

Why Functional Programming?

CS-214 Software Construction

Programming Paradigms

Paradigm: In science, a *paradigm* describes distinct concepts or thought patterns in some scientific discipline.

Main programming paradigms:

- imperative programming
- functional programming
- ▶ logic programming

Orthogonal to it:

object-oriented programming

Review: Imperative programming

Imperative programming is about

- modifying mutable variables,
- using assignments
- and control structures such as if-then-else, loops, break, continue, return.

The most common informal way to understand imperative programs is as instruction sequences for a Von Neumann computer.

Imperative Programs and Computers

There's a strong correspondence between

Mutable variables \approx memory cells

Variable dereferences \approx load instructions

Variable assignments \approx store instructions

Control structures \approx jumps

Problem: Scaling up. How can we avoid conceptualizing programs word by word?

Reference: John Backus, Can Programming Be Liberated from the von. Neumann Style?, Turing Award Lecture 1978.

Scaling Up

In the end, pure imperative programming is limited by the "Von Neumann" bottleneck: One tends to conceptualize data structures word-by-word.

We need other techniques for defining high-level abstractions such as collections, polynomials, geometric shapes, strings, documents.

Ideally: Develop theories of collections, shapes, strings, ...

What is a Theory?

A theory consists of

- one or more data types
- operations on these types
- laws that describe the relationships between values and operations

Normally, a theory does not describe mutations!

Theories without Mutation

For instance the theory of polynomials defines the sum of two polynomials by laws such as:

$$(a*x + b) + (c*x + d) = (a + c)*x + (b + d)$$

But it does not define an operator to change a coefficient while keeping the polynomial the same!

Theories without Mutation

For instance the theory of polynomials defines the sum of two polynomials by laws such as:

```
(a*x + b) + (c*x + d) = (a + c)*x + (b + d)
```

But it does not define an operator to change a coefficient while keeping the polynomial the same!

Whereas in an imperative program one can write:

```
class Polynomial { double[] coefficient; }
Polynomial p = ...;
p.coefficient[0] = 42;
```

Theories without Mutation

Other example:

The theory of strings defines a concatenation operator ++ which is associative:

$$(a ++ b) ++ c = a ++ (b ++ c)$$

But it does not define an operator to change a sequence element while keeping the sequence the same!

(This one, some languages do get right; e.g. Java's strings are immutable)

Consequences for Programming

If we want to implement high-level concepts following their mathematical theories, there's no place for mutation.

- The theories do not admit it.
- Mutation can destroy useful laws in the theories.

Therefore, let's

- concentrate on defining theories for operators expressed as functions,
- avoid mutations,
- have powerful ways to abstract and compose functions.

Functional Programming

- ▶ In a *restricted* sense, functional programming (FP) means programming without mutable variables, assignments, loops, and other imperative control structures.
- ▶ In a *wider* sense, functional programming means focusing on the functions and immutable data.
- ▶ In particular, functions can be values that are produced, consumed, and composed.
- ▶ All this becomes easier in a functional language.

Functional Programming Languages

- ▶ In a *restricted* sense, a functional programming language is one which does not have mutable variables, assignments, or imperative control structures.
- ▶ In a *wider* sense, a functional programming language enables the construction of elegant programs that focus on functions and immutable data structures.
- ▶ In particular, functions in a FP language are first-class citizens. This means
 - they can be defined anywhere, including inside other functions
 - like any other value, they can be passed as parameters to functions and returned as results
 - as for other values, there exists a set of operators to compose functions

Some functional programming languages

- Lisp, Scheme, Racket, Clojure
- ► SML, Ocaml, F#
- Haskell
- Scala

By now, concepts and constructs from functional languages are also found in many traditional languages.

History of FP languages

1959	(Lisp)	2003	Scala
1975-77	ML, FP, Scheme	2005	F#
1978	(Smalltalk)	2007	Clojure
1986	Standard ML	2017	Idris
1990	Haskell, Erlang	2020	Scala 3
2000	OCaml		

Scala 3 is the language we will use in this course.

