=PrL

Why Functional Programming?

(CS-214 Software Construction

Programming Paradigms

Paradigm: In science, a paradigm describes distinct concepts or thought patterns in
some scientific discipline.

Main programming paradigms:

» imperative programming
> functional programming
» logic programming

Orthogonal to it:

P object-oriented programming

Review: Imperative programming

Imperative programming is about

» modifying mutable variables,
P using assignments
» and control structures such as if-then-else, loops, break, continue, return.

The most common informal way to understand imperative programs is as instruction
sequences for a Von Neumann computer.

Imperative Programs and Computers

There's a strong correspondence between

Mutable variables
Variable dereferences
Variable assignments
Control structures

memory cells
load instructions
store instructions
jumps

QR

Problem: Scaling up. How can we avoid conceptualizing programs word by word?

Reference: John Backus, Can Programming Be Liberated from ‘
the von. Neumann Style?, Turing Award Lecture 1978.

Scaling Up

In the end, pure imperative programming is limited by the “Von Neumann" bottleneck:
One tends to conceptualize data structures word-by-word.

We need other techniques for defining high-level abstractions such as collections,
polynomials, geometric shapes, strings, documents.

Ideally: Develop theories of collections, shapes, strings, ..

What is a Theory?

A theory consists of

» one or more data types
P operations on these types
P /aws that describe the relationships between values and operations

Normally, a theory does not describe mutations!

Theories without Mutation

For instance the theory of polynomials defines the sum of two polynomials by laws such
as:

(axx + b) + (cxx +d) = (@ + c)*x + (b + d)

But it does not define an operator to change a coefficient while keeping the polynomial
the same!

Theories without Mutation

For instance the theory of polynomials defines the sum of two polynomials by laws such
as:

(axx + b) + (cxx +d) = (@ + c)*x + (b + d)
But it does not define an operator to change a coefficient while keeping the polynomial
the same!
Whereas in an imperative program one can write:

class Polynomial { double[] coefficient; 3}
Polynomial p = ...;
p.coefficient[0] = 42;

Theories without Mutation

Other example:

The theory of strings defines a concatenation operator +4 which is associative:
(a++b) ++c = a ++ (b ++ ¢)

But it does not define an operator to change a sequence element while keeping the

sequence the same!

(This one, some languages do get right; e.g. Java's strings are immutable)

Consequences for Programming
If we want to implement high-level concepts following their mathematical theories,
there's no place for mutation.

» The theories do not admit it.
» Mutation can destroy useful laws in the theories.

Therefore, let's

> concentrate on defining theories for operators expressed as functions,
» avoid mutations,
» have powerful ways to abstract and compose functions.

Functional Programming

» In a restricted sense, functional programming (FP) means programming without
mutable variables, assignments, loops, and other imperative control structures.

» In a wider sense, functional programming means focusing on the functions and
immutable data.

» In particular, functions can be values that are produced, consumed, and composed.

» All this becomes easier in a functional language.

Functional Programming Languages

» In a restricted sense, a functional programming language is one which does not
have mutable variables, assignments, or imperative control structures.
» In a wider sense, a functional programming language enables the construction of
elegant programs that focus on functions and immutable data structures.
» In particular, functions in a FP language are first-class citizens. This means
» they can be defined anywhere, including inside other functions
» like any other value, they can be passed as parameters to functions and returned as
results
P as for other values, there exists a set of operators to compose functions

Some functional programming languages

» Lisp, Scheme, Racket, Clojure
» SML, Ocaml, F#

> Haskell

» Scala

By now, concepts and constructs from functional languages are also found in many
traditional languages.

History of FP languages

1959 (Lisp) 2003 Scala
1975-77 ML, FP, Scheme 2005 F#
1978 (Smalltalk) 2007 Clojure
1986 Standard ML 2017 Idris
1990 Haskell, Erlang 2020 Scala 3
2000 OCaml

Scala 3 is the language we will use in this course.

