
Week 11 (Monday): Safe uses of imperative
programming

CS-214 Software Construction

Outline

▶ Exceptions
▶ Representing control flow
▶ Caching

Exceptions

CS-214 Software Construction

Program That Uses Division

def recip100(v: Int): Int =
100 / v

def f(x: Int, y: Int): Int =
recip100(x) + recip100(y)

f crashes if x == 0 or y == 0

Indeed, it is not clear what it should return in such case.
Let us rewrite it to use Option[T].

Using Option

def recip100(v: Int): Option[Int] =
if v == 0 then None
else Some(100 / v)

def f(x: Int, y: Int): Option[Int] =
recip100(x) match

case None => None
case Some(vx) =>

recip100(y) match
case None => None
case Some(vy) => Some(vx + vy)

The results are clearly specified now. Function f became much longer.

Using Exceptions

class ReciprocalOfZero extends Exception
def recip100(v: Int): Int =

if v == 0 then throw new ReciprocalOfZero
else 100 / v

def f(x: Int, y: Int): Int =
recip100(x) + recip100(y)

Function f looks is same as before. A caller of f may get an exception.

Evaluating Exceptions

Once we have exceptions in language, an expression evaluates to a success (S), e.g.

recip100(1)
==>

if 1 == 0 then throw new ReciprocalOfZero else 100 / 1
==>

100 / 1 ==> S(100)

or a failure (F), indicating the exception thrown:

recip100(0)
==>

if 0 == 0 then throw new ReciprocalOfZero else 100 / 0
==>

throw new ReciprocalOfZero ==> F(ReciprocalOfZero)

Scala Exceptions (Similar to Ones in Java)

Key constructs: throw and catch. Rules to evaluate them:

throw r ==> F(r)

S(x) catch cases ==> S(x)
F(e) catch cases ==> cases(e)

For normal operations, exceptions escalate

S(x) + S(y) ==> S(x + y)
F(r) + S(e) ==> F(r)
S(x) + F(r) ==> F(r)

x, y are values, r exception value, e expression

Using Exceptions Internally and Hiding It

class ReciprocalOfZero extends Exception
def recip100(v: Int): Int =

if v == 0 then throw new ReciprocalOfZero
else 100 / v

def f(x: Int, y: Int): Option[Int] =
try

Some(recip100(x) + recip100(y))
catch

case _:ReciprocalOfZero => None

Caller need now know about exceptions. None is not very informative.

Try Type: Store More Information than Option

sealed abstract class Try[+A]
case class Success[+A](value: A) extends Try[A] // like Some(value)
case class Failure(exc: Throwable) extends Try[Nothing] // like None

object Try:
def apply[A](e: => A): Try[A] =

try Success(e)
catch

case exc => Failure(exc)

Hiding Exceptions Using Try Type

class ReciprocalOfZero extends Exception
def recip100(v: Int): Int =

if v == 0 then throw new ReciprocalOfZero
else 100 / v

def f(x: Int, y: Int): Try[Int] =
Try(recip100(x) + recip100(y))

Caller need now know about exceptions.
Information on exception is kept.
The body of f remains concise.

Functionally Composing Try Values Explicitly

def recip100(v: Int): Try[Int] =
if v == 0 then Failure(new ReciprocalOfZero)
else Success(100 / v)

def f(x: Int, y: Int): Try[Int] =
recip100(x) match

case Failure(s) => Failure(s)
case Success(vx) =>

recip100(y) match
case Failure(s) => Failure(s)
case Success(vy) => Success(vx + vy)

To abstract the propagation of failures, define method on Try[A] taking function

▶ A => Try[B] - what to do on success, the body of case Success(...) =>

This is flatMap. Try is a collection storing v of Success(v)

sealed abstract class Try[+A]:
def flatMap[B](onSuccess: A => Try[B]) =

this match
case Failure(e) => Failure(e)
case Success(v) => onSuccess(v)

def recip100(v: Int): Try[Int] =
if v == 0 then Failure(new ReciprocalOfZero)
else Success(100 / v)

def f(x: Int, y: Int): Try[Int] = // shorter thanks to flatMap
recip100(x).flatMap: vx =>

recip100(y).flatMap: vy =>
Success(vx + vy)