Origins of FP

1930s: Lambda Calculus (Alonzo Church)

- ► Shown to be equivalent to Turing Machines
- Stays relevant today as one of the theoretical foundations of FP

1959: Lisp

► Functions and recursive data tools for artifical intelligence research

1980/90s: ML, Haskell, ...

▶ New type systems with a strong connection to mathematical logic

Why Functional Programming?

- Reduce errors
- ► Improve modularity
- ► Higher-level abstractions
- ► Shorter code
- Increased developer productivity

Why Functional Programming Now?

- 1. It's an effective tool to handle concurrency and parallelism, on every scale.
- 2. Our computers are not Van-Neuman machines anymore. They have
 - parallel cores
 - clusters of servers
 - distribution in the cloud

This causes new programming challenges such as

- cache coherency
- non-determinism

But Is It Future-Proof?

In the future LLMs might write

- code
- tests
- ▶ and maybe even proofs of correctness for us.

In that case, does programming still matter?

To write code, or tests, or proofs, you need a specification.

A specification needs to be based on theories

Hence, functional programming might become even more important than it is now.

But Is It Future-Proof?

In the future LLMs might write

- code
- tests
- ▶ and maybe even proofs of correctness for us.

In that case, does programming still matter?

To write code, or tests, or proofs, you need a *specification*.

A specification needs to be based on theories.

Hence, functional programming might become even more important than it is now.

Recommended Book (1)

Structure and Interpretation of Computer Programs. Harold Abelson and Gerald J. Sussman. 2nd edition. MIT Press 1996.

A classic. Many parts of the course and quizzes are based on it, but we change the language from Scheme to Scala.

The full text can be downloaded here.

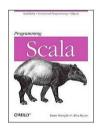
Recommended Book (2)

Programming in Scala. Martin Odersky, Lex Spoon, and Bill Venners. 4th edition. Artima 2019.

The standard language introduction and reference.

Other Recommended Books

There are many other good introductions to Scala. Among them:



Elements of Programming

CS-214 Software Construction

Elements of Programming

Every non-trivial programming language provides:

- primitive expressions representing the simplest elements
- ways to *combine* expressions
- ways to *abstract* expressions, which introduce a name for an expression by which it can then be referred to.

The Read-Eval-Print Loop

Functional programming is a bit like using a calculator

An interactive shell (or REPL, for Read-Eval-Print-Loop) lets one write expressions and responds with their value.

The Scala REPL can be started by simply typing

> scala

Expressions

Here are some simple interactions with the REPL

```
scala> 87 + 145
res0: Int = 232
```

Functional programming languages are more than simple calcululators because they let one define values and functions:

```
scala> def size = 2
size: Int

scala> 5 * size
res1: Int = 10
```

Evaluation

A non-primitive expression is evaluated as follows.

- 1. Take the leftmost operator
- 2. Evaluate its operands (left before right)
- 3. Apply the operator to the operands

A name is evaluated by replacing it with the right hand side of its definition

The evaluation process stops once it results in a value

A value is a number (for the moment)

Later on we will consider also other kinds of values

Here is the evaluation of an arithmetic expression:

```
def pi = 3.14159
def radius = 10
(2 * pi) * radius
```

Here is the evaluation of an arithmetic expression:

```
(2 * pi) * radius
```

```
(2 * 3.14159) * radius
```

Here is the evaluation of an arithmetic expression:

```
(2 * pi) * radius
```

$$(2 * 3.14159) * radius$$

6.28318 * radius

Here is the evaluation of an arithmetic expression:

```
(2 * pi) * radius
```

$$(2 * 3.14159) * radius$$

6.28318 * radius

6.28318 * 10

Here is the evaluation of an arithmetic expression:

```
(2 * pi) * radius
```

$$(2 * 3.14159) * radius$$

62.8318

Parameters

Definitions can have parameters. For instance: scala > def square(x: Double) = x * xsquare: (x: Double)Double scala> square(2) 4.0 scala > square(5 + 4)81.0 scala> square(square(4)) 256.0 scala> def sumOfSquares(x: Double, y: Double) = square(x) + square(y) sumOfSquares: (x: Double, y: Double)Double

Parameter and Return Types

Function parameters come with their type, which is given after a colon

```
def power(x: Double, y: Int): Double = ...
```

If a return type is given, it follows the parameter list.

