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Asynchronous Programming with Futures

(CS-214 Software Construction



Asynchronous Computations

A common pattern for computing is

» We launch a task

> At some time later in the program we need the result of the task.

> If there are no side effects, the task can be executed concurrently with the other
program.

Why is this beneficial?

» The task might take time to compute, so we can use parallel computing resources
to save time.

» The task might wait for some external event and we do not want to block the
program as a whole.



Example: Preparing Breakfast
import scala.util.

.{Try, Success, Failure, Random}
import collection.mutable.lListBuffer

val rand = Random()

class Beans
class Coffee(beans: Beans)
class Croissant

class Burnt extends Exception
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import scala.util.
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Beans()



Example: Preparing Breakfast
import scala.util.
.{Try, Success, Failure, Random}

import collection.mutable.lListBuffer

val rand = Random()

class Beans def brewCoffee(beans: Beans) =
class Coffee(beans: Beans) Thread.sleep(500)
class Croissant Coffee(beans)

class Burnt extends Exception

def grindBeans() =
Thread.sleep(500)
Beans()



Example: Preparing Breakfast

import scala.util.
.{Try, Success, Failure, Random}
import collection.mutable.lListBuffer

def brewCoffee(beans: Beans) =
Thread.sleep(500)
Coffee(beans)

val rand = Random()

class Beans

class Coffee(beans: Beans
( ) def bakeCroissant(): Croissant =

Thread.sleep(5000)
if rand.nextInt(5) == @ then throw Burnt()
Croissant()

class Croissant
class Burnt extends Exception
def grindBeans() =

Thread.sleep(500)
Beans()



Example: Preparing Breakfast

import scala.util.

.{Try, Success, Failure, Random
€y } def brewCoffee(beans: Beans) =

Thread.sleep(500)
Coffee(beans)

import collection.mutable.lListBuffer

val rand = Random()

def bakeCroissant(): Croissant =
Thread.sleep(5000)
if rand.nextInt(5) == @ then throw Burnt()
Croissant()

class Beans
class Coffee(beans: Beans)
class Croissant

class Burnt extends Exception
def makeCoffee(): Coffee =

val beans = grindBeans()

def grindB =
ef grindBeans() brewCoffee(beans)

Thread.sleep(500)
Beans()



Example: Preparing Breakfast

import scala.util.
.{Try, Success, Failure, Random}
import collection.mutable.lListBuffer

val rand = Random()

class Beans

class Coffee(beans: Beans)
class Croissant

class Burnt extends Exception
def grindBeans() =

Thread.sleep(500)
Beans()

def brewCoffee(beans: Beans) =
Thread.sleep(500)
Coffee(beans)

def bakeCroissant(): Croissant =
Thread.sleep(5000)
if rand.nextInt(5) == @ then throw Burnt()
Croissant()

def makeCoffee(): Coffee =
val beans = grindBeans()
brewCoffee(beans)

def makeBreakfast(): (Coffee, Croissant) =
(makeCoffee(), bakeCroissant())



Examples Ctd

@main def demol =
try
makeBreakfast ()
catch case ex: Burnt =>
println(”sorry, no croissant today”)

@main def demo2 =
def compute(x: Double): Double =
Thread.sleep(1000)

X * X

val xs = (1 to 1000).map(compute(_))
println(xs.sum)

» Problem: Everything is sequential.

> How can we better make use of
parallelism?

» fork/join from parallel
programming is close but too
restrictive



The Rest of This Lecture

I'll present futures as a solution to asynchronous computation, in three parts:

Part 1: Simple futures for lenient evaluation.

» This works, but is not very scalable.



The Rest of This Lecture

I'll present futures as a solution to asynchronous computation, in three parts:

Part 1: Simple futures for lenient evaluation.
» This works, but is not very scalable.
Part 2: Completable futures that implement inversion of control.

> They are very scalable, but a harder to use.



The Rest of This Lecture

I'll present futures as a solution to asynchronous computation, in three parts:

Part 1: Simple futures for lenient evaluation.
» This works, but is not very scalable.

Part 2: Completable futures that implement inversion of control.
> They are very scalable, but a harder to use.

Part 3: Direct style futures with suspensions.

» They combine simplicity with scalability.
» They need new runtime features (continuations or coroutines) to work.