Origins of FP

1930s: Lambda Calculus (Alonzo Church)

» Shown to be equivalent to Turing Machines
> Stays relevant today as one of the theoretical foundations of FP

1959: Lisp
» Functions and recursive data tools for artifical intelligence research
1980/90s: ML, Haskell, ..

> New type systems with a strong connection to mathematical logic

Why Functional Programming?

» Reduce errors

» Improve modularity

» Higher-level abstractions

» Shorter code

P Increased developer productivity

Why Functional Programming Now?

1. It's an effective tool to handle concurrency and parallelism, on every scale.

2. Our computers are not Van-Neuman machines anymore. They have

» parallel cores
» clusters of servers
» distribution in the cloud

This causes new programming challenges such as

» cache coherency
» non-determinism

But Is It Future-Proof?

In the future LLMs might write

> code
> tests
» and maybe even proofs of correctness for us.

In that case, does programming still matter?

But Is It Future-Proof?

In the future LLMs might write

> code
> tests
» and maybe even proofs of correctness for us.

In that case, does programming still matter?
To write code, or tests, or proofs, you need a specification.
A specification needs to be based on theories.

Hence, functional programming might become even more important than it is now.

Recommended Book (1)

Structure and Interpretation of Computer Programs. Harold Abelson and Gerald J.
Sussman. 2nd edition. MIT Press 1996.

A classic. Many parts of the course and quizzes are based on it, but we change the
language from Scheme to Scala.

The full text can be downloaded here.

http://mitpress.mit.edu/sicp/

Recommended Book (2)

Programming in Scala. Martin Odersky, Lex Spoon, and Bill Venners. 4th edition.
Artima 2019.

Programming in

Scala

d Edition

Secon

"

. Les oon.
artima Bill Venners

The standard language introduction and reference.

Other Recommended Books

There are many other good introductions to Scala. Among them:

HANDS-ON SCALA

LI HAOY1

ORELLY

=PrL

Elements of Programming

(CS-214 Software Construction

Elements of Programming

Every non-trivial programming language provides:

P primitive expressions representing the simplest elements

P> ways to combine expressions
P> ways to abstract expressions, which introduce a name for an expression by which

it can then be referred to.

The Read-Eval-Print Loop

Functional programming is a bit like using a calculator

An interactive shell (or REPL, for Read-Eval-Print-Loop) lets one write expressions and
responds with their value.

The Scala REPL can be started by simply typing

> scala

Expressions

Here are some simple interactions with the REPL

scala> 87 + 145
res@: Int = 232

Functional programming languages are more than simple calcululators because they let
one define values and functions:

scala> def size = 2
size: Int

scala> 5 * size
resl: Int = 10

Evaluation

A non-primitive expression is evaluated as follows.

1. Take the leftmost operator
2. Evaluate its operands (left before right)
3. Apply the operator to the operands

A name is evaluated by replacing it with the right hand side of its definition
The evaluation process stops once it results in a value
A value is a number (for the moment)

Later on we will consider also other kinds of values

Example

Here is the evaluation of an arithmetic expression:

def pi = 3.14159
def radius = 10

(2 * pi) * radius

Example

Here is the evaluation of an arithmetic expression:

(2 * pi) * radius

(2 * 3.14159) * radius

Example
Here is the evaluation of an arithmetic expression:
(2 * pi) * radius
(2 * 3.14159) * radius

6.28318 * radius

Example
Here is the evaluation of an arithmetic expression:
(2 * pi) * radius
(2 * 3.14159) * radius
6.28318 * radius

6.28318 * 10

Example
Here is the evaluation of an arithmetic expression:
(2 * pi) * radius
(2 * 3.14159) * radius
6.28318 * radius
6.28318 = 10

62.8318

Parameters

Definitions can have parameters. For instance:

scala> def square(x: Double) = x * x
square: (x: Double)Double

scala> square(2)
4.0

scala> square(5 + 4)
81.0

scala> square(square(4))
256.0

scala> def sumOfSquares(x: Double, y: Double) = square(x) + square(y)
sumOfSquares: (x: Double, y: Double)Double

Parameter and Return Types

Function parameters come with their type, which is given after a colon
def power(x: Double, y: Int): Double = ...

