=PrL

Higher-Order Functions

(CS-214 Software Construction

Higher-Order Functions

Functional languages treat functions as first-class values.

This means that, like any other value, a function can be passed as a parameter and
returned as a result.

This provides a flexible way to compose programs.

Functions that take other functions as parameters or that return functions as results
are called higher order functions.

Example:

Take the sum of the integers between a and b:

def sumInts(a: Int, b: Int): Int =
if a > b then @ else a + sumInts(a + 1, b)

Take the sum of the cubes of all the integers between a and b :

def cube(x: Int): Int = x * x * X

def sumCubes(a: Int, b: Int): Int =
if a > b then @ else cube(a) + sumCubes(a + 1, b)

Example (ctd)

Take the sum of the factorials of all the integers between a and b :

def sumFactorials(a: Int, b: Int): Int =
if a > b then 0 else factorial(a) + sumFactorials(a + 1, b)

These are special cases of

for different values of f.

Can we factor out the common pattern?

Summing with Higher-Order Functions

Let's define:

def sum(f: Int => Int, a: Int, b: Int): Int =
if a > b then 0@
else f(a) + sum(f, a + 1, b)

We can then write:

def sumInts(a: Int, b: Int)
def sumCubes(a: Int, b: Int)
def sumFactorials(a: Int, b: Int)

sum(id, a, b)
sum(cube, a, b)
sum(fact, a, b)

where

def id(x: Int): Int
def cube(x: Int): Int
def fact(x: Int): Int

1
x

X * X % X
if x == @ then 1 else x * fact(x - 1)

Function Types

The type A => B is the type of a function that takes an argument of type A and returns
a result of type B.

So, Int => Int is the type of functions that map integers to integers.

Anonymous Functions

Passing functions as parameters leads to the creation of many small functions.
» Sometimes it is tedious to have to define (and name) these functions using def.
Compare to strings: We do not need to define a string using def. Instead of
def str = ”abc”; println(str)
We can directly write
println(”abc”)

because strings exist as literals. Analogously we would like function literals, which let
us write a function without giving it a name.

These are called anonymous functions.

Anonymous Function Syntax

Example: A function that raises its argument to a cube:
(x: Int) => x * X * X
Here, (x: Int) is the parameter of the function, and x * x % x is it's body.

» The type of the parameter can be omitted if it can be inferred by the compiler
from the context.

If there are several parameters, they are separated by commas:

(x: Int, y: Int) => x +y

Anonymous Functions are Syntactic Sugar

An anonymous function (x; : Ty, ..., x, : T,) = E can always be expressed using def as
follows:

def f(x1 : TryeeyXy i Ty) = E;

where f is an arbitrary, fresh name (that's not yet used in the program).

» One can therefore say that anonymous functions are syntactic sugar.

Summation with Anonymous Functions

Using anonymous functions, we can write sums in a shorter way:

def sumInts(a: Int, b: Int) sum(x => x, a, b)
def sumCubes(a: Int, b: Int) = sum(x => x * x * X, a, b)

=PrL

Currying

(CS-214 Software Construction

Motivation

Look again at the summation functions:

def sumInts(a: Int, b: Int) sum(x => x, a, b)
def sumCubes(a: Int, b: Int) sum(x => x * X * X, a, b)
def sumFactorials(a: Int, b: Int) = sum(fact, a, b)

Q:

Note that a and b get passed unchanged from sumInts and sumCubes into sum.

Can we be even shorter by getting rid of these parameters?

Functions Returning Functions

Let's rewrite sum as follows.

def sum(f: Int => Int): (Int, Int) => Int =
def sumF(a: Int, b: Int): Int =
if a > b then @
else f(a) + sumF(a + 1, b)
sumF

sum is how a function that returns another function.

The returned function sumF applies the given function parameter f and sums the results.

Stepwise Applications

We can then define:

def sumInts sum(x => x)

def sumCubes sum(x => X * X * X)

def sumFactorials = sum(fact)
These functions can in turn be applied like any other function:

sumCubes(1, 10) + sumFactorials(10, 20)

Consecutive Stepwise Applications

In the previous example, can we avoid the sumInts, sumCubes, .. middlemen?

Of course:

sum (cube) (1, 10)

Consecutive Stepwise Applications

In the previous example, can we avoid the sumInts, sumCubes, .. middlemen?

