7, Empty, Empty).right

.contains(7) else true

→ true

Something to Ponder

Dynamic dispatch of methods is analogous to calls to higher-order functions.
Question:
Can we implement one concept in terms of the other?

▶ Objects in terms of higher-order functions?
▶ Higher-order functions in terms of objects?

How Classes are Organized

CS-214 Software Construction

Packages

Classes and objects are organized in packages.
To place a class or object inside a package, use a package clause at the top of your
source file.

package progfun.examples

object Hello

...

This would place Hello in the package progfun.examples.
You can then refer it by its fully qualified name, progfun.examples.Hello. For instance,
to run the Hello program:

> scala progfun.examples.Hello

Imports

Say we have a class Rational in package week3.
You can use the class using its fully qualified name:

val r = week3.Rational(1, 2)

Alternatively, you can use an import:

import week3.Rational

val r = Rational(1, 2)

Forms of Imports

Imports come in several forms:

import week3.Rational // imports just Rational

import week3.{Rational, Hello} // imports both Rational and Hello

import week3.* // imports everything in package week3

The first two forms are called named imports.
The last form is called a wildcard import.
You can import from either a package or an object.

Automatic Imports

Some entities are automatically imported in any Scala program.
These are:

▶ All members of package scala
▶ All members of package java.lang
▶ All members of the singleton object scala.Predef.

Here are the fully qualified names of some types and functions which you have seen so
far:

Int scala.Int

Boolean scala.Boolean

Object java.lang.Object

require scala.Predef.require

assert scala.Predef.assert

Scaladoc

You can explore the standard Scala library using the scaladoc web pages.
You can start at
www.scala-lang.org/api/current

http://www.scala-lang.org/api/current

Traits

In Java, as well as in Scala, a class can only have one superclass.
But what if a class has several natural supertypes to which it conforms or from which
it wants to inherit code?
Here, you could use traits.
A trait is declared like an abstract class, just with trait instead of abstract class.

trait Planar:

def height: Int

def width: Int

def surface = height * width

Traits (2)

Classes, objects and traits can inherit from at most one class but arbitrary many traits.
Example:

class Square extends Shape, Planar, Movable ...

Traits resemble interfaces in Java, but are more powerful because they can have
parameters and can contain fields and concrete methods.

Scala’s Class Hierarchy

java.lang.Object

Top Types

At the top of the type hierarchy we find:
Any the base type of all types

Methods: ‘==‘, ‘!=‘, ‘equals‘, ‘hashCode, ‘toString‘

AnyRef The base type of all reference types;
Alias of ‘java.lang.Object‘

AnyVal The base type of all primitive types.

The Nothing Type

Nothing is at the bottom of Scala’s type hierarchy. It is a subtype of every other type.
There is no value of type Nothing.
Why is that useful?

▶ To signal abnormal termination
▶ As an element type of empty collections (see next session)

Exceptions

Scala’s exception handling is similar to Java’s.
The expression

throw Exc

aborts evaluation with the exception Exc.
The type of this expression is Nothing.

Exercise

What is the type of

if true then 1 else false

O Int

O Boolean

O AnyVal

O Object

O Any

Objects Everywhere

CS-214 Software Construction

Pure Object Orientation

A pure object-oriented language is one in which every value is an object.
If the language is based on classes, this means that the type of each value is a class.
Is Scala a pure object-oriented language?
At first glance, there seem to be some exceptions: primitive types, functions.
But, let’s look closer:

Standard Classes

Conceptually, types such as Int or Boolean do not receive special treatment in Scala.
They are like the other classes, defined in the package scala.
For reasons of efficiency, the Scala compiler represents the values of type scala.Int by
32-bit integers, and the values of type scala.Boolean by Java’s Booleans, etc.

Pure Booleans

The Boolean type maps to the JVM’s primitive type boolean.
But one could define it as a class from first principles:

package idealized.scala

abstract class Boolean extends AnyVal:

def ifThenElse[T](t: => T, e: => T): T

def && (x: => Boolean): Boolean = ifThenElse(x, false)

def || (x: => Boolean): Boolean = ifThenElse(true, x)

def unary_!: Boolean = ifThenElse(false, true)

def == (x: Boolean): Boolean = ifThenElse(x, x.unary_!)

def != (x: Boolean): Boolean = ifThenElse(x.unary_!, x)

...

end Boolean

Boolean Constants

Here are constants true and false that go with Boolean in idealized.scala:

package idealized.scala

object true extends Boolean:

def ifThenElse[T](t: => T, e: => T) = t

object false extends Boolean:

def ifThenElse[T](t: => T, e: => T) = e

Exercise

Provide an implementation of an implication operator ==> for class
idealized.scala.Boolean.