Use of Exception: Break statements

import scala.util.boundary, boundary.break

def firstIndex[T](xs: List[T], elem: T): Int =
boundary:

for (x, i) <- xs.zipWithIndex do
if x == elem then break(i)

-1

Break jumps outside of boundary, returning given value

▶ boundary introduces a given label
▶ break throws an exception for that label
▶ boundary catches it

Instead of return e use break(e) with function wrapped into a boundary

Representing control flow

CS-214 Software Construction

Representing Positions within One Function

State of a program during execution is given by

▶ the values stored in its variables
▶ where it is currently in execution (program counter, pc)

If we want to have full control of where to go in our piece of code, we can rewrite
program to use a program counter representation.

▶ introduce a program counter (pc) integer variable
▶ rewrite function to use a single loop:

▶ examine pc
▶ do the corresponding statement
▶ update pc

Example: A Program with Multiple Loops

Rewrite this nested while loop using program counter

var i = 0
var j = 0
while i < 10 do

j = 0
while j < i do

f(i,j)
j += 1

i += 1

Program Points and Transformed Program with Single Loop

var i, j = 0 var i, j = 0
while ”1” var pc = 1

i < 10 do while pc != 6 do
j = 0 pc match
while ”2” case 1 => if i < 10 then {
j < i do j = 0; pc = 2
”3” } else pc = 6
f(i,j) case 2 => if j < i then pc = 3
”4” else pc = 5
j += 1 case 3 => f(i,j); pc = 4

”5” case 4 => j += 1; pc = 2
i += 1 case 5 => i += 1; pc = 1

”6”

To implement break and such, assign pc to the desired value.

Flow Across Functions: Tail Recursion <=> Loops

def whileDo =
if condition then

command
whileDo

⇐⇒

while condition do
command

We can transform one into another.

Control Flow with General Recursion

Consider evaluator:

def eval(expr: Expr): Int =
expr match

case Const(i) => i
case Minus(e1, e2) =>

val v1 = eval(e1)
val v2 = eval(e2)
v1 - v2

How many copies of v1 must program remember when computing:

eval(Minus(Const(10), Minus(Const(5),
Minus(Const(4), Const(1)))))

Compiled program uses stack for this (an array; add and remove at the end)

Knowing Where to Return

def eval(expr: Expr): Int =
expr match

case Const(i) => i
case Minus(e1, e2) =>

val v1 = eval(e1)
val v2 = eval(e2)
v1 - v2

When returning from a deep expression with eval, program needs to know whether to
go back to

▶ place after val v1 = eval(e1) , or
▶ place after val v2 = eval(e2)

Stack can also keep track of the program counter to return to. Also stores result.

Resuming at the Correct Place using Stack

To represent a call:

▶ push values of local variables to the stack
▶ push on pc stack the place after the call
▶ set pc to entry value and the variables to initial values

At the end of function, restore pc
After call, recover the result and local variables

case class Stack[T](var content: List[T] = List()):
def isEmpty: Boolean = content.isEmpty
def push(v: T): Unit = content = v :: content
def pop: T =

val res = content.head
content = content.tail
res

Transformed Non-Recursive Function

def eval(expr: Expr): Int =
var exprStack = Stack[Expr]()
var resStack, pcStack = Stack[Int]()

var expr0 = expr
var pc = 1

while !(pcStack.isEmpty && pc == 4) do
...