Of course:

sum (cube) (1, 10)

» sum(cube) applies sum to cube and returns the sum of cubes function.
» sum(cube) is therefore equivalent to sumCubes.
» This function is next applied to the arguments (1, 10).

Consecutive Stepwise Applications

In the previous example, can we avoid the sumInts, sumCubes, .. middlemen?

Of course:

sum (cube) (1, 10)

» sum(cube) applies sum to cube and returns the sum of cubes function.
» sum(cube) is therefore equivalent to sumCubes.
» This function is next applied to the arguments (1, 10).

Generally, function application associates to the left:

sum(cube) (1, 10) == (sum (cube)) (1, 10)

Multiple Parameter Lists

The definition of functions that return functions is so useful in functional programming
that there is a special syntax for it in Scala.

For example, the following definition of sum is equivalent to the one with the nested
sumF function, but shorter:

def sum(f: Int => Int)(a: Int, b: Int): Int =
if a > b then @ else f(a) + sum(f)(a + 1, b)

Expansion of Multiple Parameter Lists

In general, a definition of a function with multiple parameter lists

def f(pst)...(psn) = E

where n > 1, is equivalent to

def f(psi)...(psn—1) = {def g(ps,) = E; g}

where g is a fresh identifier. Or for short:

def f(ps1)...(psn—1) = (psn = E)

Expansion of Multiple Parameter Lists (2)

By repeating the process n times

def f(psi)...(psn—1)(psn) = E
is shown to be equivalent to

def f = (ps; = (ps; = ...(psn = E)...))

This style of definition and function application is called currying, named for its
instigator, Haskell Brooks Curry (1900-1982), a twentieth century logician.

In fact, the idea goes back even further to Schénfinkel and Frege, but the term
“currying” has stuck.

More Function Types

Question: Given,

def sum(f: Int => Int)(a: Int, b: Int): Int = ...

What is the type of sum ?

More Function Types

Question: Given,
def sum(f: Int => Int)(a: Int, b: Int): Int = ...

What is the type of sum ?

Answer:
(Int => Int) => (Int, Int) => Int
Note that function types associate to the right. That is to say that
Int => Int => Int
is equivalent to

Int => (Int => Int)

Exercise

1. Write a product function that calculates the product of the values of a function
for the points on a given interval.

2. Write factorial in terms of product.

3. Can you write a more general function, which generalizes both sum and product?

=PrL

Example: Finding Fixed Points (extra reading)

(CS-214 Software Construction

Finding a fixed point of a function

A number x is called a fixed point of a function f if
f(x) = x

For some functions f we can locate the fixed points by starting with an initial estimate
and then by applying f in a repetitive way.

x, £OO, £(FCO), f(FEECD)), ..

until the value does not vary anymore (or the change is sufficiently small).

Programmatic Solution

This leads to the following function for finding a fixed point:

val tolerance = 0.0001

def isCloseEnough(x: Double, y: Double) =
abs((x - y) / x) < tolerance

def fixedPoint(f: Double => Double)(firstGuess: Double): Double =
def iterate(guess: Double): Double =
val next = f(guess)
if isCloseEnough(guess, next) then next
else iterate(next)
iterate(firstGuess)

Return to Square Roots

Here is a specification of the sqrt function:
sqrt(x) = the number y such thaty » y = x.

Or, by dividing both sides of the equation with y:
sqrt(x) = the number y such thaty = x / y.

Consequently, sqrt(x) is a fixed point of the function (y => x / y).

First Attempt

This suggests to calculate sqrt(x) by iteration towards a fixed point:

def sqrt(x: Double) =
fixedPoint(y => x / y)(1.0)

Unfortunately, this does not converge.

Let's add a println instruction to the function fixedPoint so we can follow the current
value of guess:

First Attempt (2)

def fixedPoint(f: Double => Double)(firstGuess: Double) =

def iterate(guess: Double): Double =
val next = f(guess)
println(next)
if isCloseEnough(guess, next) then next
else iterate(next)

iterate(firstGuess)
sqrt(2) then produces:

2.0
1.0
2.0
1.0

Average Damping

One way to control such oscillations is to prevent the estimation from varying too
much. This is done by averaging successive values of the original sequence:

def sqrt(x: Double) = fixedPoint(y => (y + x / y) / 2)(1.0)
This produces

1.5

1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623746899

In fact, if we expand the fixed point function fixedPoint we find a similar square root
function to what we developed last week.