Exercise

Provide an implementation of an implication operator ==> for class
idealized.scala.Boolean.

extension (x: Boolean)

def ==> (y: Boolean) = x.ifThenElse(y, true)

That is, if x is true, y has to be true also, whereas if x is false, y can be arbitrary.

The class Int

Here is a partial specification of the class scala.Int.

class Int:

def + (that: Double): Double

def + (that: Float): Float

def + (that: Long): Long

def + (that: Int): Int // same for -, *, /, %

def << (cnt: Int): Int // same for >>, >>> */

def & (that: Long): Long

def & (that: Int): Int // same for |, ^ */

The class Int (2)

def == (that: Double): Boolean

def == (that: Float): Boolean

def == (that: Long): Boolean // same for !=, <, >, <=, >=

...

end Int

Can it be represented as a class from first principles (i.e. not using primitive ints?

Exercise

Provide an implementation of the abstract class Nat that represents non-negative
integers.

abstract class Nat:

def isZero: Boolean

def predecessor: Nat

def successor: Nat

def + (that: Nat): Nat

def - (that: Nat): Nat

end Nat

Exercise (2)

Do not use standard numerical classes in this implementation.
Rather, implement a sub-object and a sub-class:

object Zero extends Nat:

...

class Succ(n: Nat) extends Nat:

...

One for the number zero, the other for strictly positive numbers.
(this one is a bit more involved than previous quizzes).

Functions as Objects

CS-214 Software Construction

Functions as Objects

We have seen that Scala’s numeric types and the Boolean type can be implemented
like normal classes.
But what about functions?

Functions as Objects

We have seen that Scala’s numeric types and the Boolean type can be implemented
like normal classes.
But what about functions?
In fact function values are treated as objects in Scala.
The function type A => B is just an abbreviation for the class scala.Function1[A, B],
which is defined as follows.

package scala

trait Function1[A, B]:

def apply(x: A): B

So functions are objects with apply methods.
There are also traits Function2, Function3, … for functions which take more parameters.

Expansion of Function Values

An anonymous function such as

(x: Int) => x * x

is expanded to:

Expansion of Function Values

An anonymous function such as

(x: Int) => x * x

is expanded to:

new Function1[Int, Int]:

def apply(x: Int) = x * x

Expansion of Function Values

An anonymous function such as

(x: Int) => x * x

is expanded to:

new Function1[Int, Int]:

def apply(x: Int) = x * x

This anonymous class can itself be thought of as a block that defines and instantiates
a local class:

{ class $anonfun() extends Function1[Int, Int]:

def apply(x: Int) = x * x

$anonfun()

}

Expansion of Function Calls

A function call, such as f(a, b), where f is a value of some class type, is expanded to

f.apply(a, b)

So the OO-translation of

val f = (x: Int) => x * x

f(7)

would be

val f = new Function1[Int, Int]:

def apply(x: Int) = x * x

f.apply(7)

Functions and Methods

Note that a method such as

def f(x: Int): Boolean = ...

is not itself a function value.
But if f is used in a place where a Function type is expected, it is converted
automatically to the function value

(x: Int) => f(x)

or, expanded:

new Function1[Int, Boolean]:

def apply(x: Int) = f(x)

Exercise

In package week3, define an

object IntSet:

...

with 3 functions in it so that users can create IntSets of lengths 0-2 using syntax

IntSet() // the empty set

IntSet(1) // the set with single element 1

IntSet(2, 3) // the set with elements 2 and 3.

Decomposition

CS-214 Software Construction

Decomposition

Suppose you want to write a small interpreter for arithmetic expressions.
To keep it simple, let’s restrict ourselves to numbers and additions.
Expressions can be represented as a class hierarchy, with a base trait Expr and two
subclasses, Number and Sum.
To treat an expression, it’s necessary to know the expression’s shape and its
components.
This brings us to the following implementation.

