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▶ What are Monads
▶ Monad Laws
▶ For Comprehensions
▶ List and Exception Monads
▶ Monadic Translation: val to for
▶ State Monad



What are Monads
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Monad is a Design Pattern for Functional Programmers



Brief History of Monads

Monad word was used by Pythagoreans, later philosophers, then by Leibniz

▶ this historical use of the word is not relevant for this lecture

Directly relevant concepts:

▶ used into Category theory from 1950ies
▶ used to translate programs to math, by Eugenio Moggi in 1989; Category theory

can represent function-like concepts, such as functions with side effects
▶ Wadler in 1990 observed that list comprehensions (Scala’s for comprehensions)

can be explained and generalized in terms of monads
▶ Peyton Jones and Wadler in 1993 argued to use monads for I/O in pure languages

leading to their central role in Haskell. Later: do notation in Haskell
▶ F∗ verifier (https://www.fstar-lang.org/) uses monads to reduce reasoning about

effects to functions, without the need to use do notation



Monads are about flatMap

Unlike Haskell, Scala permits effects (e.g. mutable fields, exceptions), so no need to
model them using monads (programs become less readable in monadic style)
Most common use of monads in Scala is for collection types that support flatMap

▶ Seq[T] (List[T], Vector[T]), Option[T], Try[T] …

Remember flatMap on List[T]:

extension[T](m: List[T])
def flatMap(f: T => List[U]): List[U] =

m match
case Nil => Nil
case h :: t => f(h) ++ t.flatMap(f)

// List(t1, t2, t3) ~~.flatMap(f)~~> f(t1) ++ f(t2) ++ f(t3)

We first list elements such as t1, then function f (feed ‘t1‘ to ‘f‘)



Monad Definition

Informally, monad is a collection-like generic class, M[A], with a flatMap.
Monad is given by:

1. a generic type M[A] (generalizing List[A], Option[A], etc.)
2. a function unit[A]: A => M[A] (generalizing a => List(a))
3. flatMap[B] method on m : M[A] that applies f : A => M[B], obtaining M[B]:

m.flatMap(f): M[B]

where unit and flatMap satisfy certain the laws that we will discuss shortly.
Other names for flatMap include: bind, ⋆, >>=



Identity Monad (Mostly Useless)

type Id[A] = A

def unit[A](a: A): Id[A] = a

extension(a: Id[A])
def flatMap[B](f: A => Id[B]): Id[B] =

f(a)

a.flatMap(f) = f(a) so it’s just function application with argument order swapped



Option as a Monad

sealed trait Option[+A]:
case object None extends Option[Nothing]
final case class Some[+A](content: A) extends Option[A]

def unit[A](a: A): Option[A] = Some(a)

extension(ma: Option[A])
def flatMap[B](f: A => Option[B]): Option[B] =

ma match
case None => None
case Some(a) => f(a)

Note: ma.flatMap(f) serves the purpose of f(ma) but propagates None



Monad Laws
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Simpler Structure: Monoid and Its Laws

Monoid is an algebraic structure with a binary operation op and an element u

If op is a method, the laws of monoid are:

u.op(x) === x // u is left unit
x.op(u) === x // u is right unit
x.op(y).op(z) === x.op(y.op(z)) // associativity

When we use infix operator, e.g., *, then they look more familiar:

u * x === x
x * u === x
(x * y) * z === x * (y * z)

For monads, the operator flatMap takes a function as its right operand.
Moreover, there is not just one unit u, but a unit(x) for each x



Monoid vs Monad Laws

Monoid laws:

u.op(x) === x // u is left unit
x.op(u) === x // u is right unit
x.op(y).op(z) === x.op(y.op(z)) // associativity

Monad laws are similar, but pass a value from left to function on the right of flatMap:
For all

a: A ma: M[A] ab: A => M[B] bc: B => M[C]

the following must hold:

unit(a).flatMap(ab) === ab(a) (l. unit)
ma.flatMap(unit) === ma (r. unit)
ma.flatMap(ab).flatMap(bc) === ma.flatMap((a:A) => ab(a).flatMap(bc)) (assoc.)