Functions as Return Values

The previous examples have shown that the expressive power of a language is greatly
increased if we can pass function arguments.

The following example shows that functions that return functions can also be very
useful.

Consider again iteration towards a fixed point.
We begin by observing that /x is a fixed point of the function y => x / y.
Then, the iteration converges by averaging successive values.

This technique of stabilizing by averaging is general enough to merit being abstracted
into its own function.

def averageDamp(f: Double => Double)(x: Double): Double =
(x + f(x)) /7 2

Exercise:

Write a square root function using fixedPoint and averageDamp.

Final Formulation of Square Root

def sqgrt(x: Double) = fixedPoint (averageDamp (y => x/y)) (1.0)

This expresses the elements of the algorithm as clearly as possible.

Summary

We saw last week that functions are essential abstractions because they allow us to
introduce general methods to perform computations as explicit and named elements in
our programming language.

This week, we've seen that these abstractions can be combined with higher-order
functions to create new abstractions.

As a programmer, one must look for opportunities to abstract and reuse.

The highest level of abstraction is not always the best, but it is important to know the
techniques of abstraction, so as to use them when appropriate.

=PrL

Scala Syntax Summary

(CS-214 Software Construction

Language Elements Seen So Far:

We have seen language elements to express types, expressions and definitions.

Below, we give their context-free syntax in Extended Backus-Naur form (EBNF), where
| denotes an alternative,
[...] an option (0 or 1),

{...} a repetition (0 or more).

Types

Type = SimpleType | FunctionType
FunctionType = SimpleType ‘=>’ Type

| ¢’ [Types])’ ‘=>’ Type
SimpleType = Ident
Types = Type {‘,’ Type}

A type can be:

» A numeric type: Int, Double (and Byte, Short, Char, Long, Float),
» The Boolean type with the values true and false,

» The String type,

» A function type, like Int => Int, (Int, Int) => Int.

Later we will see more forms of types.

Expressions

Expr

InfixExpr
Operator
PrefixExpr
SimpleExpr

FunctionExpr
Bindings

Binding
Block

InfixExpr | FunctionExpr
if Expr then Expr else Expr
PrefixExpr | InfixExpr Operator InfixExpr

ident

L+ | <=2 | <17 | “~” 7] SimpleExpr
ident | literal | SimpleExpr ‘.’ ident
Block

Bindings ‘=>¢ Expr

ident

‘(’ [Binding {¢,’ Bindingl}])’

ident [‘:’ Typel

“{’ {Def “;’3} Expr *‘}’
<indent> {Def ¢‘;’} Expr <outdent>

Expressions (2)

An expression can be:

» An identifier such as x, isGoodEnough,

» A literal, like 9, 1.9, ”abc”,

> A function application, like sqrt(x),

» An operator application, like -x, y + x,

» A selection, like math.abs,

» A conditional expression, like if x < @ then -x else x,
> A block, like { val x = abs(y) ; x * 2 }

» An anonymous function, like x => x + 1.

Definitions

Def = FunDef | ValDef

FunDef = def ident {‘(’ [Parameters] ‘)’}
[:” Typel ‘=’ Expr

ValDef = val ident [‘:’ Typel ‘=’ Expr

Parameter = ident ‘:’ [‘=>’ 1 Type

Parameters = Parameter {¢,’ Parameter}

A definition can be:

» A function definition, like def square(x: Int) = x * x
» A value definition, like val y = square(2)

A parameter can be:

» A call-by-value parameter, like (x: Int),
» A call-by-name parameter, like (y: => Double).

=PrL

Functions and Data

(CS-214 Software Construction

Functions and Data

In this section, we'll learn how functions create and encapsulate data structures.

Example: Rational Numbers
We want to design a package for doing rational arithmetic.

A rational number ;{ is represented by two integers:

» its numerator x, and
» its denominator y.

Rational Addition

Suppose we want to implement the addition of two rational numbers.

def addRationalNumerator(nl: Int, d1: Int, n2: Int, d2: Int): Int
def addRationalDenominator(nil: Int, d1: Int, n2: Int, d2: Int): Int

but it would be difficult to manage all these numerators and denominators.

A better choice is to combine the numerator and denominator of a rational number in
a data structure.

