

Week 11 (Monday): Safe uses of imperative programming

CS-214 Software Construction

Outline

- Exceptions
- ► Representing control flow
- ► Caching

Exceptions

CS-214 Software Construction

Program That Uses Division

```
def recip100(v: Int): Int =
  100 / v
def f(x: Int, y: Int): Int =
  recip100(x) + recip100(y)
f crashes if x == 0 or y == 0
Indeed, it is not clear what it should return in such case.
Let us rewrite it to use Option[T].
```

Using Option

```
def recip100(v: Int): Option[Int] =
  if v == 0 then None
  else Some(100 / v)
def f(x: Int, y: Int): Option[Int] =
  recip100(x) match
    case None => None
    case Some(vx) =>
      recip100(y) match
        case None => None
        case Some(vy) => Some(vx + vy)
```

The results are clearly specified now. Function f became much longer.

Using Exceptions

```
class ReciprocalOfZero extends Exception
def recip100(v: Int): Int =
   if v == 0 then throw new ReciprocalOfZero
   else 100 / v

def f(x: Int, y: Int): Int =
   recip100(x) + recip100(y)

Function f looks is same as before. A caller of f may get an exception.
```

Evaluating Exceptions

Once we have exceptions in language, an expression evaluates to a success (S), e.g.

```
recip100(1)
==>
  if 1 == 0 then throw new ReciprocalOfZero else 100 / 1
==>
  100 / 1 ==> S(100)
or a failure (F), indicating the exception thrown:
recip100(0)
==>
  if 0 == 0 then throw new ReciprocalOfZero else 100 / 0
==>
  throw new ReciprocalOfZero ==> F(ReciprocalOfZero)
```

Scala Exceptions (Similar to Ones in Java)

Key constructs: throw and catch. Rules to evaluate them:

```
throw r ==> F(r)

S(x) catch cases ==> S(x)

F(e) catch cases ==> cases(e)
```

For normal operations, exceptions escalate

x, y are values, r exception value, e expression

Using Exceptions Internally and Hiding It

```
class ReciprocalOfZero extends Exception
def recip100(v: Int): Int =
  if v == 0 then throw new ReciprocalOfZero
  else 100 / v
def f(x: Int, y: Int): Option[Int] =
  try
    Some(recip100(x) + recip100(y))
  catch
    case _:ReciprocalOfZero => None
```

Caller need now know about exceptions. None is not very informative.

Try Type: Store More Information than Option

Hiding Exceptions Using Try Type

```
class ReciprocalOfZero extends Exception
def recip100(v: Int): Int =
  if v == 0 then throw new ReciprocalOfZero
  else 100 / v
def f(x: Int, y: Int): Try[Int] =
  Try(recip100(x) + recip100(y))
Caller need now know about exceptions.
Information on exception is kept.
The body of f remains concise.
```

Functionally Composing Try Values Explicitly

```
def recip100(v: Int): Try[Int] =
  if v == 0 then Failure(new ReciprocalOfZero)
 else Success(100 / v)
def f(x: Int, y: Int): Try[Int] =
  recip100(x) match
    case Failure(s) => Failure(s)
    case Success(vx) =>
      recip100(y) match
        case Failure(s) => Failure(s)
        case Success(vy) => Success(vx + vy)
```

To abstract the propagation of failures, define method on Try[A] taking function

ightharpoonup A => Try[B] - what to do on success, the body of case Success(...) =>

This is flatMap. Try is a collection storing v of Success(v)

```
sealed abstract class Trv[+A]:
 def flatMap[B](onSuccess: A => Try[B]) =
    this match
     case Failure(e) => Failure(e)
     case Success(v) => onSuccess(v)
def recip100(v: Int): Try[Int] =
  if v == 0 then Failure(new ReciprocalOfZero)
 else Success(100 / v)
def f(x: Int, y: Int): Try[Int] = // shorter thanks to flatMap
  recip100(x).flatMap: vx =>
    recip100(v).flatMap: vv =>
     Success(vx + vy)
```