Part 1: Simple Futures



Part 1: Simple Futures

Idea: Split the points where a task is defined and where its result is asked.
Definition:

val f = SimpleFuture{ <some task> }
Asking:

f.await



Breakfast with simple Futures

def grindBeans() =

SimpleFuture:
Thread.sleep(500)
Beans() def makeCoffee(): SimpleFuture[Coffee] =
SimpleFuture:
def brewCoffee(beans: Beans) = val beans = grindBeans()
SimpleFuture: brewCoffee(beans)
Thread.sleep(500)
Coffee(beans) def makeBreakfast()
. SimpleFuture[(Coffee, Croissant)]
def bakeCroissant() = = SimpleFuture:
SimpleFuture: ( makeCoffee().await,
Thread.sleep(5000) bakeCroissant().await )

if rand.nextInt(5) == @ then
throw Burnt()
Croissant()



Breakfast with simple Futures

def grindBeans() =

SimpleFuture:

Thread.sleep(500

p(502) def makeCoffee(): SimpleFuture[Coffee] =
Beans() )
SimpleFuture:
al beans = grindBeans
def brewCoffee(beans: Beans) = v grt O

. brewCoffee(beans)
SimpleFuture:

Thread.sleep(500

ree p(502) def makeBreakfast()
Coffee(beans)

: SimpleFuture[(Coffee, Croissant)]
= SimpleFuture:
( makeCoffee().await,
bakeCroissant().await )
// Problem: this is still sequential!

def bakeCroissant() =
SimpleFuture:
Thread.sleep(5000)
if rand.nextInt(5) == @ then
throw Burnt()
Croissant()



Breakfast with Futures - In Parallel

def grindBeans() =
SimpleFuture:
Thread.sleep(500)
Beans()

def brewCoffee(beans: Beans) =
SimpleFuture:
Thread.sleep(500)
Coffee(beans)

def bakeCroissant() =
SimpleFuture:
Thread.sleep(5000)
if rand.nextInt(5) == @ then
throw Burnt()
Croissant()

def makeCoffee(): SimpleFuture[Coffee] =
SimpleFuture:
val beans = grindBeans()
brewCoffee(beans)

def makeBreakfast()
: SimpleFuture[(Coffee, Croissant)] =
val coffeeFuture = makeCoffee()
val croissantFuture = bakeCroissant()
SimpleFuture:
( coffeeFuture.await,
croissantFuture.await) )
// Now it’s parallel



Main Programs

@main def demo4 =
def compute(x: Double): SimpleFuture[Double:

@main def demo3 = SimpleFuture:
try Thread.sleep(1000)
makeBreakfast().await X *x X

catch case ex: Burnt =>

println(”sorry, no croissant today”) val fs (1 to 1000) .map(compute(_))
val xs = fs.map(_.await)

println(xs.sum)



Lenient Evalution

We have seen two evaluation strategies so far:

» Strict evaluation: An expression gets evaluated when it is defined
P Lazy evaluation: An expression gets evaluated when its value is needed.

Lenient evaluation is a third option, between the two:

P> An expression can be evaluated as soon as it is defined, and must be evaluated
once its value is needed.

Lenient evaluation is great for exploiting parallelism.

It's related to dataflow programming: Evaluate when the data is ready.



A Simple Implementation of Direct-Style Futures

class SimpleFuture[T](body: => T):
private var status: Option[Try[T]] = None

private val thread = new Thread:
override def run(): Unit =
status = Some(Try(body))
start()

def awaitTry: Try[T] = // Futures always return
if status.isEmpty then thread.join() // either Success or Failure
status.get

def await: T = awaitTry.get // Short form: throw exception on Failure
end SimpleFuture



A Problem

What happens if the increase the number of threads in the previous program by a
factor of 107

@main def demo4 =
def compute(x: Double): SimpleFuture[Double] =
SimpleFuture:
Thread.sleep(10000)
X * X
val fs = (1 to 1000).map(compute(_))
val xs = fs.map(_.await)
println(xs.sum)



A Problem

What happens if the increase the number of threads in the previous program by a
factor of 107

@main def demo4 =
def compute(x: Double): SimpleFuture[Double] =
SimpleFuture:
Thread.sleep(10000)
X * X
val fs = (1 to 1000).map(compute(_))
val xs = fs.map(_.await)
println(xs.sum)

[0.868s][warning][os,thread] Failed to start thread - pthread_create failed (EAGAIN) for
Exception in thread ”main” java.lang.OutOfMemoryError: unable to create native thread:
possibly out of memory or process/resource limits reached



A Problem

» Threads are a scarce resource; can't
have too many of them before running
out. (Typically, low 1000s.)