Classes

In Scala, we do this by defining a class:

class Rational(x: Int, y: Int):
def numer = x
def denom =y

This definition introduces two entities:

> A new type, named Rational.
» A constructor Rational to create elements of this type.

Scala keeps the names of types and values in different namespaces. So there's no
conflict between the two entities named Rational.

Objects

We call the elements of a class type objects.
We create an object by calling the constructor of the class:

Example

Rational (1, 2)

Members of an Object

Objects of the class Rational have two members, numer and denom.
We select the members of an object with the infix operator ‘..
Example

val x = Rational(1l, 2) // x: Rational = Rational@2abe@e27

X.numer // 1
x.denom // 2

Rational Arithmetic

We can now define the arithmetic functions that implement the standard rules.

Mmoo onp _ mdatmd
di do did>
nig _ ng __ nida—nad;
di do dyds
mo, o n2 _ nmng

d dy T did>
moynz _ mdo

di/ do T ding

ni ny

=10 iff nydy = dingy

Implementing Rational Arithmetic

def addRational(r: Rational, s: Rational): Rational =
Rational(
r.numer * s.denom + s.numer * r.denom,
r.denom * s.denom)

def makeString(r: Rational): String =
s”${r.numer}/${r.denom}”

makeString(addRational (Rational(1, 2), Rational(2, 3))) > 7/6

Note: s”...” in makeString is an interpolated string, with values r.numer and r.denom
in the places enclosed by ${...}.

Methods

One can go further and also package functions operating on a data abstraction in the
data abstraction itself.

Such functions are called methods.
Example

Rational numbers now would have, in addition to the functions numer and denom, the
functions add, sub, mul, div, equal, toString.

Methods for Rationals

Here's a possible implementation:

class Rational(x: Int, y: Int):
def numer = x
def denom =y
def add(r: Rational) =
Rational(numer * r.denom + r.numer * denom,
denom * r.denom)
def mul(r: Rational) = ...

override def toString = s”$numer/$denom”

Remark: the modifier override declares that toString redefines a method that already
exists (in the class java.lang.Object).

Calling Methods

Here is how one might use the new Rational abstraction:

val x = Rational(l, 3)
val y = Rational(5, 7)
val z = Rational(3, 2)
x.add(y).mul(z)

Exercise

1. In your worksheet, add a method neg to class Rational that is used like this:

X.neg // evaluates to -x
2. Add a method sub to subtract two rational numbers.

3. With the values of x, y, z as given in the previous slide, what is the result of

X-y-z

=PrL

Data Abstraction

(CS-214 Software Construction

Data Abstraction

The previous example has shown that rational numbers aren’t always represented in
their simplest form. (Why?)

One would expect the rational numbers to be simplified.

» reduce them to their smallest numerator and denominator by dividing both with a
divisor.

We could implement this in each rational operation, but it would be easy to forget this
division in an operation.

A better alternative consists of simplifying the representation in the class when the
objects are constructed:

Rationals with Data Abstraction

class Rational(x: Int, y: Int):
private def gcd(a: Int, b: Int): Int =
if b == @ then a else gcd(b, a % b)
private val g = gcd(x, y)
def numer = x / g
y/’g

def denom

ged(a, b) computes the greatest common divisor of a and b.
gcd and g are private members; we can only access them from inside the Rational class.

In this example, we calculate gcd immediately, so that its value can be re-used in the
calculations of numer and denom.

Rationals with Data Abstraction (2)

It is also possible to call gcd in the code of numer and denom:

class Rational(x: Int, y: Int):
private def gcd(a: Int, b: Int): Int =
if b == @ then a else gcd(b, a % b)
def numer = x / gcd(x, y)
def denom =y / gcd(x, y)

This can be advantageous if it is expected that the functions numer and denom are
called infrequently.

Rationals with Data Abstraction (3)

It is equally possible to turn numer and denom into vals, so that they are computed only
once:

class Rational(x: Int, y: Int):
private def gcd(a: Int, b: Int): Int =
if b == @ then a else gcd(b, a % b)
val numer = x / gcd(x, y)
val denom =y / gcd(x, y)

This can be advantageous if the functions numer and denom are called often.

The Client's View

Clients observe exactly the same behavior in each case.

This ability to choose different implementations of the data without affecting clients is
called data abstraction.

