=PrL

Week 10 (Monday): Mutation and Functional
Programming

(CS-214 Software Construction

Outline

» Imperative Scala Constructs

> Side Effects May Include Confusion

> Making Arguments and Results Explicit

» Logic for Reasoning about State Change

» From Functions to Simple Imperative Code

=PrL

Imperative Scala Constructs

CS-214 Software Construction

Mutatable Variables

Mutation = Change (of program variables or of the environment)

So far, we have considered values, which never change:

val a = 42 // 42 forever
val b = a + 4 // 46 forever

Now we consider mutable variables, e.g. local variables:

var a = 42 // a has initial value 42
a=a+3 // a has current value 45
var b = a + 4 // b has initial value 49

a=a+1 // a has current value 46
// b still has value 49

b=Db+a // now b has value 95

Local variables and while loop

def mul(x: BigInt, y: BigInt): BigInt = {
require(y >= 0)
var bound =y
var res: BigInt = 0@
while bound > @ do // only makes sense if condition changes
res = res + X
bound -= 1
res
}.ensuring(_ == x * y)

Definition of whileDo

How could we define while using a function (call it whileDo)?

The function whileDo can be defined as follows:

def whileDo(condition: => Boolean)(command: => Unit): Unit =
if condition then
command
whileDo(condition)(command)

Note: The condition and the command must be passed by name so that they're
reevaluated in each iteration.

Note: whileDo is tail recursive

Using whileDo

def mul2(x: BigInt, y: BigInt): BigInt = {
require(y >= 0)
var bound =y
var res: Biglnt = 0
whileDo(bound > 0):
res = res + X
bound -= 1
res
} ensuring(_ == x * y)

Exercise

Write a function implementing a repeat loop that is used as follows:

repeatUntil {
command
} (condition)

It should execute command one or more times, until condition is true.

The repeatUntil function starts like this:

def repeatUntil(command: => Unit)(condition: => Boolean) =

State Mutating First-Class Functions

scala> List(1,2,3).map(println(_))

1

2

3

val res@: List[Unit] = List(Q), O,)

scala> List(1,2,3).foreach(println(_))
]
2
3

For Loops

for i <= 1 until 3 do
System.out.print(f”$i)

prints 1 2 on the terminal

foreach is defined on collections with elements of type T as follows:

def foreach(f: T => Unit): Unit =
// apply ‘f‘ to each element of the collection

Example
for i <= 1 until 3; j <- ”abc” do println(s”$i $j7)
is expanded by the compiler to:

(1 until 3).foreach(i => ”abc”.foreach(j => println(s”$i $j”)))

Other Forms of Mutable State

Classes with mutable fields:

case class Planet(var x: Double, var y: Double, var z: Double)
val p = Planet(0.0, 0.0, 0.0)
p.x = p.x + dx // change the x coordinate of p by dx

Arrays (immutable .length, mutable content):

// a : Array[Int]
a(k) = atk) + 1 // increment a(k) by 1

Mutable collections:

import scala.collection.mutable.*
val b: ListBuffer[Int] = ListBuffer(3) // b initially contains 3
b.addOne(42) // b now contains 3,42

Classes with State and Their Use

case class Accumulator(private var sum: Biglnt):
def get = sum
def add(x: BigInt): Unit =
sum = sum + X

val a = Accumulator(@)
a.add(100)

a.add(30)

a.get // 130

Example: Sum Using Accumulator Object

case class Accumulator(private var sum: Biglnt):
def get = sum
def add(x: BigInt): Unit =
sum = sum + X

val a = Accumulator(@)

scala> List(10,50,20).map(a.add(_))

val res0: List[Unit] = List((), O, O)
scala> a.get // 80

def sum(lst: List[BigInt]): Biglnt =
val a = Accumulator(Q)
1st.map(a.add(_))
a.get