Primitive types are as in Java, but are written capitalized:

```
Int 32-bit integers

Long 64-bit integers

Float 32-bit floating point numbers
```

Double 64-bit floating point numbers

Char 16-bit unicode characters

Short 16-bit integers
Byte 8-bit integers

Boolean boolean values true and false

Evaluation of Function Applications

Applications of parameterized functions are evaluated in a similar way as operators:

- 1. Evaluate all function arguments, from left to right
- Replace the function application by the function's right-hand side, and, at the same time
- 3. Replace the formal parameters of the function by the actual arguments.

sumOfSquares(3, 2+2)

```
sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
```

```
sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
```

```
sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)
```

```
sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)
9 + square(4)
```

```
sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)
9 + square(4)
9 + 4 * 4
```

```
sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)
9 + square(4)
9 + 4 * 4
9 + 16
```

```
sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)
9 + square(4)
9 + 4 * 4
9 + 16
25
```

The substitution model

This scheme of expression evaluation is called the *substitution model*.

The idea underlying this model is that all evaluation does is *reduce an expression to a value*.

It can be applied to all expressions, as long as they have no side effects.

The substitution model is formalized in the λ -calculus, which gives a foundation for functional programming.

Termination

▶ Does every expression reduce to a value (in a finite number of steps)?

Termination

- ▶ Does every expression reduce to a value (in a finite number of steps)?
- ► No. Here is a counter-example

```
def loop: Int = loop
loop
```

The interpreter reduces function arguments to values before rewriting the function application.

One could alternatively apply the function to unreduced arguments.

For instance:

sumOfSquares(3, 2+2)

The interpreter reduces function arguments to values before rewriting the function application.

One could alternatively apply the function to unreduced arguments.

```
sumOfSquares(3, 2+2)
square(3) + square(2+2)
```

The interpreter reduces function arguments to values before rewriting the function application.

One could alternatively apply the function to unreduced arguments.

```
sumOfSquares(3, 2+2)
square(3) + square(2+2)
3 * 3 + square(2+2)
```

The interpreter reduces function arguments to values before rewriting the function application.

One could alternatively apply the function to unreduced arguments.

```
sumOfSquares(3, 2+2)
square(3) + square(2+2)
3 * 3 + square(2+2)
9 + square(2+2)
```

The interpreter reduces function arguments to values before rewriting the function application.

One could alternatively apply the function to unreduced arguments.

```
sumOfSquares(3, 2+2)
square(3) + square(2+2)
3 * 3 + square(2+2)
9 + square(2+2)
9 + (2+2) * (2+2)
```

The interpreter reduces function arguments to values before rewriting the function application.

One could alternatively apply the function to unreduced arguments.

```
sumOfSquares(3, 2+2)
square(3) + square(2+2)
3 * 3 + square(2+2)
9 + square(2+2)
9 + (2+2) * (2+2)
9 + 4 * (2+2)
```

The interpreter reduces function arguments to values before rewriting the function application.

One could alternatively apply the function to unreduced arguments.

```
sumOfSquares(3, 2+2)
square(3) + square(2+2)
3 * 3 + square(2+2)
9 + square(2+2)
9 + (2+2) * (2+2)
9 + 4 * (2+2)
9 + 4 * 4
```

The interpreter reduces function arguments to values before rewriting the function application.

One could alternatively apply the function to unreduced arguments.

```
sumOfSquares(3, 2+2)
square(3) + square(2+2)
3 * 3 + square(2+2)
9 + square(2+2)
9 + (2+2) * (2+2)
9 + 4 * (2+2)
9 + 4 * 4
25
```

Call-by-name and call-by-value

The first evaluation strategy is known as *call-by-value*, the second is is known as *call-by-name*.