Places in the Function Become Values of pc

while !(pcStack.isEmpty && pc == 4) do
def eval(expr: Expr): Int = pc match

”1” case 1 =>
expr match expr0 match

case Const(i) => i case Const(i) =>
resStack.push(i)
pc = 4

case Minus(e1, e2) => case Minus(e1, e2) =>
val v1 = eval(e1) pcStack.push(2) // later to 2
”2” exprStack.push(e2) // remember e2

expr0 = e1; pc = 1 // start call
val v2 = eval(e2) case 2 =>
”3” pcStack.push(3) // later continue to 3
v1 - v2 expr0 = exprStack.pop // recover e2

”4” pc = 1

Computing v1 - v2

case 3 =>
v1 - v2 val v2 = resStack.pop

val v1 = resStack.pop
resStack.push(v1 - v2)
pc = 4

case 4 =>
if !pcStack.isEmpty then

pc = pcStack.pop

Result will be on top of resStack

Caching

CS-214 Software Construction

Outline

▶ Lazy Cell and Its Implementation
▶ Correctness of Lazy Cell
▶ Caching Functions
▶ Memoization

Reminder: Parameterless Function Values

scala> val x = () => {println(”Evaluating x”); 42}
val x: () => Int = Lambda$1306/0x00007efcd049c410@419f0ea

scala> x()
Evaluating x
val res0: Int = 42

scala> x()
Evaluating x <- evaluation happens every time
val res1: Int = 42

Reminder: Lazy Values

scala> lazy val x = {println(”Evaluating lazy val x”); 42}
lazy val x: Int

scala> x
Evaluating lazy val x
val res0: Int = 42

scala> x
val res1: Int = 42 <- evaluation happens only once

Lazy Fields and LazyCell Class

class LazyCell[+A](init: => A):
lazy val get = init

val lc = LazyCell({println(”Evaluating x”); 42})

Syntactic variation of the constructor:

class LazyCell[+A](init: () => A):
lazy val get = init()

val lc = LazyCell(() => {println(”Evaluating”); 42}) // LazyCell@291cbe70
lc.get ==> Evaluating

42
lc.get ==> 42 <- evaluation happens only once, no println 2nd time

Lazy Lists are Lists with Lazy Tail

type LazyList[+A] = LazyCell[ListState[A]]

trait ListState[+A]
object Empty extends ListState[Nothing]
case class Cons[+A](head: A, tail: LazyList[A]) extends ListState[A]

Laziness refers to list structure: laziness of the tail field

Laziness of Stored Content vs Lazy Tail

Eager list of lazy cells: List[LazyCell[Int]]:
def loop: Int = 1 + loop // stack overflows if executed
val ll = LazyCell(loop) // LazyCell@31531d0d
val lst = List(ll, ll, ll) // returns immediately
lst.length // 3
lst.head // LazyCell@31531d0d
lst.head.get // stack overflow

”lazy list of non-cells:” | ”lazy list of lazy cells:”
|

val llst = 42 #:: loop #:: LazyList()| val lhll = LazyCell(42) #:: LazyCell(loop) #::
llst.head // 42 |
llst.length // stack overflow |
llst.tail // LazyCell@... | lhll.tail.head // LazyCell@...
llst.tail.head // stack overflow | lhll.tail.head.get // stack overflow

Lazy Cell Implementation using Mutation

class LazyCell[+A](val init: () => A):
private var cached: Option[A] = None

def get: A =
cached match

case Some(a) => a
case None =>

cached = Some(init())
cached.get

With private we know that the only assignment to cached happens inside get.

lc.get = Some(43) // error: rejected by the compiler

Correctness Theorem for LazyCell

Let init be a pure expression (e.g. application of a pure function to some arguments,
it also cannot println) that evaluates to some value v.
Given

val lc = LazyCell(init)

then in any program execution, all subsequent calls to lc.get will evaluate to the same
value v.

▶ only holds when fields are private—we must use this property in proof

Proof: An Object Invariant for LazyCell

class LazyCell[+A](val init: () => A):
private var cached: Option[A] = None

def get: A =
cached match

case Some(a) => a
case None =>

cached = Some(init())
cached.get

Lemma: every LazyCell object satisfies the following object invariant:

cached == None || cached == Some(init())

Proof: induction on the length of subsequent program execution.