Use of Exception: Break statements

```
import scala.util.boundary, boundary.break

def firstIndex[T](xs: List[T], elem: T): Int =
  boundary:
    for (x, i) <- xs.zipWithIndex do
        if x == elem then break(i)
        -1</pre>
```

Break jumps outside of boundary, returning given value

- boundary introduces a given label
- break throws an exception for that label
- boundary catches it

Instead of return e use break(e) with function wrapped into a boundary

Representing control flow

CS-214 Software Construction

Representing Positions within One Function

State of a program during execution is given by

- the values stored in its variables
- where it is currently in execution (program counter, pc)

If we want to have full control of where to go in our piece of code, we can rewrite program to use a program counter representation.

- ▶ introduce a program counter (pc) integer variable
- rewrite function to use a single loop:
 - examine pc
 - do the corresponding statement
 - update pc

Example: A Program with Multiple Loops

Rewrite this nested while loop using program counter

```
var i = 0
var j = 0
while i < 10 do
    j = 0
    while j < i do
    f(i,j)
        j += 1
    i += 1</pre>
```

Program Points and Transformed Program with Single Loop

```
var i, j = 0
                             var i, j = 0
while "1"
                             var pc = 1
    i < 10 do
                             while pc != 6 do
  i = 0
                                pc match
  while "2"
                                  case 1 \Rightarrow if i < 10 then {
   j < i do
                                                i = 0; pc = 2
    "3"
                                             } else pc = 6
    f(i,j)
                                  case 2 \Rightarrow if i < i then pc = 3
    "4"
                                             else pc = 5
    j += 1
                                  case 3 => f(i,j); pc = 4
  "5"
                                  case 4 \Rightarrow i += 1; pc = 2
  i += 1
                                  case 5 \Rightarrow i += 1; pc = 1
"6"
```

To implement break and such, assign pc to the desired value.

Flow Across Functions: Tail Recursion <=> Loops

```
def whileDo =
  if condition then
    command
    whileDo
while condition do
  command
We can transform one into another.
```

Control Flow with General Recursion

Consider evaluator:

```
def eval(expr: Expr): Int =
  expr match
   case Const(i) => i
   case Minus(e1, e2) =>
    val v1 = eval(e1)
   val v2 = eval(e2)
   v1 - v2
```

How many copies of v1 must program remember when computing:

Compiled program uses stack for this (an array; add and remove at the end)

Knowing Where to Return

```
def eval(expr: Expr): Int =
  expr match
   case Const(i) => i
  case Minus(e1, e2) =>
   val v1 = eval(e1)
  val v2 = eval(e2)
  v1 - v2
```

When returning from a deep expression with eval, program needs to know whether to go back to

- place after val v1 = eval(e1), or
- place after val v2 = eval(e2)

Stack can also keep track of the program counter to return to. Also stores result.

Resuming at the Correct Place using Stack

To represent a call:

- push values of local variables to the stack
- push on pc stack the place after the call
- set pc to entry value and the variables to initial values

At the end of function, restore pc

After call, recover the result and local variables

```
case class Stack[T](var content: List[T] = List()):
  def isEmpty: Boolean = content.isEmpty
  def push(v: T): Unit = content = v :: content
  def pop: T =
    val res = content.head
    content = content.tail
    res
```

Transformed Non-Recursive Function

```
def eval(expr: Expr): Int =
  var exprStack = Stack[Expr]()
  var resStack, pcStack = Stack[Int]()

  var expr0 = expr
  var pc = 1

  while !(pcStack.isEmpty && pc == 4) do
    ...
```

Places in the Function Become Values of pc

```
while !(pcStack.isEmpty && pc == 4) do
def eval(expr: Expr): Int =
                                       pc match
   "1"
                                         case 1 \Rightarrow
   expr match
                                           expr0 match
     case Const(i) => i
                                             case Const(i) =>
                                               resStack.push(i)
                                               pc = 4
     case Minus(e1, e2) =>
                                             case Minus(e1, e2) =>
       val v1 = eval(e1)
                                               pcStack.push(2) // later to 2
       "?"
                                               exprStack.push(e2) // remember e2
                                               expr0 = e1; pc = 1 // start call
       val v2 = eval(e2)
                                         case 2 \Rightarrow
       "3"
                                           pcStack.push(3) // later continue to 3
       v1 - v2
                                           expr0 = exprStack.pop // recover e2
   "⊿"
                                           pc = 1
```