Monad Associativity Explained (Option as Example)

▶ ma: Option[A]
▶ ab: A => Option[B]
▶ bc: B => Option[C]

Then we can get Option[C] in two ways; law says the result is same:

1. apply first ab and then bc

(ma.flatMap(ab)).flatMap(bc) // first parenthesis not needed in Scala

2. compose ac and ma and apply it to ma:

val ac: A => Option[C] =
(a: A) => ab(a).flatMap(bc)

ma.flatMap(ac) // can replace ac with its definition above

In both cases, the result is applying ab and then bc, propagating None



Monad Associativity with New-Line Syntax

▶ ma: Option[A]
▶ ab: A => Option[B]
▶ bc: B => Option[C]

The law:

ma.flatMap(ab).flatMap(bc) === ma.flatMap(a => ab(a).flatMap(bc))

with bc function expanded into b => bc(b) on right side, becomes:

ma.flatMap(ab).flatMap(bc)
=== ma.flatMap: a =>

ab(a).flatMap: b =>
bc(b)

Doing flatMap one by one is same as binding values



Remark on Extensionality

We will generally assume that two functions,

f: A => B
g: A => B

are mathematically equal if and only if, for all values x: A,

f(x) === g(x)

Consequence: if f is a function, then

(y => f(y))
===

f

Indeed, applying both sides to some value v gives f(v)



for Comprehensions
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for Comprehensions

Instead of writing, e.g.

ma.flatMap: a =>
ab(a).flatMap: b =>

bc(b)

we can write, gaining or losing essentially nothing:

for
a <- ma
b <- ab(a)
c <- bc(b)

yield c

Compiler will translate the for expression into flatMap calls for us.



map on a Monad

sealed trait Option[+T]:
def flatMap[U](f: T => Option[U]): Option[U] = ...

def map[U](f: T => U): Option[U] =
flatMap((x:T) => unit(f(x))) // definition for map in a Monad

Right unit law

m.flatMap(unit) === m

is (by expanding map definition) equivalent to:

m.map(x => x) === m

as

m.flatMap(x => unit(x)) === m.flatMap(unit)



Translation uses flatMap + map instead of flatMap + unit

Expression

for a <- ma
b <- ab(a)
c <- bc(b)

yield d(c)

in Scala means

ma.flatMap: a =>
ab(a).flatMap: b =>

bc(b).map: c =>
d(c)

(Unlike Haskell, yield is a keyword and not a unit.)



Monad Unit Laws Using for Comprehensions

Right unit law:

for a <- ma
yield a

===
ma

Left unit law (given right unit law):

for a <- unit(x)
b <- f(a)

yield b
===

f(x)



Associativity Law Using for Comprehensions

for b <- (for a <- ma
b1 <- ab(a)

yield b1)
c <- bc(b)

yield c
===

for a <- ma
b <- ab(a)
c <- bc(b)

yield c



Exercise: Define Flatten: M[M[A]] => M[A]

extension[A](mma: Option[Option[A]])
def flatten: Option[A] =

for ma <- mma
a <- ma

yield a

// that is, mma.flatMap(ma => ma.map(a => a))
=== mma.flatMap(ma => ma)

Conversely, given map and flatten we can define flatMap:

extension[A](ma: Option[A])
def flatMap[B](f: A => Option[B]): Option[B] =

ma.map(f).flatten

One could alternatively define monads using map and flatten



List and Exception as Monads
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Two Directions to Generalize Option

We view expression of Option[T] as a computation that:

1. returns one or more results - generalization: return any number of results using
List[T], Seq[T]

2. succeeds or fails with None - generalization: indicate reason for failure using
Try[T]

Being a monad is just a common interface, but each monad is useful because it has its
own intrinsic operations that make it useful.