» Going to tasks helps, because tasks
are multiplexed over worker threads.

» But it does not help if the tasks block
for external events.

> Example: Web server: one task per
connection. You might easily block
every waiting thread in a task that
waits on the connection.

Task Queue

- (@@ — O

Thread
v [OlOIOIZ][O]
Completed Tasks

(@O +— O

A sample thread pool (Gresn boxes) with walling tasks (biug) and completed 5
tasks (ysllow)



A Problem

>

Threads are a scarce resource; can't
have too many of them before running
out. (Typically, low 1000s.)

Going to tasks helps, because tasks
are multiplexed over worker threads.

But it does not help if the tasks block
for external events.

Example: Web server: one task per
connection. You might easily block
every waiting thread in a task that
waits on the connection.

Besides, there are also single-threaded
runtimes (for instance, JS). What do
we do for these?

Task Queue

- (@@ — O

fei o) o) [o) (o) [e)
Completed Tasks
- Q@@ +— O

A sample thread pool (gresn boxes) with waiting tasks tbiug) and completed 5
tasks (yellow)



Part 2: Asynchronous Execution

One area where this problem comes up all the time is in asynchronous execution. That
is,

» Execution of a computation on another computing unit, without waiting for its
termination.
» This gives better resource efficiency.
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StarBlocks Scaled
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ScalaBucks
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ScalaBucks Scaled
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Don't Call Us - We'll Call You!

A Solution: Inversion of Control.

Instead of running 100K threads, we prepare 100K work items that are run from some
scheduler thread(s).

Every work item is a closure.
It has to run to completion without blocking.

So if it needs another thing to happen it has to prepare that as a work item and
register to be called when it is completed.

This pattern is called a callback.



Setting Things Up

Here's a minimal scheduler implementation.

object scheduler:
private val tasks: ListBuffer[() => Unit] = ListBuffer()

def schedule(task: => Unit) =
tasks.insert(rand.nextInt(tasks.size + 1), () => task)

def run(): Unit =
while tasks.nonEmpty do
val task = tasks.remove(0)
task()
end scheduler

To simulate that waiting times for events are unpredictable, schedule inserts a given
task in a random position in the tasks queue.



Callback-Based Breakfasts

def makeCoffee
(callback: Coffee => Unit): Unit =
grindBeans: beans =>
brew(beans): coffee =>

def grindBeans
(callback: Beans => Unit): Unit =
schedule:
println(”grinding beans...”)

llback(coff
callback(Beans()) callback(coffee)
def b def bakeCroissant
ef brew
(b B ) (callback: Croissant => Unit): Unit =
eans: Beans
hedule:
(callback: Coffee => Unit): Unit = scheduze ' '
schedule println(”baking croissant...”)
chedule:

if rand.nextInt(3) == @ then
throw Burnt()
callback(Croissant())

println(”brewing coffee...”)
callback(Coffee(beans))



Waiting for Two Callbacks

To make breakfast, we have to wait for both the coffee and the croissant to be finished.

We could do it in sequence:

def makeBreakfast(serve: (Coffee, Croissant) => Unit) =
makeCoffee: coffee =>
bakeCroissant: croissant =>
serve(coffee, croissant)

But that would not exploit possible sources of parallelism in the task execution.



Waiting for Two Callbacks in Parallel

» To wait for two callbacks in parallel we need to launch two new tasks and wait for
each one separately.
» Need state to keep track of which callback arrived first.

def makeBreakfast(serve: (Coffee, Croissant) => Unit) =
var myCoffee: Option[Coffee] = None
var myCroissant: Option[Croissant] = None
makeCoffee: coffee =>
myCroissant match
case Some(croissant) => serve(coffee, croissant)
case None => myCoffee = Some(coffee)
bakeCroissant: croissant =>
myCoffee match
case Some(coffee) => serve(coffee, croissant)
case None => myCroissant = Some(croissant)



Callback-based main

@main def demo5 =
try
makeBreakfast: (_, _) =>
println(”breakfast served!”)
catch case ex: Burnt =>
println(”sorry, no croissant today”)
scheduler.run()

Trying it out:

grinding beans. ..
brewing coffee...

baking croissant...

breakfast served!



Callback-based main

@main def demo5 =
try
makeBreakfast: (_, _) =>
println(”breakfast served!”)
catch case ex: Burnt =>
println(”sorry, no croissant today”)
scheduler.run()

Trying once more:

baking croissant...
Exception in thread ”main” Burnt
at callback$.bakeCroissant$$anon

» Where did the exception
come from?