If a return type is given, it follows the parameter list.
Primitive types are as in Java, but are written capitalized:
Int 32-bit integers
Long 64-bit integers
Float 32-bit floating point numbers
Double 64-bit floating point numbers

Char 16-bit unicode characters
Short 16-bit integers
Byte 8-bit integers

Boolean boolean values true and false

Evaluation of Function Applications

Applications of parameterized functions are evaluated in a similar way as operators:

1. Evaluate all function arguments, from left to right

2. Replace the function application by the function’s right-hand side, and, at the
same time

3. Replace the formal parameters of the function by the actual arguments.

Example

sumOfSquares(3, 2+2)

Example

sumOfSquares(3, 2+2)
sumOfSquares(3, 4)

Example

sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)

Example

sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)

Example

sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)

9 + square(4)

Example

sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)

9 + square(4)

9+ 4 %4

Example

sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)

9 + square(4)
9+ 4 %4

9 + 16

Example

sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)

9 + square(4)
9+ 4 %4
9 + 16

25

The substitution model

This scheme of expression evaluation is called the substitution model.

The idea underlying this model is that all evaluation does is reduce an expression to a
value.

It can be applied to all expressions, as long as they have no side effects.

The substitution model is formalized in the \-calculus, which gives a foundation for
functional programming.

Termination

» Does every expression reduce to a value (in a finite number of steps)?

Termination

» Does every expression reduce to a value (in a finite number of steps)?
» No. Here is a counter-example

def loop: Int = loop

loop

Changing the evaluation strategy
The interpreter reduces function arguments to values before rewriting the function
application.
One could alternatively apply the function to unreduced arguments.

For instance:

sumOfSquares (3, 2+2)

Changing the evaluation strategy

The interpreter reduces function arguments to values before rewriting the function
application.

One could alternatively apply the function to unreduced arguments.

For instance:

sumOfSquares (3, 2+2)
square(3) + square(2+2)

Changing the evaluation strategy

The interpreter reduces function arguments to values before rewriting the function
application.

One could alternatively apply the function to unreduced arguments.
For instance:
sumOfSquares(3, 2+2)

square(3) + square(2+2)
3 % 3 + square(2+2)

Changing the evaluation strategy

The interpreter reduces function arguments to values before rewriting the function
application.

One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquares(3, 2+2)

square(3) + square(2+2)

3 % 3 + square(2+2)
9 + square(2+2)

Changing the evaluation strategy

The interpreter reduces function arguments to values before rewriting the function
application.

One could alternatively apply the function to unreduced arguments.

For instance:

sumOfSquares (3, 2+2)
square(3) + square(2+2)
3 % 3 + square(2+2)

9 + square(2+2)

9 + (2+2) * (2+2)

Changing the evaluation strategy

The interpreter reduces function arguments to values before rewriting the function
application.

One could alternatively apply the function to unreduced arguments.

For instance:

sumOfSquares (3, 2+2)
square(3) + square(2+2)
3 % 3 + square(2+2)

9 + square(2+2)

9 + (2+2) * (2+2)

9 + 4 % (2+2)

Changing the evaluation strategy

The interpreter reduces function arguments to values before rewriting the function
application.

One could alternatively apply the function to unreduced arguments.

For instance:

sumOfSquares (3, 2+2)
square(3) + square(2+2)
3 % 3 + square(2+2)

+ square(2+2)
+ (2+2) * (2+2)
+ 4 x (2+2)
+

9
9
9
9+ 4 %4

Changing the evaluation strategy

The interpreter reduces function arguments to values before rewriting the function
application.

One could alternatively apply the function to unreduced arguments.