Arrays

https://www.scala-lang.org/api/2.13.3/scala/Array.html

Important for efficiency, map to JVM arrays when you run on JVM

scala> val a = Array(10, 20, 30)
val a: Array[Int] = Array(10, 20, 30)

scala> val b = Array.fill(5)(42)
val b: Array[Int] = Array(42, 42, 42, 42, 42)

scala> val ¢ = Array.tabulate(5)(i => 10%i)
val c: Array[Int] = Array(@, 10, 20, 30, 40)

scala> val d = new Array[Int](5)
val d: Array[Int] = Array(0, 0, 0, 0, 0)

update Method abbreviation

class FunArray[Al(default: A):
private var f : Int => A = (x:Int) => default
def apply(i: Int): A = f(i)

def update(ind: Int, newV: A): Unit =
val oldF = f
val newF = (i:Int)
if i == ind then newV
else oldF(i)
f = newF

1
\2

val a = FunArray(42); a(100) // 42
a(3) = 17

a(100) // 42
a(3) /717

Mutable ++= versus Copying Concatenation

import scala.collection.mutable.*

val 1lsti ListBuffer(1l, 2, 3)

val 1st2 = ListBuffer(10, 20, 30)

val 1st3 = 1stl ++ 1st2 // ListBuffer(1, 2, 3, 10, 20, 30)
println(lst1) // still ListBuffer(1, 2, 3)

val 1st4 = 1st1 ++= ListBuffer(100, 200, 300) // ListBuffer(1, 2, 3, 100, 200, 300)
println(lst1) // ListBuffer(1, 2, 3, 100, 200, 300)

If we need both versions, we may prefer functional operations and immutable data
structures.

State Machine Functionally

case class StateF(flipped: Vector[Boolean]):
def click(i: Int): StateF =
val st = flipped(i)
StateF(flipped.updated(i, !st))

StateF(Vector(false, false,
false, false))

val s0

val s1 = s@.click(1)
s1.click(2)
s2.click(1)

val s2

val s3
We retain access to old versions.

Need to pass along the right versions of s0, sl, s2, s3

We copy log(n) amount of state. Access is log(n).

State Machine with Shallow Mutation

case class StateSh(var flipped: Vector[Boolean]):
def click(i: Int): Unit =
val st = flipped(i)
flipped = flipped.updated(i, !st)

val s@@ = StateSh(Vector(false, false,
false, false))

s00.click(1)

s00.click(2)

s00.click(1)

No access to old versions. Keeping a copy is O(1) space and time.
We use the same reference to a mutable object.

We copy log(n) amount of state. Access is log(n).

State Machine with Deep Mutation

case class StateD(flipped: Array[Boolean]):
def click(i: Int): Unit =
val st = flipped(i)
flipped(i) = !st

val s@1 = StateD(Array(false, false,
false, false))

s@1.click(1)

s01.click(2)

s01.click(1)

No access to old versions. Keeping a copy is O(n) space and time.
We use the same reference to a mutable object.

No state copying. Access is O(1).

=PrL

Side Effects May Include Confusion

CS-214 Software Construction

Inputs, Outputs, and Side Effects

When we have mutation, to understand what function does we need to know its:

» inputs (parameter list, reads: additional visible names)

> output (return value)
> side effects (modifies: changes to state)

var logBuffer: String = ””

def log(msg: String): Unit =
// reads: logBuffer; modifies: logBuffer

logBuffer = logBuffer + msg + ”\n”

def sort(l: List[Int]): List[Int] =
// reads: logBuffer, threshold; modifies: logBuffer
if 1.length < threshold then insertionSort(l)
else log(”large list, using merge sort”)
mergeSort(l)

Convenience of State: Renaming Strings in a Tree
Given a binary tree storing strings, make a new version of it by adding distinct
numbers to each of the strings in leaves.

sealed abstract class Tree
case class Leaf(s: String) extends Tree
case class Node(left: Tree, right: Tree) extends Tree

val t = Node(Node(Leaf(”x”), Leaf(”y”)), Node(Leaf(”x”), Leaf(”x”)))
// Node(Node(Leaf(x),Leaf(y)),Node(Leaf(x),Leaf(x)))

val t1 = t.distVersion
// Node(Node(Leaf(x_1),Leaf(y_2)),Node(Leaf(x_3),Leaf(x_4)))