Both strategies reduce to the same final values as long as

- ▶ the reduced expression consists of pure functions, and
- both evaluations terminate.

Call-by-value has the advantage that it evaluates every function argument only once.

Call-by-name has the advantage that a function argument is not evaluated if the corresponding parameter is unused in the evaluation of the function body.

Call-by-name vs call-by-value

Question: Say you are given the following function definition:

```
def test(x: Int, y: Int) = x * x
```

For each of the following function applications, indicate which evaluation strategy is fastest (has the fewest reduction steps)

CBV fastest	CBN fastest	same #steps	
. 45 0000	1 40 000	"осеро	
0	0	0	test(2, 3)
0	0	0	test(3+4, 8)
0	0	0	test(7, 2*4)
0	0	0	test(3+4, 2*4)

Call-by-name vs call-by-value

Question: Say you are given the following function definition:

```
def test(x: Int, y: Int) = x * x
```

For each of the following function applications, indicate which evaluation strategy is fastest (has the fewest reduction steps)

CBV fastest	CBN fastest	same #steps	
0	0	Χ	test(2, 3)
Χ	0	0	test(3+4, 8)
0	Χ	0	test(7, 2*4)
0	0	Χ	test(3+4, 2*4)

Functional Programming

Focus on *transformations* of *immutable data* instead of word-by-word *mutations*.

Why?

- Close to underlying theories (e.g. linear algebra)
- Keeps complexity in check by avoiding side channels

Why Now?

Why Functional Programming Now?

Dual Challenge:

Concurrency and Distribution Parallelism

```
var x = 0
async { x = x + 1 }
async { x = x * 2 }

// can give 0, 1, 2
```

Lead to

non-determinism from parallel processing + mutable state

To get deterministic processing, avoid the *mutable* state! Avoiding mutable state means programming functionally

Why Functional Programming Now?

Space (functional/parallel)

Time (imperative/concurrent)

Strong Types

- checkable, compositional specifications
- make illegal states unrepresentable

With functional programming and strong types one can write or refactor large bodies of code with very high confidence.

Scala

Combines functional with object-oriented programming:

Safe and

typing

"Functions for the logic, objects as modules"

Is the first mainstream languages to fully support FP with strong types.

Object-Oriented

Scala

static

• History:

first experimental release from EPFL adoption starts (e.g. Twitter, Spark)

2016 type-systematic foundations explored (DOT)

2020 Scala 3 – simplified and more expressive

Evaluation Strategies and Termination

CS-214 Software Construction

Call-by-name, Call-by-value and termination

You know from the last module that the call-by-name and call-by-value evaluation strategies reduce an expression to the same value, as long as both evaluations terminate.

But what if termination is not guaranteed?

We have:

- ► If CBV evaluation of an expression e terminates, then CBN evaluation of e terminates, too.
- ► The other direction is not true

Non-termination example

Question: Find an expression that terminates under CBN but not under CBV.

Non-termination example

Let's define

```
def first(x: Int, y: Int) = x
```

and consider the expression first(1, loop).

Under CBN: Under CBV:

first(1, loop) first(1, loop)

Non-termination example

```
Let's define
```

```
def first(x: Int, y: Int) = x
and consider the expression first(1, loop).
```

Under CBN: Under CBV:

Scala's evaluation strategy

Scala normally uses call-by-value.