For instance:

sumOfSquares (3, 2+2)

square(3) + square(2+2)
3 % 3 + square(2+2)
9 + square(2+2)
9 + (2+2) * (2+2)
9 + 4 % (2+2)
9+ 4 % 4

25

Call-by-name and call-by-value

The first evaluation strategy is known as call-by-value, the second is is known as
call-by-name.

Both strategies reduce to the same final values as long as

» the reduced expression consists of pure functions, and
P both evaluations terminate.

Call-by-value has the advantage that it evaluates every function argument only once.

Call-by-name has the advantage that a function argument is not evaluated if the
corresponding parameter is unused in the evaluation of the function body.

Call-by-name vs call-by-value

Question: Say you are given the following function definition:
def test(x: Int, y: Int) = x * x

For each of the following function applications, indicate which evaluation strategy is
fastest (has the fewest reduction steps)

CBvV CBN same
fastest fastest #steps

test(2, 3)
test(3+4, 8)
test(7, 2x4)
test(3+4, 2%4)

o O O O
O O O O
O O O O

Call-by-name vs call-by-value

Question: Say you are given the following function definition:
def test(x: Int, y: Int) = x * x

For each of the following function applications, indicate which evaluation strategy is
fastest (has the fewest reduction steps)

CBvV CBN same
fastest fastest #steps

test(2, 3)
test(3+4, 8)
test(7, 2x4)
test(3+4, 2%4)

O O X O
O X O O
< O O X

Functional Programming

Focus on transformations of immutable data
instead of word-by-word mutations.

Why?

* Close to underlying theories (e.g. linear algebra)
* Keeps complexity in check by avoiding side channels

Why Now?

Why Functional Programming Now?

var x = 0
Dual Challenge: async { x = x + 1}
_ . . async { x = x * 2 }
Concurrency and Distribution
Parallelism // can give 0, 1, 2

Lead to

non-determinism from parallel processing + mutable state

To get deterministic processing, avoid the mutable state!
Avoiding mutable state means programming functionally

Why Functional Programming Now?

Space (fungtional/parallel)

A A A A A A A

AN~ — S T

Time (imperative/concurrent)

Strong Types

e checkable, compositional specifications
* make illegal states unrepresentable

With functional programming and strong types one can
write or refactor large bodies of code with very high
confidence.

Scala

Combines functional with object-oriented
programming:

“Functions for the logic, objects as modules”

Is the first mainstream languages to fully

support FP with strong types. T
tionah-u-‘- —
* History:
2004 first experimental release from EPFL
2009/10 adoption starts (e.g. Twitter, Spark)
2016 type-systematic foundations explored (DOT)

2020 Scala 3 — simplifiec 2and mere expressive

=PrL

Evaluation Strategies and Termination

(CS-214 Software Construction

Call-by-name, Call-by-value and termination

You know from the last module that the call-by-name and call-by-value evaluation
strategies reduce an expression to the same value, as long as both evaluations
terminate.

But what if termination is not guaranteed?
We have:
» If CBV evaluation of an expression e terminates, then CBN evaluation of e

terminates, too.
» The other direction is not true

Non-termination example

Question: Find an expression that terminates under CBN but not under CBV.

Non-termination example

Let's define
def first(x: Int, y: Int) = x

and consider the expression first(1, loop).

Under CBN: Under CBV:

first(1, loop) first(1, loop)

Non-termination example

Let's define
def first(x: Int, y: Int) = x

and consider the expression first(1, loop).

Under CBN: Under CBV:
first(1, loop) first(1, loop) ---+
| " |
| |
o +

|
v
1

Scala’s evaluation strategy

Scala normally uses call-by-value.

But if the type of a function parameter starts with => it uses call-by-name.