Expressions

trait Expr:

def isNumber: Boolean

def isSum: Boolean

def numValue: Int

def leftOp: Expr

def rightOp: Expr

class Number(n: Int) extends Expr:

def isNumber = true

def isSum = false

def numValue = n

def leftOp = throw Error(”Number.leftOp”)

def rightOp = throw Error(”Number.rightOp”)

Expressions (2)

class Sum(e1: Expr, e2: Expr) extends Expr:

def isNumber = false

def isSum = true

def numValue = throw Error(”Sum.numValue”)

def leftOp = e1

def rightOp = e2

Evaluation of Expressions

You can now write an evaluation function as follows.

def eval(e: Expr): Int =

if e.isNumber then e.numValue

else if e.isSum then eval(e.leftOp) + eval(e.rightOp)

else throw Error(”Unknown expression ” + e)

Problem: Writing all these classification and accessor functions quickly becomes
tedious!
Problem: There’s no static guarantee you use the right accessor functions. You might
hit an Error case if you are not careful.

Adding New Forms of Expressions

So, what happens if you want to add new expression forms, say

class Prod(e1: Expr, e2: Expr) extends Expr // e1 * e2

class Var(x: String) extends Expr // Variable ‘x’

You need to add methods for classification and access to all classes defined above.

Question

To integrate Prod and Var into the hierarchy, how many new method definitions do you
need?
(including method definitions in Prod and Var themselves, but not counting methods
that were already given on the slides)
Possible Answers

O 9

O 10

O 19

O 25

O 35

O 40

Question

To integrate Prod and Var into the hierarchy, how many new method definitions do you
need?
(including method definitions in Prod and Var themselves, but not counting methods
that were already given on the slides)
Possible Answers

O 9

O 10

O 19

X 25

X 35

O 40

(depending on whether leftOp and rightOp is shared between Sum and Prod).

Non-Solution: Type Tests and Type Casts

A “hacky” solution could use type tests and type casts.
Scala let’s you do these using methods defined in class Any:

def isInstanceOf[T]: Boolean // checks whether this object’s type conforms to ‘T‘

def asInstanceOf[T]: T // treats this object as an instance of type ‘T‘

// throws ‘ClassCastException‘ if it isn’t.

These correspond to Java’s type tests and casts

Scala Java

x.isInstanceOf[T] x instanceof T

x.asInstanceOf[T] (T) x

But their use in Scala is discouraged, because there are better alternatives.

Eval with Type Tests and Type Casts

Here’s a formulation of the eval method using type tests and casts:

def eval(e: Expr): Int =

if e.isInstanceOf[Number] then

e.asInstanceOf[Number].numValue

else if e.isInstanceOf[Sum] then

eval(e.asInstanceOf[Sum].leftOp)

+ eval(e.asInstanceOf[Sum].rightOp)

else throw Error(”Unknown expression ” + e)

This is ugly and potentially unsafe.

Solution 1: Object-Oriented Decomposition

For example, suppose that all you want to do is evaluate expressions.
You could then define:

trait Expr:

def eval: Int

class Number(n: Int) extends Expr:

def eval: Int = n

class Sum(e1: Expr, e2: Expr) extends Expr:

def eval: Int = e1.eval + e2.eval

But what happens if you’d like to display expressions now?
You have to define new methods in all the subclasses.

Assessment of OO Decomposition

▶ OO decomposition mixes data with operations on the data.
▶ This can be the right thing if there’s a need for encapsulation and data

abstraction.
▶ On the other hand, it increases complexity(*) and adds new dependencies to

classes.
▶ It makes it easy to add new kinds of data but hard to add new kinds of operations.

(*) In the literal sense of the word:
complex = plaited, woven together

Thus, complexity arises from mixing several things together.

Limitations of OO Decomposition

OO decomposition only works well if operations are on a single object.
What if you want to simplify expressions, say using the rule:

a * b + a * c -> a * (b + c)

Problem: This is a non-local simplification. It cannot be encapsulated in the method
of a single object.
You are back to square one; you need test and access methods for all the different
subclasses.

Pattern Matching

CS-214 Software Construction

Reminder: Decomposition

The task we are trying to solve is find a general and convenient way to access
heterogeneous data in a class hierarchy.