But if the type of a function parameter starts with => it uses call-by-name.

```
def constOne(x: Int, y: => Int) = 1
Let's trace the evaluations of
  constOne(1+2, loop)
and
  constOne(loop, 1+2)
```

Trace of constOne(1 + 2, loop)

```
constOne(1 + 2, loop)
```

Trace of constOne(1 + 2, loop)

```
constOne(1 + 2, loop)
constOne(3, loop)
```

Trace of constOne(1 + 2, loop)

```
constOne(1 + 2, loop)
constOne(3, loop)
1
```

Trace of constOne(loop, 1 + 2)

```
constOne(loop, 1 + 2)
```

Trace of constOne(loop, 1 + 2)

```
constOne(loop, 1 + 2)
constOne(loop, 1 + 2)
constOne(loop, 1 + 2)
...
```


Conditionals and Value Definitions

CS-214 Software Construction

Conditional Expressions

To express choosing between two alternatives, Scala has a conditional expression if-then-else.

It resembles an if-else in Java, but is used for expressions, not statements.

Example:

```
def abs(x: Int) = if x \ge 0 then x else -x
```

x >= 0 is a *predicate*, of type Boolean.

Boolean Expressions

Boolean expressions b can be composed of

```
true false  // Constants
!b  // Negation
b && b  // Conjunction
b || b  // Disjunction
```

and of the usual comparison operations:

```
e <= e, e >= e, e < e, e > e, e == e, e != e
```

Rewrite rules for Booleans

Here are reduction rules for Boolean expressions (e is an arbitrary expression):

```
!true --> false
!false --> true
true && e --> e
false && e --> false
true || e --> true
false || e --> e
```

Note that && and || do not always need their right operand to be evaluated.

We say, these expressions use "short-circuit evaluation".

Exercise: Formulate rewrite rules for if-then-else

if true then a else b --> ???

Exercise: Formulate rewrite rules for if-then-else

```
if true then a else b --> a if false then a else b --> b
```

Exercise

Write functions and and or such that for all argument expressions x and y:

```
and(x, y) == x \& y
or(x, y) == x | | y
```

(do not use || and && in your implementation)

What are good operands to test that the equalities hold?

```
def and(x: Boolean, y: => Boolean) = if x then y else false
def or (x: Boolean, y: => Boolean) = if x then true else y
```

Exercise

Write functions and and or such that for all argument expressions \boldsymbol{x} and \boldsymbol{y} :

```
and(x, y) == x && y
or(x, y) == x || y
```

(do not use || and && in your implementation)

What are good operands to test that the equalities hold?

```
def and(x: Boolean, y: \Rightarrow Boolean) = if x then y else false def or (x: Boolean, y: \Rightarrow Boolean) = if x then true else y
```

Value Definitions

We have seen that function parameters can be passed by value or be passed by name.

The same distinction applies to definitions.

The def form is "by-name", its right hand side is evaluated on each use.

There is also a val form, which is "by-value". Example:

```
val x = 2
val y = square(x)
```

The right-hand side of a val definition is evaluated at the point of the definition itself.

Afterwards, the name refers to the value.

For instance, y above refers to 4, not square(2).

Value Definitions and Termination

The difference between val and def becomes apparent when the right hand side does not terminate. Given

```
def loop: Boolean = loop
```

A definition

$$def x = loop$$

is OK, but a definition

$$val x = loop$$

will lead to an infinite loop.

Example: Square roots with Newton's method

CS-214 Software Construction

Task

We will define in this session a function

```
/** Calculates the square root of parameter x */
def sqrt(x: Double): Double = ...
```

The classical way to achieve this is by successive approximations using Newton's method.

Method

To compute sqrt(x):

- ► Start with an initial *estimate* y (let's pick y = 1).
- ▶ Repeatedly improve the estimate by taking the mean of y and x/y.

Example:

Estimation	Quotient	Mean
1	2 / 1 = 2	1.5
1.5	2 / 1.5 = 1.333	1.4167
1.4167	2 / 1.4167 = 1.4118	1.4142
1.4142		

Implementation in Scala (1)

First, define a function which computes one iteration step

```
def sqrtIter(guess: Double, x: Double): Double =
  if isGoodEnough(guess, x) then guess
  else sqrtIter(improve(guess, x), x)
```

Note that sqrtIter is *recursive*, its right-hand side calls itself.

Recursive functions need an explicit return type in Scala.