Example:
def constOne(x: Int, y: => Int) =1
Let’s trace the evaluations of
constOne(1+2, loop)
and

constOne(loop, 1+2)

Trace of constOne(1 + 2, loop)

constOne(1 + 2, loop)

Trace of constOne(1 + 2, loop)

constOne(1 + 2, loop)
constOne(3, loop)

Trace of constOne(1 + 2, loop)

constOne(1 + 2, loop)
constOne(3, loop)
1

Trace of constOne(loop, 1 + 2)

constOne(loop, 1 + 2)

Trace of constOne(loop, 1 + 2)

constOne(loop, 1 + 2)
constOne(loop, 1 + 2)
constOne(loop, 1 + 2)

=PrL

Conditionals and Value Definitions

(CS-214 Software Construction

Conditional Expressions
To express choosing between two alternatives, Scala has a conditional expression
if-then-else.

It resembles an if-else in Java, but is used for expressions, not statements.

Example:
def abs(x: Int) = if x >= @ then x else -x

x >= @ is a predicate, of type Boolean.

Boolean Expressions

Boolean expressions b can be composed of

true false // Constants
'b // Negation
b && b // Conjunction
b || b // Disjunction

and of the usual comparison operations:

e<=e,e>e,e<e, e>e, e==c¢g,

Rewrite rules for Booleans

Here are reduction rules for Boolean expressions (e is an arbitrary expression):

I'true --> false
Ifalse --> true
true & e --> e
false & e --> false
true || e --> true
false || e --> e

Note that && and || do not always need their right operand to be evaluated.

We say, these expressions use “short-circuit evaluation™.

Exercise: Formulate rewrite rules for if-then-else

if true then a else b -—> ?7?

Exercise: Formulate rewrite rules for if-then-else

if true then a else b --> a
if false then a else b --> b

Exercise

Write functions and and or such that for all argument expressions x and y:

and(x, y) == X && y
or(x, y) = x|Ily

(do not use || and && in your implementation)

What are good operands to test that the equalities hold?

Exercise

Write functions and and or such that for all argument expressions x and y:

and(x, y) == X && y
or(x, y) = x|Ily

(do not use || and && in your implementation)

What are good operands to test that the equalities hold?

def and(x: Boolean, y: => Boolean) = if x then y else false
def or (x: Boolean, y: => Boolean) = if x then true else y

Value Definitions

We have seen that function parameters can be passed by value or be passed by name.
The same distinction applies to definitions.
The def form is “by-name”, its right hand side is evaluated on each use.

There is also a val form, which is “by-value”. Example:

val x = 2
val y = square(x)

The right-hand side of a val definition is evaluated at the point of the definition itself.
Afterwards, the name refers to the value.

For instance, y above refers to 4, not square(2).

Value Definitions and Termination

The difference between val and def becomes apparent when the right hand side does
not terminate. Given
def loop: Boolean = loop
A definition
def x = loop
is OK, but a definition

val x = loop

will lead to an infinite loop.

=PrL

Example: Square roots with Newton's method

(CS-214 Software Construction

Task

We will define in this session a function

/** Calculates the square root of parameter x */
def sqrt(x: Double): Double = ...

The classical way to achieve this is by successive approximations using Newton's
method.

Method

To compute sqrt(x):

» Start with an initial estimate y (let's pick y = 1).
» Repeatedly improve the estimate by taking the mean of y and x/y.

Example:

Estimation Quotient Mean

1 2/1=2 1.5
1.5 2/ 1.5 =1.333 1.4167
1.4167 2/ 1.4167 = 1.4118 1.4142

1.4142

Implementation in Scala (1)

First, define a function which computes one iteration step

def sqrtlter(guess: Double, x: Double): Double =
if isGoodEnough(guess, x) then guess
else sqrtlter(improve(guess, X), X)

Note that sqrtlter is recursive, its right-hand side calls itself.

Recursive functions need an explicit return type in Scala.

For non-recursive functions, the return type is optional

Implementation in Scala (2)
Second, define a function improve to improve an estimate and a test to check for
termination:

def improve(guess: Double, x: Double) =
(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =
abs(guess * guess - x) < 0.001

Implementation in Scala (3)

Third, define the sqrt function:

def sqrt(x: Double) = sqrtIter(1.0, x)

Exercise

1. The isGoodEnough test is not very precise for small numbers and can lead to
non-termination for very large numbers. Explain why.