It is a cornerstone of software engineering.

Self Reference

On the inside of a class, the name this represents the object on which the current
method is executed.

Example

Add the functions less and max to the class Rational.

class Rational(x: Int, y: Int):

def less(that: Rational): Boolean
numer * that.denom < that.numer * denom

def max(that: Rational): Rational
if this.less(that) then that else this

Self Reference (2)

Note that a simple name m, which refers to another member of the class, is an
abbreviation of this.m. Thus, an equivalent way to formulate less is as follows.

def less(that: Rational): Boolean =
this.numer * that.denom < that.numer * this.denom

Preconditions

Let's say our Rational class requires that the denominator is positive.

We can enforce this by calling the require function.

class Rational(x: Int, y: Int):
require(y > @, ”denominator must be positive”)

require is a predefined function.
It takes a condition and an optional message string.

If the condition passed to require is false, an IllegalArgumentException is thrown
with the given message string.

Assertions

Besides require, there is also assert.

Assert also takes a condition and an optional message string as parameters. E.g.

val x = sqrt(y)
assert(x >= 0)

Like require, a failing assert will also throw an exception, but it's a different one:
AssertionError for assert, I1legalArgumentException for require.

This reflects a difference in intent

P> require is used to enforce a precondition on the caller of a function.
P> assert is used as to check the code of the function itself.

Constructors

In Scala, a class implicitly introduces a constructor. This one is called the primary
constructor of the class.

The primary constructor

> takes the parameters of the class
» and executes all statements in the class body (such as the require a couple of
slides back).

Auxiliary Constructors

Scala also allows the declaration of auxiliary constructors.
These are methods named this

Example Adding an auxiliary constructor to the class Rational.

class Rational(x: Int, y: Int):
def this(x: Int) = this(x, 1)

Rational(2) > 2/1

End Markers

With longer lists of definitions and deep nesting, it's sometimes hard to see where a
class or other construct ends.

End markers are a tool to make this explicit.

class Rational(x: Int, y: Int):
def this(x: Int) = this(x, 1)

end Rational

» And end marker is followed by the name that's defined in the definition that ends
at this point.

» It must align with the opening keyword (class in this case).

End Markers
End markers are also allowed for other constructs.
def sqrt(x: Double): Double =
ené ;qrt
if x >= @ then
else
end if

If the end marker terminates a control expression such as if, the beginning keyword is
repeated.

Exercise

Modify the Rational class so that rational numbers are kept unsimplified internally, but
the simplification is applied when numbers are converted to strings.

Do clients observe the same behavior when interacting with the rational class?

0 yes
0 no
0 yes for small sizes of denominators and nominators

and small numbers of operations.

=PrL

Evaluation and Operators

(CS-214 Software Construction

Classes and Substitutions

We previously defined the meaning of a function application using a computation
model based on substitution. Now we extend this model to classes and objects.

Question: How is an instantiation of the class C(ey, ..., e,) evaluted?

Answer: The expression arguments ey, ..., e, are evaluated like the arguments of a
normal function. That's it.

The resulting expression, say, C(vi, ..., vy), is already a value.

Classes and Substitutions

Now suppose that we have a class definition,

class C(xqy ooy xp){ ... def f(y1,...,yn) =b ... }

where
» The formal parameters of the class are x, ..., x;.
» The class defines a method f with formal parameters y, ..., y,.

(The list of function parameters can be absent. For simplicity, we have omitted the
parameter types.)

Question: How is the following expression evaluated?

C(v1, ey Vi) F (w1, ...,wn)

Classes and Substitutions (2)

Answer: The expression C(vy, ..., vy).f(wy,...,w,) is rewritten to:
[w1/y1, ey wn/yn][v1/x17 ey vm/xm] [C(v1 s e vm)/this] b
There are three substitutions at work here:

» the substitution of the formal parameters y,, ..., y, of the function f by the

arguments w, ..., wy,
» the substitution of the formal parameters xi, ..., x, of the class C by the class
arguments vq, ..., Vp,

» the substitution of the self reference this by the value of the object C(vy, ..., v,).