Expr

|

+---+----+

| |

Number Sum

Attempts seen previously:

▶ Classification and access methods: quadratic explosion
▶ Type tests and casts: unsafe, low-level
▶ Object-oriented decomposition: causes coupling between data and operations,

need to touch all classes to add a new method.

Solution 2: Functional Decomposition with Pattern Matching

Observation: the sole purpose of test and accessor functions is to reverse the
construction process:

▶ Which subclass was used?
▶ What were the arguments of the constructor?

This situation is so common that many functional languages, Scala included, automate
it.

Case Classes

A case class definition is similar to a normal class definition, except that it is preceded
by the modifier case. For example:

trait Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr, e2: Expr) extends Expr

Like before, this defines a trait Expr, and two concrete subclasses Number and Sum.
However, these classes are now empty. So how can we access the members?

Pattern Matching

Pattern matching is a generalization of switch from C/Java to class hierarchies.
It’s expressed in Scala using the keyword match.
Example

def eval(e: Expr): Int = e match

case Number(n) => n

case Sum(e1, e2) => eval(e1) + eval(e2)

Match Syntax

Rules:

▶ match is preceded by a selector expression and is followed by a sequence of cases,
pat => expr.

▶ Each case associates an expression expr with a pattern pat.
▶ A MatchError exception is thrown if no pattern matches the value of the selector.

Forms of Patterns

Patterns are constructed from:

▶ constructors, e.g. Number, Sum,
▶ variables, e.g. n, e1, e2,
▶ wildcard patterns _,
▶ constants, e.g. 1, true.
▶ type tests, e.g. n: Number

Variables always begin with a lowercase letter.
The same variable name can only appear once in a pattern. So, Sum(x, x) is not a
legal pattern.
Names of constants begin with a capital letter, with the exception of the reserved
words null, true, false.

Evaluating Match Expressions

An expression of the form

e match { case p1 => e1 ... case pn => en }

matches the value of the selector e with the patterns p1, ..., pn in the order in which
they are written.
The whole match expression is rewritten to the right-hand side of the first case where
the pattern matches the selector e.
References to pattern variables are replaced by the corresponding parts in the selector.

What Do Patterns Match?

▶ A constructor pattern C(p1, ..., pn) matches all the values of type C (or a subtype)
that have been constructed with arguments matching the patterns p1, ..., pn.

▶ A variable pattern x matches any value, and binds the name of the variable to this
value.

▶ A constant pattern c matches values that are equal to c (in the sense of ==)

Example

Example

eval(Sum(Number(1), Number(2)))

→

Sum(Number(1), Number(2)) match

case Number(n) => n

case Sum(e1, e2) => eval(e1) + eval(e2)

→

eval(Number(1)) + eval(Number(2))

Example (2)

→

Number(1) match

case Number(n) => n

case Sum(e1, e2) => eval(e1) + eval(e2)

+ eval(Number(2))

→

1 + eval(Number(2))

→→

3

Pattern Matching and Methods

Of course, it’s also possible to define the evaluation function as a method of the base
trait.
Example

trait Expr:

def eval: Int = this match

case Number(n) => n

case Sum(e1, e2) => e1.eval + e2.eval

Exercise

Write a function show that uses pattern matching to return the representation of a
given expressions as a string.

def show(e: Expr): String = ???

Exercise (Optional, Harder)

Add case classes Var for variables x and Prod for products x * y as discussed previously.
Change your show function so that it also deals with products.
Pay attention you get operator precedence right but to use as few parentheses as
possible.
Example

Sum(Prod(Number(2), Var(”x”)), Var(”y”))

should print as “2 * x + y”. But

Prod(Sum(Number(2), Var(”x”)), Var(”y”))

should print as “(2 + x) * y”.

Enums

CS-214 Software Construction

Pure Data

In the previous sessions, you have learned how to model data with class hierarchies.
Classes are essentially bundles of functions operating on some common values
represented as fields.
They are a very useful abstraction, since they allow encapsulation of data.
But sometimes we just need to compose and decompose pure data without any
associated functions.
Case classes and pattern matching work well for this task.