» | thought we handled it?



Callback-based main

@main def demo5 = Trying once more:

try
makeBreakfast: (_, _) =>
println(”breakfast served!”)

baking croissant...
Exception in thread ”main” Burnt
at callback$.bakeCroissant$$anon

catch case ex: Burnt => » Where did the exception
println(”sorry, no croissant today”) come from?
heduler. .
scheduler. run() » | thought we handled it?

» Need to add error handling.
» Instead of throwing exceptions, need to propagate them in a Try.

So instead of Croissant => Unit

as a handler type,
it should really be  Try[Croissant] => Unit



Critique of Callbacks

Callbacks are a direct way to solve inversion of control.

But they have shortcomings.



Critique of Callbacks

Callbacks are a direct way to solve inversion of control.

But they have shortcomings.

queryWhere: callbackl =>
queryWhen: callback2 =>
findHotels: callback3 =>
getRates: callBack4 =>
getUserChoice: callBack5 =>
getCreditCardInfo: callBack6 =>
getUserConformation: callBack7 =>
getHotelConfirmation: callBack8 =>

Long sequential dependencies lead
to code that drifts off towards the
right



Critique of Callbacks

def makeBreakfast(serve: (Coffee, Croissant) => Ur
var myCoffee: Option[Coffee] = None

. . var myCroissant: Option[Croissant] = None
Parallel queries are hard to im- Y P [ ]

makeCoffee: coffee =>
plement

bakeCroissant: croissant =>



Critique of Callbacks

def makeBreakfast(serve: (Coffee, Croissant) => Ur
var myCoffee: Option[Coffee] = None

. . var myCroissant: Option[Croissant] = None
Parallel queries are hard to im- Y P [ ]

makeCoffee: coffee =>
plement

bakeCroissant: croissant =>

And we have not even yet started to do error handling properly!



From Synchronous to Asynchronous Type Signatures

Remember the transformation we applied to a synchronous type signature to make it
asynchronous:

def program(a: A): B

def program(a: A, callback B => Unit): Unit



From Synchronous to Asynchronous Type Signatures
Remember the transformation we applied to a synchronous type signature to make it
asynchronous:

def program(a: A): B

def program(a: A, callback B => Unit): Unit
What if we could model an asynchronous result of type T as a return type Future[T]?
def program(a: A): Future[B]

Like SimpleFutures before, Futures can also implement lenient evaluation but they do it
via callbacks.



From Continuation Passing Style to Future

def program(a: A, callback B => Unit): Unit

Let's massage this type signature...
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Let's massage this type signature...

// by currying the continuation parameter
def program(a: A): (B => Unit) => Unit



From Continuation Passing Style to Future

def program(a: A, callback B => Unit): Unit
Let's massage this type signature...

// by currying the continuation parameter
def program(a: A): (B => Unit) => Unit

// by introducing a type alias
type Future[+T] = (T => Unit) => Unit
def program(a: A): Future[B]



From Continuation Passing Style to Future

def program(a: A, callback B => Unit): Unit
Let's massage this type signature...

// by currying the continuation parameter
def program(a: A): (B => Unit) => Unit

// by introducing a type alias
type Future[+T] = (T => Unit) => Unit
def program(a: A): Future[B]

// bonus: adding failure handling
type Future[+T] = (Try[T] => Unit) => Unit



Fleshing Out Future

type Future[+T] = (Try[T] => Unit) => Unit



Fleshing Out Future

type Future[+T] = (Try[T] => Unit) => Unit

// by reifying the alias into a proper trait
trait Future[+T] extends ((Try[T] => Unit) => Unit):
def apply(callback Try[T] => Unit): Unit



Fleshing Out Future

type Future[+T] = (Try[T] => Unit) => Unit

// by reifying the alias into a proper trait
trait Future[+T] extends ((Try[T] => Unit) => Unit):
def apply(callback Try[T] => Unit): Unit

// by renaming ‘apply‘ to ‘onComplete‘
trait Future[+T]:
def onComplete(callback Try[T] => Unit): Unit

Future is essentially the scala.concurrent.Future trait from the standard library.