Idea of the Proof of An Object Invariant

cached == None || cached == Some(init())

We only do the proof for sequential programs. By assumption init() always denotes
the same value.
Let lc be the object created.
We consider a step of an arbitrary execution (one state change at a time):

▶ when lc is created, cached == None by the initial value
▶ if the step does not modify cached, invariant remains true
▶ if the step modifies cached, it must be a call to lc.get (because cached is private)

▶ if initially cached==None then after assignment cached == Some(init())
▶ if initially cached != None then nothing is modified, so the invariant continues to hold

This proves the object invariant.

Documenting Invariants using a valid method

class LazyCell[+A](val init: () => A):
private var cached: Option[A @uncheckedVariance] = None
def valid: Boolean = // sometimes called repOK

cached == None || cached == Some(init())
def get: A = {

require(valid)
cached match

case Some(a) => a
case None =>

cached = Some(init()) // assert(valid)
cached.get

} ensuring(res => valid && res == init())

From the invariant (valid) we know that a in Some(a) equals init().
LazyCell(init) behaves like init() but more efficient. It is observationally pure.

From LazyCell to Cached Function

case class CachedFunction[-A,+B](val f: A => B): // not just ()=>B
private var cache: Map[A,B] = Map()
def apply(a: A): B =

cache.get(a) match
case Some(b) => println(f”Cache hit: $a -> $b”); b
case None =>

val b = f(a)
cache.update(a,b)
b

val csin = CachedFunction(math.sin)
val x1 = csin(0.4) // 0.3894183423086505
val x2 = csin(0.4)
Cache hit: 0.4 -> 0.3894183423086505
// 0.3894183423086505

Invariant (valid method) of CachedFunction

case class CachedFunction[-A,+B](val f: A => B):
private var cache: Map[A,B] = Map()

def valid: Boolean = cache.keys.forall(a => cache.get(a) == Some(f(a)))

def apply(a: A): B = {
require(valid) // only for specification, executing it would ruin performance
cache.get(a) match

case Some(b) => b
case None =>

val b = f(a)
cache.update(a,b)
b

} ensuring(res => valid && res == f(a)) // just for proofs

Making cache field private Does Not Prevent Exposure

Correctness relies on cache being modifiable only within CachedFunction.
Adding getCache method would expose mutable map and break correctness:
case class CachedFunction[-A,+B](val f: A => B):

private var cache: Map[A,B] = Map()

def valid: Boolean = cache.keys.forall(a => cache.get(a) == Some(f(a)))

def getCache: Map[A,B] = cache

def apply(a: A): B = {
...

}

This is one reason why having aliasing (multiple references to mutable state) makes
reasoning about programs difficult.

Fibonacci Function

def fib(n: Int): Int =
if n == 0 then 0
else if n == 1 then 1
else fib(n - 1) + fib(n - 2)

What is it’s complexity as function of n?

▶ proportional to the number it returns
▶ note that fib(n) grows exponentially, fib(n) ≥ 2n/2, for n ≥ 6
▶ thus, function takes exponential time (try fib(44))

Does this also take long?

val cf = CachedFunction(fib)
cf(44)

Yes, as slow as before. Also, only the value for 44 is cached, not e.g. for 42.

Memoization: Caching Recursive Calls of fib

def fib(n: Int): Int =
if n == 0 then 0
else if n == 1 then 1
else

fib(n - 1) + fib(n - 2)

=⇒ def fib(n: Int): Int =
if n == 0 then 0
else if n == 1 then 1
else

memo_fib(n - 1) + memo_fib(n - 2)

def memo_fib(a: Int): Int =
cache.get(a) match

case Some(b) => b
case None =>

val b = fib(a)
cache.update(a, b)
b

Can we automate it? Yes, if we make recursion visible to memoizer.