For non-recursive functions, the return type is optional

Implementation in Scala (2)

Second, define a function improve to improve an estimate and a test to check for termination:

```
def improve(guess: Double, x: Double) =
   (guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =
   abs(guess * guess - x) < 0.001</pre>
```

Implementation in Scala (3)

Third, define the sqrt function:

```
def sqrt(x: Double) = sqrtIter(1.0, x)
```

Exercise

- 1. The isGoodEnough test is not very precise for small numbers and can lead to non-termination for very large numbers. Explain why.
- 2. Design a different version of isGoodEnough that does not have these problems.
- 3. Test your version with some very very small and large numbers, e.g.
 - 0.001
 - 0.1e-20
 - 1.0e20
 - 1.0e50

Blocks and Lexical Scope

CS-214 Software Construction

Nested functions

It's good functional programming style to split up a task into many small functions.

But the names of functions like sqrtIter, improve, and isGoodEnough matter only for the *implementation* of sqrt, not for its *usage*.

Normally we would not like users to access these functions directly.

We can achieve this and at the same time avoid "name-space pollution" by putting the auxciliary functions inside sqrt.

The sqrt Function, Take 2

```
def sart(x: Double) = {
  def sqrtIter(guess: Double, x: Double): Double =
    if isGoodEnough(guess, x) then guess
    else sqrtIter(improve(guess, x), x)
  def improve(guess: Double, x: Double) =
    (guess + x / guess) / 2
  def isGoodEnough(guess: Double, x: Double) =
    abs(square(guess) - x) < 0.001
  sqrtIter(1.0, x)
```

Blocks in Scala

► A block is delimited by braces { ... }.

```
{ val x = f(3)
  x * x
}
```

- It contains a sequence of definitions or expressions.
- ▶ The last element of a block is an expression that defines its value.
- ▶ This return expression can be preceded by auxiliary definitions.
- ▶ Blocks are themselves expressions; a block may appear everywhere an expression can.
- ▶ In Scala 3, braces are optional (i.e. implied) around a correctly indented expression that appears after =, then, else, ...

Blocks and Visibility

```
val x = 0
def f(y: Int) = y + 1
val result =
  val x = f(3)
  x * x
```

- ▶ The definitions inside a block are only visible from within the block.
- ► The definitions inside a block *shadow* definitions of the same names outside the block.

Exercise: Scope Rules

Question: What is the value of result in the following program?

```
val x = 0
def f(y: Int) = y + 1
val y =
   val x = f(3)
   x * x
val result = y + x
```

Possible answers:

```
0 16
0 32
0 reduction does not terminate
```

Exercise: Scope Rules

Question: What is the value of result in the following program?

```
val x = 0
def f(y: Int) = y + 1
val y =
   val x = f(3)
   x * x
val result = y + x
```

Possible answers:

```
X 16
0 32
0 reduction does not terminate
```

Lexical Scoping

Definitions of outer blocks are visible inside a block unless they are shadowed.

Therefore, we can simplify sqrt by eliminating redundant occurrences of the x parameter, which means everywhere the same thing:

The sqrt Function, Take 3

```
def sart(x: Double) =
  def sqrtIter(guess: Double): Double =
    if isGoodEnough(guess) then guess
    else sqrtIter(improve(guess))
  def improve(guess: Double) =
    (guess + x / guess) / 2
  def isGoodEnough(guess: Double) =
    abs(square(guess) - x) < 0.001
  sqrtIter(1.0)
```

Stumbling Block: No returns

Scala needs no returns. Instead, the last expression of a block is its result.

```
def sqrt(x: Double) =
  def sqrtIter(guess: Double): Double = ...
  def improve(guess: Double) = ...
  def isGoodEnough(guess: Double) = ...
  sqrtIter(1.0) // <<- that's the result</pre>
```

It's almost always wrong to write an explicit return.

- What do I do if I want to return early?
- Refactor into smaller functions and use an if then else

Stumbling block: Expression oriented.