Breakfast with Future

If it was just for encapsulated oncomplete, our programs would not change much:

def grindBeans: Future[Beans] =
Future:
println(”grinding beans...”)
Beans()

def brew(beans: Beans) =
Future:
println(”brewing coffee...”)
Coffee(beans)

def makeCoffee: Future[Coffee] =
new Future:
override def onComplete(
callback: Try[Coffee] => Unit) =
grindBeans.onComplete: beans =>
brew(beans.get).onComplete(callback)

def bakeCroissant: Future[Croissant] =
Future:
println(”’baking croissant...”)
if rand.nextInt(3) == @ then
throw Burnt()
Croissant()



Future Core API

But Future provides convenient high-level transformation operations.

trait Future[+A]:
def onComplete(k: Try[A] => Unit): Unit

// transform successful results:

def map[BI(f: A => B): Future[B]

def flatMap[Bl(f: A => Future[B]): Future[B]
def zip[BI(fb: Future[B]): Future[(A, B)]

// transform failures
def recover(f: Exception => A): Future[A]
def recoverWith(f: Exception => Future[A]l): Futurel[A]



map Operation on Future

trait Future[+A]:
def map[B](f: A => B): Future[B]

» Transforms a successful Future[A] into a Future[B] by applying a function f: A =>
B after the Future[A] has completed

» Automatically propagates the failure of the former Future[A] (if any), to the
resulting Future[B]



map Operation on Future

trait Future[+A]:
def map[B](f: A => B): Future[B]

» Transforms a successful Future[A] into a Future[B] by applying a function f: A =>

B after the Future[A] has completed
» Automatically propagates the failure of the former Future[A] (if any), to the

resulting Future[B]

def quoteInDollars: Future[Double]
def USDtoCHF (usd: Double): Double

def quoteInCHF: Future[Double] =
quoteInDollars.map(USDtoCHF)



flatMap Operation on Future

trait Future[+A]:
def flatMap[BI(f: A => Future[B]): Future[B]

» Transforms a successful Future[A] into a Future[B] by applying a function f: A =>
Future[B] after the Future[A] has completed

» Returns a failed Future[B] if the former Future[A] failed or if the Future[B]
resulting from the application of the function f failed.



flatMap Operation on Future

trait Future[+A]:
def flatMap[BI(f: A => Future[B]): Future[B]

» Transforms a successful Future[A] into a Future[B] by applying a function f: A =>
Future[B] after the Future[A] has completed

» Returns a failed Future[B] if the former Future[A] failed or if the Future[B]
resulting from the application of the function f failed.

def quoteInDollars: Future[Double]
def askUSDtoCHFrate(usd: Double): Future[Double]

def quoteInCHF: Future[Double] =
quoteInDollars.flatMap(askUSDtoCHFrate)



Simplifying Breakfast

(grindBeans, brew, bakeCroissant as before)

def makeCoffee: Future[Coffee] =
grindBeans.flatMap: beans =>
brew(beans)

def makeBreakfast
: Future[(Coffee, Croissant)] =
makeCoffee.flatMap: coffee =>
makeCroissant.map: croissant =>
(coffee, croissant)



Simplifying Breakfast

Or, using for-expressions:

def makeCoffee: Future[Coffee] =
grindBeans.flatMap: beans =>
brew(beans)

def makeBreakfast
: Future[(Coffee, Croissant)] =
makeCoffee.flatMap: coffee =>
makeCroissant.map: croissant =>
(coffee, croissant)

def makeCoffee: Future[Coffee] =
for beans <- grindBeans;
coffee <- brew(beans)
yield coffee

def makeBreakfast
: Future[(Coffee, Croissant)] =
for
coffee <- makeCoffee
croissant <- bakeCroissant
yield
(coffee, croissant)



Simplifying Breakfast

Or, using for-expressions:

def makeCoffee: Future[Coffee] =
grindBeans.flatMap: beans =>
brew(beans)

def makeBreakfast
: Future[(Coffee, Croissant)] =
makeCoffee.flatMap: coffee =>
makeCroissant.map: croissant =>
(coffee, croissant)

But is it parallel?

def makeCoffee: Future[Coffee] =
for
beans <- grindBeans
coffee <- brew(beans)
yield coffee

def makeBreakfast
: Future[(Coffee, Croissant)] =
for
coffee <- makeCoffee
croissant <- bakeCroissant
yield
(coffee, croissant)



Simplifying Breakfast

Getting back parallelism:

def makeBreakfast: Future[(Coffee, Croissant)] =
val coffeeFuture = makeCoffee
val croissantFuture = bakeCroissant
for
coffee <- coffeeFuture
croissant <- croissantFuture
yield (coffee, croissant)

Same principle as for direct-style futures:

» To gain parallelism, separate the point of definition of a future from the point
where its result is used.