Such transformations can be used to rename variables in compilers and theorem provers

Implementation Using a Counter

case class Counter(var current: Long):
def next: Long = // not only returns Long, but also changes current
current += 1
current

val ¢ = Counter(OL)

extension (t: Tree)
def distVersion: Tree =
t match
case Leaf(s) => Leaf(s + ”_” + c.next.toString) // c.next is side effecting!
case Node(left, right) => Node(left.distVersion, right.distVersion)

Using distVersion

Repeating distVersion on same thing gives different results:

val t = Node(Node(Leaf(”x”), Leaf(”y”)), Node(Leaf(”x”), Leaf(”x”)))

val t1 = t.distVersion
// Node(Node(Leaf(x_1),Leaf(y_2)),Node(Leaf(x_3),Leaf(x_4)))

val t2 = t.distVersion
// Node(Node(Leaf(x_5),Leaf(y_6)),Node(Leaf(x_7),Leaf(x_8)))

Reasoning: Equality Relation is Reflexive

In mathematics we have

X ==

for every value x.

This also holds for (terminating) expressions in pure functional programs, e.g.:
(Ist1 ++ 1st2) == (Istl1 ++ 1st2)

A pure expression is one that uses only purely functional constructs that we have seen
so far: val-s, recursion, if expressions, operations on values.

» no mutation
» no println or other I/O, no scala.util.Random.nextInt

Such expressions return the same value whenever they terminate.

Consequently, if x1 and x2 are same then f(x1) and f(x2) are same.

Mutable State Ruins Mathematical Properties

This assertion fails:

assert(t.distVersion == t.distVersion)

Also, for a counter ¢ = Counter(0L)

assert(c.next == c.next) // fails: reduces to 1 == 2
and

def f(x: Long): Long =
if c.next > 10 then x else x + 100

Then f(5) in some cases evaluates to 5, in others to 105.
x == x does not always hold for expressions x that refer to mutable state.

How can we recover mathematical reasoning?

Diagnosis and Two Solutions

The Scala function:

def f(x: Long): Long =
if c.next > 10 then x else x + 100

is not a mathematical function Long => Long:

> its result depends on the value of c.current
P its outcome is not only the return value, but also a new value of c.current

Two solutions:

1. Make Arguments and Results Explicit

2. Develop Rules to Reason about Imperative Programs (Hoare logic, Dynamic logic)

=PrL

1: Making Arguments and Results Explicit

CS-214 Software Construction

Approach 1: Making Arguments and Results Explicit

The Scala function:

def f(x: Long): Long =
if c.next > 10 then x else x + 100

is not a mathematical function Long => Long:

> its result depends on the value of c.current
P its outcome is not only the return value, but also a new value of c.current

First, let us make counter parameter explicit:

def f1(x: Long, c: Counter): Long =
if c.next > 10 then x else x + 100

But it is still not the case that f1(x, ¢) == f1(x, c) because a call changes the value
of c.current.

Making Arguments and Effects Explicit

In general, a function has

P additional parameter for each part of state that it reads
> additional result for each part of state that it changes

def f_pure(x: Long, c: Long): (Long, Long) = ...
Our counter function:

def next: Long = // not only returns Long, but also changes current
current += 1
current

gets an extra argument and an extra result:

def next_pure(current: Long): (Long, Long) =
(current + 1, current + 1)

Evaluating assert(c.next==c.next)

assert(c.next == c.next)
really means

val vl = c.next

val v2 = c.next
assert(vl == v2)

which means
def next_pure(current: Long): (Long, Long) =

(current + 1, current + 1)

val (v1,c1) = next_pure(c)
val (v2,c2) = next_pure(cl)
assert(vl == v2)

Which does not hold: not in math, not in Scala.