Computing v1 - v2

```
case 3 =>
v1 - v2

val v2 = resStack.pop
val v1 = resStack.pop
resStack.push(v1 - v2)
pc = 4

case 4 =>
if !pcStack.isEmpty then
pc = pcStack.pop
```

Result will be on top of resStack

Caching

CS-214 Software Construction

Outline

- ► Lazy Cell and Its Implementation
- ► Correctness of Lazy Cell
- Caching Functions
- Memoization

Reminder: Parameterless Function Values

```
scala> val x = () => {println("Evaluating x"); 42}
val x: () => Int = Lambda$1306/0x00007efcd049c410@419f0ea
scala> x()
Evaluating x
val res0: Int = 42
scala> x()
Evaluating x
                          <- evaluation happens every time
val res1: Int = 42
```

Reminder: Lazy Values

Lazy Fields and LazyCell Class

```
class LazyCell[+A](init: => A):
  lazy val get = init
val lc = LazyCell({println("Evaluating x"); 42})
Syntactic variation of the constructor:
class LazyCell[+A](init: () => A):
  lazv val get = init()
val lc = LazyCell(() => {println("Evaluating"); 42}) // LazyCell@291cbe70
lc.get ==> Evaluating
           42
lc.get ==> 42
                      <- evaluation happens only once, no println 2nd time
```

Lazy Lists are Lists with Lazy Tail

```
type LazyList[+A] = LazyCell[ListState[A]]

trait ListState[+A]
object Empty extends ListState[Nothing]
case class Cons[+A](head: A, tail: LazyList[A]) extends ListState[A]
Laziness refers to list structure: laziness of the tail field
```

Laziness of Stored Content vs Lazy Tail

```
Eager list of lazy cells: List[LazyCell[Int]]:
def loop: Int = 1 + loop // stack overflows if executed
val 11 = LazyCell(loop) // LazyCell@31531d0d
val lst = List(11, 11, 11) // returns immediately
lst.length // 3
lst.head // LazyCell@31531d0d
lst.head.get // stack overflow
"lazy list of non-cells:"
                                    | "lazy list of lazy cells:"
val llst = 42 #:: loop #:: LazyList()| val lhl1 = LazyCell(42) #:: LazyCell(loop) #::
llst head
            // 42
llst.length // stack overflow
1lst.tail // LazyCell@... | lhll.tail.head // LazyCell@...
llst.tail.head // stack overflow | lhll.tail.head.get // stack overflow
```

Lazy Cell Implementation using Mutation

```
class LazyCell[+A](val init: () => A):
  private var cached: Option[A] = None

def get: A =
    cached match
    case Some(a) => a
    case None =>
        cached = Some(init())
        cached.get
```

With private we know that the only assignment to cached happens inside get.

```
lc.get = Some(43) // error: rejected by the compiler
```

Correctness Theorem for LazyCell

Let init be a pure expression (e.g. application of a pure function to some arguments, it also cannot println) that evaluates to some value v.

Given

```
val lc = LazyCell(init)
```

then in any program execution, all subsequent calls to 1c.get will evaluate to the same value v.

only holds when fields are private—we must use this property in proof

Proof: An Object Invariant for LazyCell

```
class LazyCell[+A](val init: () => A):
  private var cached: Option[A] = None
  def get: A =
    cached match
      case Some(a) => a
      case None =>
        cached = Some(init())
        cached.get
Lemma: every LazyCell object satisfies the following object invariant:
cached == None || cached == Some(init())
Proof: induction on the length of subsequent program execution.
```

Idea of the Proof of An Object Invariant

```
cached == None || cached == Some(init())
```

We only do the proof for sequential programs. By assumption init() always denotes the same value.