Simplifying Breakfast

Getting back parallelism:

def makeBreakfast: Future[(Coffee, Croissant)] =
val coffeeFuture = makeCoffee
val croissantFuture = bakeCroissant
for
coffee <- coffeeFuture
croissant <- croissantFuture
yield (coffee, croissant)

Same principle as for direct-style futures:

» To gain parallelism, separate the point of definition of a future from the point
where its result is used.

Can we do even better? Think about error conditions...



zip Operation on Future

trait Future[+A]:
def zip[BJ](other: Future[B]): Future[(A, B)]

» Joins two successful Future[A] and Future[B] values into a single successful
Future[ (A, B)] value

P Returns a failure if any of the two Future values failed

» Does not create any dependency between the two Future values!



zip Operation on Future

trait Future[+A]:
def zip[BJ](other: Future[B]): Future[(A, B)]

» Joins two successful Future[A] and Future[B] values into a single successful
Future[ (A, B)] value

P Returns a failure if any of the two Future values failed

» Does not create any dependency between the two Future values!

def makeBreakfast: Future[(Coffee, Croissant)] =
makeCoffee.zip(bakeCroissant)



recover and recoverWith Operations on Future

Turn a failed Future into a successful one

trait Future[+A]:

def recover[B >: A](pf: PartialFunction[Throwable, B]): Future[B]
def recoverWith[B >: A](pf: PartialFunction[Throwable, Future[B]]): Future[B]

grindBeans().recoverWith
case BeansBucketEmpty =>
refillBeans().flatMap(_ => grindBeans())



Implementing Future

Here is a simple implementation of completable futures.

object completable:
trait Future[+T]:
def onComplete(callback: Try[T] => Unit): Unit

object Future:
def apply[T]1(body: => T): Future[T] =
val promise = Promise[T]
schedule:
promise.complete(Try(body))
promise. future
end Future

Promise is the part that completes a future



Promises

A Promise is used to complete a completable future.

It consists of two elements:

class Promise[T]:

// The ‘complete‘ method is called to set the result
def complete(result: Try[T]): Unit

// A future that propagates the result to waiting futures
val future: Future[T]

It has an internal state of this type:

enum State[T]:
case Pending(callbacks: List[T => Unit])
case Complete(result: T)



Implementing Promises

class Promise[T]:

private var state: State[Try[T]] = Pending(Nil)

def complete(result: Try[T]): Unit = state match

case Pending(cs) =>
state = Complete(result)
for callback <- cs do callback(result)
case _ =>
val future = new Future[T]:
def onComplete(c: Try[T] => Unit): Unit =
state match
case Complete(r) => c(r)

case Pending(cs) => state = Pending(c ::

cs)



Implementing map on Futures

def map[UJ(f: T => U) = new Futurel[U]:



Implementing map on Futures

def map[UJ(f: T => U) = new Futurel[U]:
def onComplete(callback: Try[U] => Unit): Unit =
m



Implementing map on Futures

def map[UI(f: T => U) = new Future[U]:
def onComplete(callback: Try[U] => Unit): Unit =
Future.this.onComplete:
case Success(x) => 7?7
case Failure(e) => ???



Implementing map on Futures

def map[UI(f: T => U) = new Future[U]:
def onComplete(callback: Try[U] => Unit): Unit =
Future.this.onComplete:
case Success(x) => callback(Try(f(x)))
case Failure(e) => ???



Implementing map on Futures

def map[UI(f: T => U) = new Future[U]:
def onComplete(callback: Try[U] => Unit): Unit =
Future.this.onComplete:
case Success(x) => callback(Try(f(x)))
case Failure(e) => callback(Failure(e))



Exercises:

1. Implement flatMap on Future
2. Implement zip on Future



Finishing Breakfast

To run breakFast, we can use this code: ..

def makeBreakfast: Future[(Coffee, Croissant)] =
makeCoffee.zip(bakeCroissant)

@main def demo7 =
makeBreakfast.onComplete:
case Success(_) => println(”breakfast served!”)
case Failure(_) => println(”sorry, no croissant today”)
scheduler.run()



Using Standard Futures

Your program is largely unchanged when it uses scala.concurrent.Future instead of
completable.Future.

Main difference: there's no explicit scheduler. Instead, you use a standard scheduler
that's defined in a an ExecutionContext.

package scala.concurrent

trait Future[+A]:
def onComplete(k: Try[A] => Unit)(using ExecutionContext): Unit

And your program should

import scala.concurrent.ExecutionContext.Implicits.global



Awaiting Futures

Since there is no scheduler, your main program does not need to invoke
scheduler.run()

at the end.