Meaning of function f

The Scala function:

def f(x: Long): Long =
if c.next > 10 then x else x + 100

becomes

def f_pure(x: Long, c: Long): (Long, Long) =
val (res,c1l) = next_pure(c)
if res > 10 then (x, c1) else (x + 10, c1)

Recall String Renaming Function

sealed abstract class Tree
case class Leaf(s: String) extends Tree
case class Node(left: Tree, right: Tree) extends Tree

extension (t: Tree)
def distVersion: Tree =
t match
case Leaf(s) => Leaf(s + ”_” + c.next.toString) // c.next is side effecting!
case Node(left, right) => Node(left.distVersion, right.distVersion)

Translating String Renaming Function on Trees

case Leaf(s) => Leaf(s + ”_” + c.next.toString)
Ay
case Leaf(s) =>
val (res, c1) = next_pure(c)
(Leaf(s + ”_” + res.toString), c1)
case Node(left, right) => Node(left.distVersion, right.distVersion)
o d

case Node(left, right) =>
val (left1l, c1) = left.distVersion(c)
val (right1, c2) = right.distVersion(c1)
(Node(leftl1, rightl), c2)

Result of Translation

extension (t: Tree)
def distVersion_pure(c: Long): (Tree, Long) =
t match

case Leaf(s) =>
val (res, c1) = next_pure(c)
(Leaf(s + ”_” + res.toString), c1)

case Node(left, right) =>
val (left1l, c1) = left.distVersion_pure(c)
val (right1, c2) = right.distVersion_pure(c1)
(Node(left1, rightl1), c2)

=PrL

2: Logic for Reasoning about State Change

CS-214 Software Construction

Approach 2: Logic for Reasoning about State Change

Dynamic logic combines programs that change state and assertions.
Special case: Hoare logic (named after C.A.R Hoare)

We have seen function specifications. For functions returning Unit we have

def f: Unit = {
require(pre)
body

} ensuring(_ => post)

Statements of Hoare logic are triples: (pre, body, post)
» often denoted {pre}body{post}, or (in Rosen), pre{body}post

To say that a Hoare triple holds means that, for all states:

if pre holds in some state, then post holds after body executes from that state.

Example of Sequence of Hoare Logic Triples

Often we use post of one triple as pre of next one.

We can write them using assertions: assert(pre); body; assert(post)

assert(res == (y - bound)*x && bound > 0)

res = res + Xx

assert(res == (y - bound + 1)*x && bound > 0)
bound -= 1

assert(res == (y - bound)*x && bound >= 0)

Two Hoare triples for individual statements imply triple for combined statement:

assert(res == (y - bound)*x && bound > 0)
res = res + x; bound -= 1
assert(res == (y - bound)*x && bound >= 0)

Proof of Multiplication Using Hoare Triples

def mulHoare(x: BigInt, y: BigInt): BigInt = {
require(y >= 0)
var bound =y
var res: Biglnt = 0
assert(bound ==y && res == 0)
while bound > @ do
assert(res == (y - bound)*x && bound > 0)

res = res + x; bound -= 1
assert(res == (y - bound)*x && bound >= @) // loop invariant
assert(res == (y - bound)*x && bound == 0)
res
} ensuring(_ == x * y)

Each assertion is preserved in next step, so they hold in all executions.

Hoare Logic Rules: Sequence of Statements

assert(p) assert(q)
s s2
assert(q) assert(r)

assert(p)

s

s2

assert(r)

Hoare Logic Rules: While Loop (with Loop Invariant p)

assert(p && cond)
body
assert(p)

assert(p)
while cond do
body
assert(p && !cond)

Hoare Logic Rules: If Statement

assert(p && cond) assert(p && !cond)
s s2
assert(q) assert(q)
assert(p)
if cond then
sl
else
s2

assert(q)

Hoare Logic Rules: Weakening

assert(p) pl implies p
s
assert(q) g implies q1

assert(pl)
s
assert(ql)

Hoare Logic Rules: Assignment Statement

assert(p(e))
X =e
assert(p(x))

Example:

assert(y + 1 > 5)
Xx =y +1
assert(x > 5)

Note: these rules are for local vars storing values like Int (not sufficient for mutable
data structures).