Parameterize fib by Calls to Given Function

def fib(n: Int): Int =
if n == 0 then 0
else if n == 1 then 1
else

memo_fib(n - 1) + memo_fib(n - 2)

def memo_fib(a: Int): Int =
cache.get(a) match

case Some(b) => b
case None =>

val b = fib(a)
cache.update(a, b)
b

=⇒ def fibR(rec: Int => Int, n: Int): Int =
if n == 0 then 0
else if n == 1 then 1
else

rec(n - 1) + rec(n - 2)

def memo_fib: Int => Int = (a:Int) =>
cache.get(a) match

case Some(b) => b
case None =>

val b = fib(memo_fib, a)
cache.update(a, b)
b

Parameterize Memo Function

def fibR(rec: Int => Int, n: Int) : Int = ...

def memo(H: (Int => Int,Int) => Int): Int => Int = {
val cache: Map[Int,Int] = Map()
def rec(a: Int): Int =

cache.get(a) match
case Some(b) => b
case None =>

val b = H(rec,a)
cache.update(a, b)
b

rec
}
def fib(x:Int) = memo(fibR)(x) // caches also the intermediate values, linear time

memo is independent of fib, works for all Int => Int function descriptions.

Generic Memo

def memo[A,B](H: (A => B,A) => B): A => B = {
val cache: Map[A,B] = Map()
def rec(a: A): B =

cache.get(a) match
case Some(b) => b
case None =>

val b = H(rec,a)
cache.update(a, b)
b

rec
}

Avoiding the Checks: Dynamic Programming

Our memoized solution goes from larger values back to smaller ones, then uses the
map to prevent descending again down same paths.
We can improve performance if we first solve smaller sub-problems, then move to lager
ones.

▶ this does not improve theoretical complexity
▶ we usually need to specialize it for a given recursive function
▶ we avoid doing checks, because we know the result will be in the Map

Instead of a map, we often use arrays if we need to compute functions on integers.
See exercises for for Fibonacci function and choose function!

Example: Floyd–Warshall Algorithm

Given a directed graph with non-negative distances on edges (more generally: no
negative weight cycles), find the shortest distance for every pair of edges.
Suppose nodes are the numbers 0, 1, …, N-1 and the distances are d(from,to)
To compute shortest distance, define path(from,to,k): length of shortest path that only
uses as additional nodes 0,…,k-1.
No need to consider paths with loops. A path either contains k or not:

def path(from: Int, to: Int, k: Int): Int =
if k = 0 then d(from, to)
else

min(path(from, to, k - 1), // paths not going through k
path(from, k, k-1) + path(k, to, k-1)) // path to k, path from k

Compare to the exercise to compute binomial coefficients choose(n,k)

Analyzing Recursive Definition

def path(from: Int, to: Int, k: Int): Int =
if k = 0 then d(from, to)
else min(path(from, to, k - 1),

path(from, k, k-1) + path(k, to, k-1))

▶ does the function terminate? Yes, third argument decreases.
▶ what is its complexity? Exponential due to 3 recursive calls.
▶ what would be the size of table to store using memoization? N3

▶ if memo removes entries from table, is the correctness still preserved?

Alternative: dynamic programming. Store only two matrices (2N2):

▶ path(from,to,k-1) for all from,to
▶ path(from,to,k) being computed currently
▶ then, increment k until you reach N

Dynamic Programming for Shortest Path

var k = 0
while k < N do

p = updateDistances(p, k)
k += 1

def updateDistances(p: Graph, k: Int): Graph =
val newP: Graph = p; var from = 0
while from < N do

var to = 0
while to < N do

newP(from)(to) = min(p(from)(to),
p(from)(k) + p(k)(to))

to += 1
from += 1

newP

Conclusion

We can start from declarative specification, then transform programs into more
efficient version that still satisfies the original declarative specification and behaves
functionally from the outside.

▶ programs that internally use exceptions but return Option or Try
▶ programs that solve recursive problems using loops and explicit stack
▶ lazy values
▶ caching for functions and its recursive calls
▶ dynamic programming that solves recursively defined problems