But, beware! This does not work correctly:

@main def demo7 =
makeBreakfast.onComplete:
case Success(_) => println(”breakfast served!”)
case Failure(_) => println(”sorry, no croissant today”)

The problem is that demo7 will likely exit before we have a chance to run any of the
tasks defined by its futures.



Awaiting Futures

To fix this, we have to use a blocking wait for the main future (i.e. the result of
makeBreakfast).

Ideally, we could write this:

@main def demo8 =
makeBreakfast.awaitTry:
case Success(_) => println(”breakfast served!”)
case Failure(_) => println(”sorry, no croissant today”)

This should block the main thread until the makeBreakfast future has completed.

Unfortunately, awaitTry does not exist in the standard library, but we can make it
available as an extension method.



Implementing awaitTry

import scala.concurrent.{Future, Await}
import scala.concurrent.duration.Duration

extension [T1(f: Future[T])
def awaitTry: Try[T] =
Try(Await.result(f, Duration.Inf))



Implementing awaitTry

import scala.concurrent.{Future, Await}
import scala.concurrent.duration.Duration

extension [T](f: Future[T])
def awaitTry: Try[T] =
Try(Await.result(f, Duration.Inf))

@ Why is it so complicated?

A Completable futures were originally build for servers (one of the original designers
was a team at Twitter)

Servers don't exit and nothing should ever block. Everything is async.

So the designers made it intentionally hard to do a blocking wait on a future.



Completable Futures in Industry

Futures or something like it power many large server installations.
Examples: Twitter, Disney+, Netflix, Coursera, Duolingo, ..

There are three main variants:

» standard scala.concurrent.Future

> ZIO
» Cats Effect

The second two do asynchronous execution as a part of general effect handling.



Critique of Completable Futures

> They are better than callbacks
» But they are still hard to compose.
» Notation is more heavyweight than direct simple futures, even when using for.

» Choice of async vs sync is viral. Hard to mix the two styles.



Part 3: Back to Direct Style

Trend: Runtimes get increasingly support for fibers or continuations.

Examples

» Goroutines,

» Project Loom in Java,

» Kotlin coroutines,

» OCaml or Haskell delimited continuations,
» Research languages such as Effekt, Koka
» Scala Native continuations



Part 3: Back to Direct Style

Trend: Runtimes get increasingly support for fibers or continuations.

Examples

» Goroutines,

Project Loom in Java,

Kotlin coroutines,

OCaml or Haskell delimited continuations,
Research languages such as Effekt, Koka
Scala Native continuations
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This will deeply influence libraries and frameworks
P It makes it possible and attractive to go back to direct style.



How will this influence Scala in the future?

1. There will be native foundations for direct-style reactive programming

» Delimited continuations on Scala Native
» Fibers on latest Java
» Source or bytecode rewriting for older Java, JS

2. This will enable new techniques for designing and composing software
3. There will be a move away from monads as the primary way of code composition.



Direct-Style Operations

Here are some direct style operations that were often implemented with monads before.

» Aborting computations

» Error handling

» Suspending and resuming computations
» Asynchronous computing



Warmup: Boundary/break

Problem: Want to break out of a loop, returning a value.

def firstIndex[T](xs: List[T], elem: T): Int =
boundary:
for (x, i) <- xs.zipWithIndex do
if x == elem then break(i)
-1

boundary establishes a boundary
break returns with a value from it.



Stack View
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API

package scala.util

object boundary:
final class Label[-T]

def break[T](value: T)(using label: Label[T]): Nothing =
throw Break(label, value)

inline def apply[Tl(inline body: Label[T] ?=>T): T = ...
end boundary

To break, you need a label that represents the boundary.
In a sense, label is a capability that enables to break.

(This is a common pattern)



Implementation

The implementation of break produces efficient code.

> If break appears in the same stackframe as its boundary, use a jump.
» Otherwise use a fast exception that does not capture a stack trace.

A stack trace is not needed since we know the exception will be handled (¥*)



Implementation

The implementation of break produces efficient code.

> If break appears in the same stackframe as its boundary, use a jump.
» Otherwise use a fast exception that does not capture a stack trace.

A stack trace is not needed since we know the exception will be handled (¥*)

(*) To be 100% sure, this needs capture checking, a research topic we are working on.