=PrL

From Functions to Simple Imperative Code

CS-214 Software Construction

We Can Translate Functional Programs to Simple Imperative Ones

Machine code (instructions for CPU) is a simple imperative language
Compilers translate languages like Scala to machine code

This can be done automatically and should be mostly left to compilers
We can do it by hand

» to learn how things work
» to improve stack and memory use

Example: Tail Recursion <=> Loops

def whileDo =
if condition then
command
whileDo

—

while condition do
command

We can transform one into another.

While loop does not consume stack on JVM, so it reduces chances of StackOverlfow
program crash.

Difficulty with General Recursion

Remembering where to return!

def eval(expr: Expr): Int =
expr match
case Const(i) => i
case Minus(el, e2) =>
val vl = eval(el)
val v2 = eval(e2)
vl - v2

When returning from a deep expression, we need to know if we have just evaluated vl
or just evaluated v2.

Compiled program uses stack for this purpose.

We can use our own stack, e.g. a var of type List. More next week.

How to Represent Lists, Trees and Other Structures

abstract class IntSet

case class Empty() extends IntSet

case class Node(left: IntSet, elem: Int, right: IntSet) extends IntSet
/71 2 3

Program gets from the Operating System a chunk of memory, like mem: Array[Addr]
type Addr = Int

Program decides how to organize this array to store objects

References to objects are indices into mem array

def getlLeft(n: Addr) = mem(n + 1)
def getElem(n: Addr) = mem(n + 2)
def getRight(n: Addr) = mem(n + 3)

Sketch of Creating a new Node

Let var nextFree: Int denote next available space in the array

def Node(left: Addr, elem: Int, right: Addr): Addr =

if nextFree + 3 >= mem.size then error(”0Out of memory”)

else
val res = nextFree
mem(nextFree) = NodeTAG // so we know if it is Node, not Empty
mem(nextFree + 1) = left
mem(nextFree + 2) = elem
mem(nextFree + 3) = right
nextFree += 4

res

In reality, runtime also does garbage collection of unreachable nodes

Visibility of Object Identity

The Addr is not an integer on JVM or in Scala, but can be observed.

scala> class A
// defined class A

scala> val al = new A
val al: A = A@6d31f106

scala> val a2 = new A
val a2: A = A@32da97fd

scala> al == a2
val res0@: Boolean = false

Observing Object Identity Through Mutation

case class Counter(var current: Long):
def next: Long = // not only returns Long, but also changes current
current += 1
current

The following function will return true if c1 and c2 are same object:

def sameCounter(cl: Counter, c2: Counter): Boolean =
val x = cl.current

val n = c2.next
cl.current != x

Aliasing of mutable objects affects program behavior.

> makes informal and formal reasoning difficult
> options: 1) use memory array model 2) restrict aliasing (=~ Rust)

Another Side Effect Example: Vector Addition

extension (al: Array[Int])
def +(a2: Array[Int]): Array[Int] =
val res = al
var 1 = 0
(0 until res.length).foreach: i =>
res(i) = al(i) + a2(i)
res

val al = Array(100, 100, 100)
val a2 = Array(5, 5, 5)
val example = al + a2 + al // Array(210, 210, 210) - why not 205 ?

Bonus Example: FunArray2 variant of FunArray

class FunArray2[A](default: A):
ate var f : Int => A = (x:Int) => default
def apply(i: Int): A = f(i)

priv

def
va

.f:

val a
a(100)

a(3) =

a(100)

update(ind: Int,
1 newF = (i:Int)
val oldF = f

if i == ind then
else oldF(i)

= newF

= FunArray2(42)

17

newV: A): Unit =
=>

newV

/] 42

// infinite loop

Bonus Example: FunArray2 After Replacing vals

class FunArray2[AJ(default: A):
private var f : Int => A = (x:Int) => default
def apply(i: Int): A = f(i)

def update(ind: Int, newV: A): Unit =
f = (i:Int) =>
if i == ind then newV
else this.f(i)

val a = FunArray2(42)

a(100) // 42
a(3) =17
a(100) // infinite loop

Mutation and function values allow us to dynamically introduce recursion