In Scala, everything is an expression, so code like this is dubious at best:

```
var x: Int
if someCondition then x = 1 else x = 2
x + x
```

Refactor to

```
val x = if someCondition then 1 else 2
```

Semicolons

If there are more than one statements on a line, they need to be separated by semicolons:

$$val y = x + 1; y * y$$

Semicolons at the end of lines are usually left out.

You could write

$$val x = 1;$$

but it would not be very idiomatic in Scala.

Summary

You have seen simple elements of functional programing in Scala.

- arithmetic and boolean expressions
- conditional expressions if-then-else
- functions with recursion
- nesting and lexical scope

You have learned the difference between the call-by-name and call-by-value evaluation strategies.

You have learned a way to reason about program execution: reduce expressions using the substitution model.

This model will be an important tool for the coming sessions.

Tail Recursion

CS-214 Software Construction

Review: Evaluating a Function Application

One simple rule: One evaluates a function application $f(e_1, ..., e_n)$

- \triangleright by evaluating the expressions e_1, \ldots, e_n resulting in the values v_1, \ldots, v_n , then
- by replacing the application with the body of the function f, in which
- ightharpoonup the actual parameters $v_1, ..., v_n$ replace the formal parameters of f.

Application Rewriting Rule

This can be formalized as a rewriting of the program itself:

$$\begin{array}{c} \text{def } f(x_1,...,x_n) = B; \ ... \ f(v_1,...,v_n) \\ \\ \rightarrow \\ \text{def } f(x_1,...,x_n) = B; \ ... \ [v_1/x_1,...,v_n/x_n] \, B \end{array}$$

Here, $[v_1/x_1, ..., v_n/x_n]$ B means:

The expression B in which all occurrences of x_i have been replaced by v_i . $[v_1/x_1, ..., v_n/x_n]$ is called a *substitution*.

Rewriting example:

Consider gcd, the function that computes the greatest common divisor of two numbers.

Here's an implementation of gcd using Euclid's algorithm.

```
def gcd(a: Int, b: Int): Int =
  if b == 0 then a else gcd(b, a % b)
```