Stage 2: Error handling

boundary/break can be used as the basis for flexible error handling. For instance:

def firstColumn[TJI(xss: List[List[T1]): Option[List[T]1] =
optional:
xss.map(_.headOption.?)

Optionally, returns the first column of the matrix xss.

Returns None if there is an empty row.



Error handling implementation

optional and ? on options can be implemented quite easily on top of boundary/break:

object optional:
inline def apply[T](inline body: Label[None.typel ?=> T)
: Option[T] = boundary(Some(body))

extension [T1(r: Option[T])
inline def ? (using label: Label[None.typel): T = r match
case Some(x) => x
case None => break(None)

Analogous implementations are possible for other result types such as Either or a
Rust-like Result.

My ideal way of error handling would be based on Result + 2.



Stage 3: Suspensions

Question: What if we could store the stack segment between a break and its boundary
and re-use it at some later time?
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Suspensions

Question: What if we could store the stack segment between a break and its boundary
and re-use it at some later time?

Cothmuahow [«



Suspensions

Question: What if we could store the stack segment between a break and its boundary
and re-use it at some later time?

Cothmuahow [«

This is the idea of delimited continuations.



Suspension API

class Suspension[-T, +R]:
def resume(arg: T): R = ?2??

def suspend[T, R](body: Suspension[T, R] => R)(using Label[R]1): T

Suspensions are quite powerful.

They can express at the same time algebraic effects and monads.



Generators

Python-style generators are a simple example of algebraic effects.

def example = generate:
produce(”We’1l give you all the numbers divisible by 3 or 27)
for i <= 1 to 1000 do
if 1 % 3 == @ then
produce(s”$i is divisible by 3”)
else if i % 2 == @ then
produce(s”$i is even”)

Here, Generator is essentially a simplified Iterator

trait Generator[T]:
def nextOption: Option[T]



Algebraic Effects
Task: Build a generate implementation of Generator, so that one can compute the
leafs of a Tree like this:

enum Treel[T]:
case Leaf(x: T)
case Inner(xs: List[Tree[T]])

def leafs[T1(t: Tree[T]): Generator[T] =

generate: // effect scope
def recur(t: Tree[T]): Unit = t match
case Tree.lLeaf(x) => produce(x) // effect

case Tree.Inner(xs) => xs.foreach(recur)
recur(t)



Generator Implementation

trait Produce[-T]:
def produce(x: T): Unit

def generate[T](body: Produce[T] ?=> Unit) = new Generator[T]:
def nextOption: Option[T] = step()

var step: () => Option[T] =



The Step Function

trait Produce[-T]: // effect type
def produce(x: T): Unit

def generate[T](body: Produce[T] ?=> Unit) = new Generator[T]:
def nextOption: Option[T] = step()

var step: () => Option[T] = () =>
boundary:
given Produce[T] with // handler
def produce(x: T): Unit =
suspend[Unit, Option[T]]: k =>
step = () => k.resume(())
Some (x)
body
None



Summary: Algebraic Effects

Effects are methods of effect traits

Handlers are implementations of effect traits

» They are passed as implicit parameters.

» They can abort part of a computation via break

» They can also suspend part of a computation as a continuation and resume it
later.



Implementing Suspensions

There are several possibilities:

» Directly in the runtime, as shown in the designs
» On top of fibers (requires some compromises)
» By bytecode rewriting (e.g. Quasar, javactrl)
» By source rewriting



Direct-Style Futures

With suspend(*), we can implement lightweight and universal await construct that can
be called anywhere.

This can express simple, direct-style futures.

val sum = Future:
val f1 = Future(cl.read)
val f2 = Future(c2.read)
fl.await + f2.await

Structured concurrency: Local futures f1 and f2 complete before sum completes.
This might mean that one of them is cancelled if the other returns with a failure.

(*) Loom-like fibers would work as well.



An Implementation

lampepfl/gears is an early stage prototype of a modern, low-level concurrency library in
direct style.

Main elements

» Futures: the primary active elements. They can be awaited cheaply. No
map/flatMap constructions necessary.
» Channels: the primary passive elements.

» Async Sources Futures and Channels both implement a new fundamental
abstraction: an asynchronous source.

» Async Contexts An async context is a capability that allows a computation to
suspend while waiting for the result of an async source.

Link: github.com/lampepfl/gears



Conclusion

We have explored futures, from two different angles:

1. As a simple way to support lenient evaluation
2. As a scalable way to simplify asynchronous computations

The first two implementations of futures each did one of these points well and the
other less well.

Using new new control abstractions we can combine simplicity and scalability.