List as a Monad

sealed abstract class List[+A]:
def flatMap[B](f: A => List[B]): List[B] =

this match
case Nil => Nil
case Cons(a, as) => f(a) ++ as.flatMap[B](f)

def ++[B >: A](that: List[B]): List[B] =
this match

case Nil => that
case Cons(a, as) => Cons(a, as ++ that)

case object Nil extends List[Nothing]
case class Cons[+A](first: A, next: List[A]) extends List[A]

def unit[A](x: A): List[A] = Cons(x, Nil)



Uses of List (and, similarly, LazyList) as a Monad

Can be viewed as representing computation with multiple results

▶ expressing search problems
▶ expressing generation of values for testing as in ScalaCheck

Useful additional operations (beyond flatMap):

▶ concatate lists: join two ma1, ma2: M[A]
▶ filter: only permit values that satisfy a condition

Monad with “zero” and “plus”



Try as Monad for Exceptions (see Week 11)

Suppose we are in a pure language and wish to represent exceptions

sealed abstract class Try[+A]:
def flatMap[B](f: A => Try[B]): Try[B] =

this match
case Success(v) => f(v)
case f @ Failure(_) => f

case class Success[+A](value: A) extends Try[A]
case class Failure(msg: String) extends Try[Nothing]

def unit[A](x: A): Try[A] = Success(x)



Additional Operations: Throw and Catch

def THROW[A](msg: String): Try[A] = Failure(msg)

extension[A](t: Try[A])
def CATCH(handler: String => Try[A]): Try[A] =

t match
case Success(v) => t
case Failure(msg) => handler(msg)



Illustration with Division

extension[T](x: Try[Double])
def +(y: Try[Double]) =

x.flatMap: xd =>
y.flatMap: yd =>

unit(xd + yd)

def /(y: Try[Double]): Try[Double] =
x.flatMap: xd =>

y.flatMap: yd =>
if Math.abs(yd) <= Double.MinPositiveValue then THROW(”Division by zero”)
else unit(xd / yd)

def harmonicMean(x: Try[Double], y: Try[Double]) =
(one / (one / x + one / y)).CATCH: msg =>

unit(0.0)



Future Core API (Week 12)

Future provides convenient high-level transformation operations.

trait Future[+A]:
def onComplete(k: Try[A] => Unit): Unit

// transform successful results:
def flatMap[B](f: A => Future[B]): Future[B] <====
def map[B](f: A => B): Future[B] <====
def zip[B](fb: Future[B]): Future[(A, B)]

// transform failures
def recover(f: Exception => A): Future[A]
def recoverWith(f: Exception => Future[A]): Future[A]



flatMap Operation on Future

trait Future[+A]:
...
def flatMap[B](f: A => Future[B]): Future[B] // f itself can fail

▶ Transforms a successful Future[A] into a Future[B] by applying a function f: A =>
Future[B] after the Future[A] has completed

▶ Returns a failed Future[B] if the former Future[A] failed or if the Future[B]
resulting from the application of the function f failed.

def map[B](f: A => B): Future[B] // f cannot fail, must give B

▶ Transforms a successful Future[A] into a Future[B] by applying a function f: A =>
B after the Future[A] has completed

▶ Automatically propagates the failure of the former Future[A] (if any), to the
resulting Future[B]



Parsers (Syntax Analyzers)

A parser is a function that transforms

▶ a linear sequence (String, text file) into
▶ a tree representation (e.g. expression tree, JSON tree, XML tree).

Parsers are used in compilers, interpreters, web browsers, network software, Linux and
Windows operating system kernel, text editors and IDEs,…
Monadic Parser Combinators concisely implement parsers using monads

// parser consumes some string, produces tree of type A, returns leftover string
// (it can return a lazy list of possibilities, empty list is syntax error)
case class Parser[A](runOn: String => LazyList[(A,String)])

...
def flatMap(f: A => Parser[B]): Parser[B]

More about parsing in: Computer Language Processing (CS-320)



Monadic Translation: val to for
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We Have Seen Addition of Try[Double]

We had + : (Double, Double) => Double

wanted (Try[Double], Try[Double]) => Try[Double]

extension[T](x: Try[Double])
def +(y: Try[Double]): Try[Double] =

x.flatMap: xd =>
y.flatMap: yd =>

unit(xd + yd)
// i.e.

for xd <- x
yd <- y

yield x + y

It is not specific to Try. Works analogously if you replace Try with, e.g., List
There is a general way to transform pure computation into one that uses a given monad



Call-by-Value Monadic Translation: replace val with for

Consider an expression such as

e(f1(x), f2(x))