Let 1c be the object created.

We consider a step of an arbitrary execution (one state change at a time):

- ▶ when 1c is created, cached == None by the initial value
- if the step does not modify cached, invariant remains true
- ▶ if the step modifies cached, it must be a call to lc.get (because cached is private)
 - ▶ if initially cached==None then after assignment cached == Some(init())
 - if initially cached != None then nothing is modified, so the invariant continues to hold

This proves the object invariant.

Documenting Invariants using a valid method

```
class LazyCell[+A](val init: () => A):
  private var cached: Option[A @uncheckedVariance] = None
  def valid: Boolean =
                                                // sometimes called repOK
    cached == None || cached == Some(init())
  def get: A = {
    require(valid)
    cached match
      case Some(a) => a
      case None =>
        cached = Some(init()) // assert(valid)
        cached.get
  } ensuring(res => valid && res == init())
From the invariant (valid) we know that a in Some(a) equals init().
LazyCell(init) behaves like init() but more efficient. It is observationally pure.
```

From LazyCell to Cached Function

```
case class CachedFunction[-A,+B](val f: A => B): // not just ()=>B
  private var cache: Map[A,B] = Map()
  def apply(a: A): B =
    cache.get(a) match
      case Some(b) => println(f"Cache hit: $a -> $b"); b
      case None =>
        val b = f(a)
        cache.update(a,b)
        b
val csin = CachedFunction(math.sin)
val x1 = csin(0.4) // 0.3894183423086505
val x2 = csin(0.4)
Cache hit: 0.4 -> 0.3894183423086505
// 0.3894183423086505
```

Invariant (valid method) of CachedFunction

```
case class CachedFunction[-A,+B](val f: A => B):
  private var cache: Map[A,B] = Map()
  def valid: Boolean = cache.keys.forall(a => cache.get(a) == Some(f(a)))
  def apply(a: A): B = {
    require(valid) // only for specification, executing it would ruin performance
   cache.get(a) match
     case Some(b) => b
      case None =>
       val b = f(a)
       cache.update(a,b)
       b
  } ensuring(res => valid && res == f(a)) // just for proofs
```

Making cache field private Does Not Prevent Exposure

Correctness relies on cache being modifiable only within CachedFunction.

Adding getCache method would expose mutable map and break correctness:

```
case class CachedFunction[-A,+B](val f: A => B):
  private var cache: Map[A,B] = Map()
  def valid: Boolean = cache.keys.forall(a => cache.get(a) == Some(f(a)))
  def getCache: Map[A,B] = cache
  def apply(a: A): B = {
    . . .
  }
```

This is one reason why having aliasing (multiple references to mutable state) makes

Fibonacci Function

```
def fib(n: Int): Int =
  if n == 0 then 0
  else if n == 1 then 1
  else fib(n - 1) + fib(n - 2)
What is it's complexity as function of n?
  proportional to the number it returns
 ▶ note that fib(n) grows exponentially, fib(n) \ge 2^{n/2}, for n > 6
 \triangleright thus, function takes exponential time (try fib(44))
Does this also take long?
val cf = CachedFunction(fib)
cf(44)
```

Yes, as slow as before. Also, only the value for 44 is cached, not e.g. for 42.

Memoization: Caching Recursive Calls of fib

```
def fib(n: Int): Int =
                                       \implies def fib(n: Int): Int =
  if n == 0 then 0
                                              if n == 0 then 0
  else if n == 1 then 1
                                              else if n == 1 then 1
  else
                                              else
    fib(n-1) + fib(n-2)
                                                memo_fib(n - 1) + memo_fib(n - 2)
                                            def memo_fib(a: Int): Int =
                                              cache.get(a) match
                                                case Some(b) => b
                                                case None =>
                                                  val b = fib(a)
                                                  cache.update(a, b)
                                                  b
```

Can we automate it? Yes, if we make recursion visible to memoizer.