Rewriting example:

```
gcd(14, 21) is evaluated as follows:
```

```
gcd(14, 21)
```

```
gcd(14, 21) is evaluated as follows: gcd(14, 21) \rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21)
```

```
gcd(14, 21) is evaluated as follows:

gcd(14, 21)

\rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21)

\rightarrow if false then 14 else gcd(21, 14 % 21)
```

```
gcd(14, 21) is evaluated as follows: gcd(14, 21) \rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21) \rightarrow if false then 14 else gcd(21, 14 % 21) \rightarrow gcd(21, 14 % 21)
```

```
gcd(14, 21) is evaluated as follows: gcd(14, 21) \rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21) \rightarrow if false then 14 else gcd(21, 14 % 21) \rightarrow gcd(21, 14 % 21) \rightarrow gcd(21, 14)
```

```
gcd(14, 21) is evaluated as follows:
gcd(14, 21)
\rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21)
\rightarrow if false then 14 else gcd(21, 14 % 21)
\rightarrow gcd(21, 14 % 21)
\rightarrow gcd(21, 14)
\rightarrow if 14 == 0 then 21 else gcd(14, 21 % 14)
```

```
gcd(14, 21) is evaluated as follows:
gcd(14, 21)
\rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21)
\rightarrow if false then 14 else gcd(21, 14 % 21)
\rightarrow gcd(21, 14 % 21)
\rightarrow gcd(21, 14)
\rightarrow if 14 == 0 then 21 else gcd(14, 21 % 14)
\rightarrow gcd(14, 7)
```

```
gcd(14, 21) is evaluated as follows:
gcd(14, 21)
\rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21)
\rightarrow if false then 14 else gcd(21, 14 % 21)
\rightarrow gcd(21, 14 % 21)
\rightarrow gcd(21, 14)
\rightarrow if 14 == 0 then 21 else gcd(14, 21 % 14)
\rightarrow gcd(14, 7)
\rightarrow gcd(7, 0)
```

```
gcd(14, 21) is evaluated as follows:
gcd(14, 21)
\rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21)
\rightarrow if false then 14 else gcd(21, 14 % 21)
\rightarrow gcd(21, 14 % 21)
\rightarrow gcd(21, 14)
\rightarrow if 14 == 0 then 21 else gcd(14, 21 % 14)
\rightarrow gcd(14, 7)
\rightarrow gcd(7, 0)
\rightarrow if 0 == 0 then 7 else gcd(0, 7 % 0)
```

```
gcd(14, 21) is evaluated as follows:
gcd(14, 21)
\rightarrow if 21 == 0 then 14 else gcd(21, 14 % 21)
\rightarrow if false then 14 else gcd(21, 14 % 21)
\rightarrow gcd(21, 14 % 21)
\rightarrow gcd(21, 14)
\rightarrow if 14 == 0 then 21 else gcd(14, 21 % 14)
\rightarrow gcd(14, 7)
\rightarrow gcd(7, 0)
\rightarrow if 0 == 0 then 7 else gcd(0, 7 % 0)
\rightarrow 7
```

```
Consider factorial:
    def factorial(n: Int): Int =
        if n == 0 then 1 else n * factorial(n - 1)
factorial(4)
```

```
Consider factorial:
  def factorial(n: Int): Int =
    if n == 0 then 1 else n * factorial(n - 1)

factorial(4)

→ if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> → 4 * factorial(3)
```

```
Consider factorial:
  def factorial(n: Int): Int =
     if n == 0 then 1 else n * factorial(n - 1)
factorial(4)
\rightarrow if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> \rightarrow 4 * factorial(3)
\rightarrow 4 * (3 * factorial(2))
\rightarrow 4 * (3 * (2 * factorial(1)))
```

```
Consider factorial:
  def factorial(n: Int): Int =
     if n == 0 then 1 else n * factorial(n - 1)
factorial(4)
\rightarrow if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> \rightarrow 4 * factorial(3)
\rightarrow 4 * (3 * factorial(2))
\rightarrow 4 * (3 * (2 * factorial(1)))
\rightarrow 4 * (3 * (2 * (1 * factorial(0)))
```

```
Consider factorial:
  def factorial(n: Int): Int =
     if n == 0 then 1 else n * factorial(n - 1)
factorial(4)
\rightarrow if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> \rightarrow 4 * factorial(3)
\rightarrow 4 * (3 * factorial(2))
\rightarrow 4 * (3 * (2 * factorial(1)))
\rightarrow 4 * (3 * (2 * (1 * factorial(0)))
\rightarrow 4 * (3 * (2 * (1 * 1)))
```

```
Consider factorial:
  def factorial(n: Int): Int =
     if n == 0 then 1 else n * factorial(n - 1)
factorial(4)
\rightarrow if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> \rightarrow 4 * factorial(3)
\rightarrow 4 * (3 * factorial(2))
\rightarrow 4 * (3 * (2 * factorial(1)))
\rightarrow 4 * (3 * (2 * (1 * factorial(0)))
\rightarrow 4 * (3 * (2 * (1 * 1)))
→ 24
```

What are the differences between the two sequences?

Tail Recursion

Implementation Consideration:

If a function calls itself as its last action, the function's stack frame can be reused. This is called *tail recursion*.

 \Rightarrow Tail recursive functions are iterative processes.

In general, if the last action of a function consists of calling a function (which may be the same), one stack frame would be sufficient for both functions. Such calls are called *tail-calls*.

Tail Recursion in Scala

In Scala, only directly recursive calls to the current function are optimized.

One can require that a function is tail-recursive using a @tailrec annotation:

```
import scala.annotation.tailrec
@tailrec
def gcd(a: Int, b: Int): Int = ...
```

If the annotation is given, and the implementation of gcd were not tail recursive, an error would be issued.

Exercise: Tail recursion

Design a tail recursive version of factorial.