Object Rewriting Examples

Rational(1, 2).numer

Object Rewriting Examples

Rational(1, 2).numer

— [1/x,2/y] [] [Rational(1,2)/this] x

Object Rewriting Examples

Rational(1, 2).numer

— [1/x,2/y] [] [Rational(1,2)/this] x
1

Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x
=1

Rational(1, 2).less(Rational(2, 3))

Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x
=1

Rational(1, 2).less(Rational(2, 3))

— [1/x,2/y] [Rational(2,3)/that] [Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))

— [1/x,2/y] [Rational(2,3)/that] [Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= Rational(1, 2).numer * Rational(2, 3).denom <
Rational(2, 3).numer * Rational(1l, 2).denom

Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))

— [1/x,2/y] [Rational(2,3)/that] [Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= Rational(1, 2).numer * Rational(2, 3).denom <
Rational(2, 3).numer * Rational(1l, 2).denom

—» 1 % 3<2x%2

—» true

Extension Methods

Having to define all methods that belong to a class inside the class itself can lead to
very large classes, and is not very modular.

Methods that do not need to access the internals of a class can alternatively be defined
as extension methods.

For instance, we can add min and abs methods to class Rational like this:
extension (r: Rational)

def min(s: Rational): Rational = if s.less(r) then s else r
def abs: Rational = Rational(r.numer.abs, r.denom)

Using Extension Methods

Extensions of a class are visible if they are listed in the companion object of a class (as
in the code above) or if they defined or imported in the current scope.

Members of a visible extensions of class C can be called as if they were members of C.
Eg.

Rational(1/2).min(Rational(2/3))
Caveats:

> Extensions can only add new members, not override existing ones.

» Extensions cannot refer to other class members via this

Extension Methods and Substitutions

Extension method substitution works like normal substitution, but

P instead of this it's the extension parameter that gets substituted,
» class parameters are not visible, so do not need to be substituted at all.

Rational(1, 2).min(Rational(2, 3))

Extension Methods and Substitutions

Extension method substitution works like normal substitution, but

P instead of this it's the extension parameter that gets substituted,
» class parameters are not visible, so do not need to be substituted at all.

Rational(1, 2).min(Rational(2, 3))

— [Rational(1,2)/r] [Rational(2,3)/s| if x.less(r) then s else r

Extension Methods and Substitutions

Exten

> i

sion method substitution works like normal substitution, but

nstead of this it's the extension parameter that gets substituted,

» class parameters are not visible, so do not need to be substituted at all.

- |

Rational(1, 2).min(Rational(2, 3))

Rational(1,2)/r| [Rational(2,3)/s] if x.less(r) then s else r

if Rational(2, 3).less(Rational(l, 2)
then Rational(2, 3)
else Rational(1, 2)

Operators

In principle, the rational numbers defined by Rational are as natural as integers.

But for the user of these abstractions, there is a noticeable difference:

> We write x + y, if x and y are integers, but
» We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this difference. We proceed in two steps.

Step 1: Relaxed Identifiers

Operators such as + or < count as identifiers in Scala.

Thus, an identifier can be:

» Alphanumeric: starting with a letter, followed by a sequence of letters or numbers
» Symbolic: starting with an operator symbol, followed by other operator symbols.

» The underscore character ’_’ counts as a letter.
» Alphanumeric identifiers can also end in an underscore, followed by some operator
symbols.

Examples of identifiers:

x1 * +?%& vector_++ counter_=

Step 1: Relaxed Identifiers

Since operators are identifiers, it is possible to use them as method names. E.g.

extension (x: Rational)
def + (y: Rational): Rational = x.add(y)
def * (y: Rational): Rational = x.mul(y)

This allows rational numbers to be used like Int or Double:

val x = Rational(l, 2)
val y = Rational(1, 3)

X * X +y*y

Step 2: Infix Notation

An operator method with a single parameter can be used as an infix operator.

An alphanumeric method with a single parameter can also be used as an infix operator
if it is declared with an infix modifier. E.g.

extension (x: Rational)
infix def min(that: Rational): Rational = ...

It is therefore possible to write

r+s r.+(s)
r<s /* in place of */ r.<(s)
r min s r.min(s)

Precedence Rules

The precedence of an operator is determined by its first character.
The following table lists the characters in increasing order of priority precedence:

(all letters)
I

&
<
=

+_
*/ %
(all other special characters)

Exercise

Provide a fully parenthesized version of
a+tb*"®c?™dlessa=>b | c

Every binary operation needs to be put into parentheses, but the structure of the
expression should not change.