Parameterize fib by Calls to Given Function

```
def fib(n: Int): Int =
                                       \implies def fibR(rec: Int => Int, n: Int): Int =
  if n == 0 then 0
                                             if n == 0 then 0
                                             else if n == 1 then 1
  else if n == 1 then 1
  else
                                             else
    memo_fib(n - 1) + memo_fib(n - 2)
                                               rec(n - 1) + rec(n - 2)
def memo_fib(a: Int): Int =
                                           def memo_fib: Int => Int = (a:Int) =>
  cache.get(a) match
                                             cache.get(a) match
    case Some(b) => b
                                               case Some(b) => b
    case None =>
                                               case None =>
      val b = fib(a)
                                                 val b = fib(memo_fib, a)
      cache.update(a, b)
                                                 cache.update(a, b)
      b
                                                 b
```

Parameterize Memo Function

```
def fibR(rec: Int => Int, n: Int) : Int = ...
def memo(H: (Int => Int,Int) => Int): Int => Int = {
  val cache: Map[Int,Int] = Map()
  def rec(a: Int): Int =
   cache.get(a) match
      case Some(b) => b
      case None =>
       val b = H(rec,a)
        cache.update(a, b)
        h
  rec
def fib(x:Int) = memo(fibR)(x) // caches also the intermediate values, linear time
memo is independent of fib, works for all Int => Int function descriptions.
```

Generic Memo

```
def memo[A,B](H: (A => B,A) => B): A => B = {
  val cache: Map[A,B] = Map()
  def rec(a: A): B =
    cache.get(a) match
      case Some(b) => b
      case None =>
       val b = H(rec,a)
       cache.update(a, b)
        b
  rec
```

Avoiding the Checks: Dynamic Programming

Our memoized solution goes from larger values back to smaller ones, then uses the map to prevent descending again down same paths.

We can improve performance if we first solve smaller sub-problems, then move to lager ones.

- this does not improve theoretical complexity
- we usually need to specialize it for a given recursive function
- we avoid doing checks, because we know the result will be in the Map

Instead of a map, we often use arrays if we need to compute functions on integers.

See exercises for for Fibonacci function and choose function!

Example: Floyd-Warshall Algorithm

Given a directed graph with non-negative distances on edges (more generally: no negative weight cycles), find the shortest distance for every pair of edges.

Suppose nodes are the numbers 0, 1, ..., N-1 and the distances are d(from,to)

To compute shortest distance, define path(from,to,k): length of shortest path that only uses as additional nodes 0,...,k-1.

No need to consider paths with loops. A path either contains k or not:

```
def path(from: Int, to: Int, k: Int): Int =
  if k = 0 then d(from, to)
  else
    min(path(from, to, k - 1), // paths not going through k
        path(from, k, k-1) + path(k, to, k-1)) // path to k, path from k
```

Compare to the exercise to compute binomial coefficients choose(n,k)

Analyzing Recursive Definition

- does the function terminate? Yes, third argument decreases.
- what is its complexity? Exponential due to 3 recursive calls.
- \triangleright what would be the size of table to store using memoization? N^3
 - if memo removes entries from table, is the correctness still preserved?

Alternative: dynamic programming. Store only two matrices $(2N^2)$:

- path(from,to,k-1) for all from,to
- path(from,to,k) being computed currently
- ▶ then, increment k until you reach N

Dynamic Programming for Shortest Path

```
var k = 0
while k < N do
  p = updateDistances(p, k)
  k += 1
def updateDistances(p: Graph, k: Int): Graph =
  val newP: Graph = p; var from = 0
  while from < N do
   var to = 0
    while to < N do
      newP(from)(to) = min(p(from)(to),
                           p(from)(k) + p(k)(to)
      to += 1
    from += 1
  newP
```

Conclusion

We can start from declarative specification, then transform programs into more efficient version that still satisfies the original declarative specification and behaves functionally from the outside.

- programs that internally use exceptions but return Option or Try
- programs that solve recursive problems using loops and explicit stack
- lazy values
- caching for functions and its recursive calls
- dynamic programming that solves recursively defined problems