2. Design a different version of isGoodEnough that does not have these problems.

3. Test your version with some very very small and large numbers, e.g.

0.001
0.1e-20
1.0e20
1.0e50

=PrL

Blocks and Lexical Scope

(CS-214 Software Construction

Nested functions

It's good functional programming style to split up a task into many small functions.

But the names of functions like sqrtIter, improve, and isGoodEnough matter only for
the implementation of sqrt, not for its usage.

Normally we would not like users to access these functions directly.

We can achieve this and at the same time avoid “name-space pollution” by putting the
auxciliary functions inside sqrt.

The sgrt Function, Take 2

def sqrt(x: Double) = {
def sqrtlter(guess: Double, x: Double): Double =
if isGoodEnough(guess, x) then guess
else sqrtlter(improve(guess, X), X)

def improve(guess: Double, x: Double) =
(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =
abs(square(guess) - x) < 0.001

sgrtIiter(1.0, x)

Blocks in Scala

> A block is delimited by braces { ... }.

{ val x = f(3)

X * X

}
It contains a sequence of definitions or expressions.
The last element of a block is an expression that defines its value.
This return expression can be preceded by auxiliary definitions.
Blocks are themselves expressions; a block may appear everywhere an expression
can.
» In Scala 3, braces are optional (i.e. implied) around a correctly indented expression

that appears after =, then, else, ..

vvyyvyy

Blocks and Visibility

val x = 0
def f(y: Int) =y + 1
val result =

val x = f(3)

X * X

» The definitions inside a block are only visible from within the block.
» The definitions inside a block shadow definitions of the same names outside the
block.

Exercise: Scope Rules

Question: What is the value of result in the following program?

val x = 0
def f(y: Int) =y + 1
val y =
val x = f(3)
X * X
val result = y + x

Possible answers:

0
16
32
reduction does not terminate

o O O O

Exercise: Scope Rules

Question: What is the value of result in the following program?

val x = 0
def f(y: Int) =y + 1
val y =
val x = f(3)
X * X
val result = y + x

Possible answers:

0 0
X 16
0 32
0 reduction does not terminate

Lexical Scoping

Definitions of outer blocks are visible inside a block unless they are shadowed.

Therefore, we can simplify sqrt by eliminating redundant occurrences of the x
parameter, which means everywhere the same thing:

The sqrt Function, Take 3

def sqrt(x: Double) =
def sqrtIter(guess: Double): Double =
if isGoodEnough(guess) then guess
else sqgrtlter(improve(guess))

def improve(guess: Double) =
(guess + x / guess) / 2

def isGoodEnough(guess: Double) =
abs(square(guess) - x) < 0.001

sqgrtlter(1.0)

Stumbling Block: No returns

Scala needs no returns. Instead, the last expression of a block is its result.

def sqrt(x: Double) =
def sqrtlIter(guess: Double): Double = ...
def improve(guess: Double) = ...
def isGoodEnough(guess: Double) = ...

sqrtIter(1.0) // <<- that’s the result
It's almost always wrong to write an explicit return.

» What do | do if | want to return early?
» Refactor into smaller functions and use an if then else

Stumbling block: Expression oriented.

In Scala, everything is an expression, so code like this is dubious at best:

var x: Int
if someCondition then x = 1 else x = 2
X + X

Refactor to

val x = if someCondition then 1 else 2

Semicolons
If there are more than one statements on a line, they need to be separated by
semicolons:
valy = x + 1; y *xy
Semicolons at the end of lines are usually left out.
You could write
val x = 1;

but it would not be very idiomatic in Scala.

Summary

You have seen simple elements of functional programing in Scala.

» arithmetic and boolean expressions
» conditional expressions if-then-else
» functions with recursion
P nesting and lexical scope

You have learned the difference between the call-by-name and call-by-value evaluation
strategies.