A Case Class Hierarchy

Here’s our case class hierarchy for expressions again:

trait Expr

object Expr:

case class Var(s: String) extends Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr, e2: Expr) extends Expr

case class Prod(e1: Expr, e2: Expr) extends Expr

This time we have put all case classes in the Expr companion object, in order not to
pollute the global namespace.
So it’s Expr.Number(1) instead of Number(1), for example.
One can still “pull out” all the cases using an import.

import Expr.*

A Case Class Hierarchy

Here’s our case class hierarchy for expressions again:

trait Expr

object Expr:

case class Var(s: String) extends Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr, e2: Expr) extends Expr

case class Prod(e1: Expr, e2: Expr) extends Expr

Pure data definitions like these are called algebraic data types, or ADTs for short.
They are very common in functional programming.
To make them even more convenient, Scala offers some special syntax.

Enums for ADTs

An enum enumerates all the cases of an ADT and nothing else.
Example

enum Expr:

case Var(s: String)

case Number(n: Int)

case Sum(e1: Expr, e2: Expr)

case Prod(e1: Expr, e2: Expr)

This enum is equivalent to the case class hierarchy on the previous slide, but is shorter,
since it avoids the repetitive class ... extends Expr notation.

Pattern Matching on ADTs

Match expressions can be used on enums as usual.
For instance, to print expressions with proper parameterization:

def show(e: Expr): String = e match

case Expr.Var(x) => x

case Expr.Number(n) => n.toString

case Expr.Sum(a, b) => s”${show(a)} + ${show(a)}}”

case Expr.Prod(a, b) => s”${showP(a)} * ${showP(a)}”

def showP(e: Expr): String = e match

case e: Sum => s”(${show(expr)})”

case _ => show(expr)

Simple Enums

Cases of an enum can also be simple values, without any parameters.
Example

Define a Color type with values Red, Green, and Blue:

enum Color:

case Red

case Green

case Blue

We can also combine several simple cases in one list:

enum Color:

case Red, Green, Blue

Pattern Matching on Simple Enums

For pattern matching, simple cases count as constants:

enum DayOfWeek:

case Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

import DayOfWeek.*

def isWeekend(day: DayOfWeek) = day match

case Saturday | Sunday => true

case _ => false

More Fun With Enums

Enumerations can take parameters and can define methods.
Example:

enum Direction(val dx: Int, val dy: Int):

case Right extends Direction(1, 0)

case Up extends Direction(0, 1)

case Left extends Direction(-1, 0)

case Down extends Direction(0, -1)

def leftTurn = Direction.values((ordinal + 1) % 4)

end Direction

val r = Direction.Right

val u = x.leftTurn // u = Up

val v = (u.dx, u.dy) // v = (1, 0)

More Fun With Enums

Notes:

▶ Enumeration cases that pass parameters have to use an explicit extends clause
▶ The expression e.ordinal gives the ordinal value of the enum case e. Cases start

with zero and are numbered consecutively.
▶ values is an immutable array in the companion object of an enum that contains

all enum values.
▶ Only simple cases have ordinal numbers and show up in values, parameterized

cases do not.

Enumerations Are Shorthands for Classes and Objects

The Direction enum is expanded by the Scala compiler to roughly the following
structure:

abstract class Direction(val dx: Int, val dy: Int):

def rightTurn = Direction.values((ordinal - 1) % 4)

object Direction:

val Right = new Direction(1, 0) {}

val Up = new Direction(0, 1) {}

val Left = new Direction(-1, 0) {}

val Down = new Direction(0, -1) {}

end Direction

There are also compiler-defined helper methods ordinal in the class and values and
valueOf in the companion object.

Domain Modeling

ADTs and enums are particularly useful for domain modelling tasks where one needs to
define a large number of data types without attaching operations.
Example: Modelling payment methods.

enum PaymentMethod:

case CreditCard(kind: Card, holder: String, number: Long, expires: Date)

case PayPal(email: String)

case Cash

enum Card:

case Visa, Mastercard, Amex

Summary

In this unit, we covered two uses of enum definitions:

▶ as a shorthand for hierarchies of case classes,
▶ as a way to define data types accepting alternative values,

The two cases can be combined: an enum can comprise parameterized and simple
cases at the same time.
Enums are typically used for pure data, where all operations on such data are defined
elsewhere.