We can break it down into individual steps using val-s:

val x1 = f1(x)
val x2 = f2(x)
val res = e(x1, x2)
res

To represent this computation using monads, we write simply:

for x1 <- f1(x) // f1 now returns a monad
x2 <- f2(x)
res <- e(x1, x2)

yield res



Monadic Translation of Functions

Consider f: A => B, x: A, so: f(x): B

Translation replaces f(x) function application with x’.flatMap(f’), so we should have

f’: A => M[B] // monad added only to function result
x’: M[A]
x’.flatMap(f’): M[B]

Hence, anonymous function

(x:A) => (e:B)

should become:

(x:A) => (e’: M[B])



Example: Translation of foldLeft to use Try

def foldLeft[A,B](lst: List[A], z: B, op: (B,A) => B): B =
lst match

case List() => z
case x :: xs =>

val z1 = op(z, x)
foldLeft(xs, z1, op)

def foldLeftM[A,B](lst: List[A], z: B, op: (B,A) => Try[B]): Try[B] =
lst match

case List() => Try(z) // unit(z)
case x :: xs =>

op(z,x).flatMap: z1 =>
foldLeftM(xs, z1, op)



State Monad
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Recall Week 10: Making Arguments and Results Explicit

type State = Int
var s: State = 2
{s = s + 2; s} + {s = s - 1; 10*s} // What is the result?

4 + 30
== 34

A block of code returns a value
But it also has an effect: it depends on state s and it changes s
The meaning of a block returning value of type A is a function f: State => (A,State)

▶ when we execute code in state s then if f(s) is (a,s’) it means that the code:
▶ returns a
▶ changes the state to s’



Composing Blocks of Code with Plus

{s = s + 2; s} + {s = s - 1; 10*s}

b1 b2

type State = Int
type Block[A] = State => (A, State)
def addBlockValues[T](b1: Block[Int], b2: Block[Int]): Block[Int] =

(s0: State) =>
val (r1:Int, s1:State) = b1(s0)
val (r2:Int, s2:State) = b2(s1)
(r1 + r2, s2)



flatMap for State Monad: Pass Value of Block to a Function

type Block[A] = State => (A,State)
extension[A](b: Block[A])

def flatMap[B](f: A => Block[B]): Block[B] =
(s0: State) =>

val (a:A, s1:State) = b(s0)
f(a)(s1)

Block[T] is a state monad, with state Int.
State in the state monad can be arbitrary, so we make it a parameter: StateMonad[S,A]

type StateMonad[S,A] = S => (A, S)

What is the unit?

def unit[S,A](a: A): StateMonad[S,A] = (s:S) => (a, s)



Example of a Special Operation for State Monad

def getInc: StateMonad[Int,Int] =
(s:Int) => (s, s + 1)

Fundamental operations:

def read[S]: StateMonad[S,S] = (s:S) => (s, s)

def write[S](s0:S): StateMonad[S,Unit] = (s:S) => ((), s0)

Exercise: write getInc using read and write (and flatMap / for)



Addition of Side-Effecting Expressions

{s = s + 2; s} + {s = s - 1; 10*s}

the plus in ...} + {...becomes

def add[T](b1: StateMonad[Int, Int],
b2: StateMonad[Int,Int]): StateMonad[Int, Int] =

b1.flatMap: r1 =>
b2.flatMap: r2 =>

unit(r1 + r2)

Same structure of code as the addition that takes Try values!



Example: Renaming

def rename(lst: List[String]): StateMonad[Int,List[String]] =
lst match

case List() => unit[Int,List[String]](List())
case x :: xs =>

for count <- getInc
xs1 <- rename(xs)

yield f”${x}_${count}” :: xs1

def run[S,A](st: StateMonad[S,A])(s0: S): A =
val (a, s1) = st(s0)
a

val lst = List(”a”, ”b”, ”a”)
val m = rename(lst)
println(run(m)(10)) // List(a_10, b_11, a_12)



To Explore More

See the monad exercises this week!
Using a common interface with flatMap makes code more modular
However:

▶ code needs to be flattened, looks less readable
▶ we may lose parallelism
▶ combining different types of monads becomes messy

Be aware of monads, but beware of using monads too much.