You have learned a way to reason about program execution: reduce expressions using
the substitution model.

This model will be an important tool for the coming sessions.

=PrL

Tail Recursion

(CS-214 Software Construction

Review: Evaluating a Function Application

One simple rule : One evaluates a function application f(es, ..., e,)

» by evaluating the expressions e, ..., e, resulting in the values vq, ..., v,, then
» by replacing the application with the body of the function f, in which
» the actual parameters vy, ..., v, replace the formal parameters of f.

Application Rewriting Rule
This can be formalized as a rewriting of the program itself:

def (X1, .0y Xn) =B; oo £V, ey Vi)
_>
def f(X1,...;Xn) =B «oo [V1/X1y ooy Vo /Xn] B
Here, [vi/x1, ..., va/xn] B means:
The expression B in which all occurrences of x; have been replaced by v;.

[Vi/X1, ooy Vo /x| is called a substitution.

Rewriting example:

Consider gcd, the function that computes the greatest common divisor of two numbers.

Here's an implementation of gcd using Euclid’s algorithm.

def gcd(a: Int, b: Int): Int =
if b == @ then a else gcd(b, a % b)

Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)

Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)
— if 21 == @ then 14 else gcd(21, 14 % 21)

— if false then 14 else gcd(21, 14 % 21)

Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)
— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)

— gcd(21, 14 % 21)

Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gcd(21, 14)

Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)

Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)

—» gcd(14, 7)

Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)
—» gcd(14, 7)

—» gcd(7, 0)

Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)
—» gcd(14, 7)

—» gcd(7, 0)

— if @ == 0 then 7 else gcd(@, 7 % 0)

Rewriting example:

gcd(14, 21) is evaluated as follows:

ged(14, 21)

— if 21 == 0 then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— ged(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)
—» gcd(14, 7)

—» gcd(7, @)

— if @ == @ then 7 else gcd(@, 7 % 0)

— 7

Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)

Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)

— if 4 == @ then 1 else 4 * factorial(4 - 1) 3-> —» 4 % factorial(3)

Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)
— if 4 == @ then 1 else 4 * factorial(4 - 1) 3-> —» 4 % factorial(3)

—» 4 % (3 * factorial(2))

Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)
—> if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> —» 4 x factorial(3)
—» 4 % (3 * factorial(2))

— 4 x (3 x (2 x factorial(1)))

Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)

— if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> —% 4 x factorial(3)
—» 4 * (3 * factorial(2))

— 4 x (3 x (2 x factorial(1)))

—» 4 % (3 % (2 % (1 * factorial(@)))

Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)

— if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> —% 4 x factorial(3)
—» 4 * (3 * factorial(2))

— 4 x (3 x (2 x factorial(1)))

— 4 % (3 x (2 * (1 % factorial(@)))

B *@*x(*x1)))

*

—» 4

Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)
— if 4 == @ then 1 else 4 * factorial(4 - 1) 3-> —» 4 % factorial(3)
— 4 x (3 * factorial(2))
—» 4 % (3 * (2 x factorial(1)))
—» 4 x (3 x (2 *x (1 * factorial(@)))
>4 % (3% 2% (1 *1)))
— 24

What are the differences between the two sequences?

Tail Recursion

Implementation Consideration:

If a function calls itself as its last action, the function's stack frame can be reused.
This is called tail recursion.

= Tail recursive functions are iterative processes.

In general, if the last action of a function consists of calling a function (which may be
the same), one stack frame would be sufficient for both functions. Such calls are called
tail-calls.

Tail Recursion in Scala

In Scala, only directly recursive calls to the current function are optimized.

One can require that a function is tail-recursive using a @tailrec annotation:

import scala.annotation.tailrec

@tailrec
def gcd(a: Int, b: Int): Int = ...

If the annotation is given, and the implementation of gcd were not tail recursive, an
error would be issued.

Exercise: Tail recursion

Design a tail recursive version of factorial.

