=PrL

Contextual Abstraction

(CS-214 Software Construction

Con-text

what comes with the text,
but is not in the text

Context Takes Many Forms

» the current configuration

» the current scope

» the meaning of “<” on this type

» the user on behalf of which the operation is performed
> the security level in effect

> .

Code becomes more modular if it can abstract over context.

That is, functions and classes can be written without knowing in detail the context in
which they will be called or instantiated.

How Is Context Represented?

So far:

» global values

» global mutable variables

» changing base class properties at runtime (“Monkey Patching")
» dependency injection frameworks (e.g. Spring, Guice)

How Is Context Represented?

So far:

» global values i.e., no abstraction - this is often too rigid

» global mutable variables

» changing base class properties at runtime (“Monkey Patching")
» dependency injection frameworks (e.g. Spring, Guice)

How Is Context Represented?

So far:

» global values i.e., no abstraction - this is often too rigid

» global mutable variables what if different modules need different settings?
interference can be dangerous!

» changing base class properties at runtime (“Monkey Patching”)

» dependency injection frameworks (e.g. Spring, Guice)

How Is Context Represented?

So far:

>

global values i.e., no abstraction - this is often too rigid
>

global mutable variables what if different modules need different settings?
interference can be dangerous!

changing base class properties at runtime (“Monkey Patching”) - more powerful
ways to shoot yourself in the foot...

» dependency injection frameworks (e.g. Spring, Guice)

How Is Context Represented?

So far:

>
>

global values i.e., no abstraction - this is often too rigid

global mutable variables what if different modules need different settings?
interference can be dangerous!

changing base class properties at runtime (“Monkey Patching”) - more powerful
ways to shoot yourself in the foot...

dependency injection frameworks (e.g. Spring, Guice) - outside the language, rely
on bytecode rewriting — harder to understand and debug.

Functional Context Representation

In functional programming, the natural way to abstract over context is with function
parameters.

+ flexible
4+ types are checked
4+ not relying on side effects

Functional Context Representation

In functional programming, the natural way to abstract over context is with function
parameters.

+ flexible
4+ types are checked
4+ not relying on side effects

But sometimes this is too much of a good thing! It can lead to

— many function arguments
— which hardly ever change
— repetitive, errors are hard to spot

Example: Sorting

We have seen sort functions. For instance, here's an outline of a method sort that
takes as parameter a List[Int] and returns another List[Int] containing the same
elements, but sorted:

def sort(xs: List[Int]): List[Int] =

. if x <y then ...

At some point, this method has to compare two elements x and y of the given list.

Making sort more General

Problem: How to parameterize sort so that it can also be used for lists with elements
other than Int, such as Double or String?

A straightforward approach would be to use a polymorphic type T for the type of
elements:

def sort[T](xs: List[T]): List[T] = ...

Making sort more General

Problem: How to parameterize sort so that it can also be used for lists with elements
other than Int, such as Double or String?

A straightforward approach would be to use a polymorphic type T for the type of
elements:

def sort[T](xs: List[T]): List[T] = ...

But this does not work, because there's not a single comparison method < that works
for all types.

Making sort more General

Problem: How to parameterize sort so that it can also be used for lists with elements
other than Int, such as Double or String?

A straightforward approach would be to use a polymorphic type T for the type of
elements:

def sort[T](xs: List[T]): List[T] = ...

But this does not work, because there's not a single comparison method < that works
for all types.

In other words, we need to ask the question: What is the meaning of < on type T at
the call site?

This means querying the call-site context.

Parameterization of sort

The most flexible design is to pass the comparison operation as an additional
parameter:

def sort[T](xs: List[T])(lessThan: (T, T) => Boolean): List[T] =

. if lessThan(x, y) then ...

Calling Parameterized sort

We can now call sort as follows:

val ints = List(-5, 6, 3, 2, 7)
val strings = List(”apple”, ”pear”, ”orange”, ”pineapple”)

sort(ints)((x, y) => x <y)
sort(strings) ((s1, s2) => sl.compareTo(s2) < 0)

Parameterization with Ordering

There is already a class in the standard library that represents orderings:
scala.math.Ordering[A]

Provides ways to compare elements of type A. So, instead of parameterizing with the
lessThan function, we could parameterize with Ordering instead:

def sort[T](xs: List[T])(ord: Ordering[T]): List[T] =

. if ord.1t(x, y) then ...

Ordering Instances

Calling the new sort can be done like this:

import scala.math.Ordering

sort(ints) (Ordering.Int)
sort(strings) (Ordering.String)

This makes use of the values Int and String defined in the scala.math.Ordering
object, which produce the right orderings on integers and strings.

object Ordering:
val Int = new Ordering[Int]:
def compare(x: Int, y: Int) =
if x <y then -1 else if x >y then 1 else 0

Reducing Boilerplate

Problem: Passing around Ordering arguments is cumbersome.

sort(ints) (Ordering.Int)
sort(strings) (Ordering.String)

Sorting a List[Int] value always uses the same Ordering.Int argument, sorting a
List[String] value always uses the same Ordering.String argument, and so on...

Implicit Parameters

We can reduce the boilerplate by making ord an implicit parameter.

def sort[T](xs: List[T])(using ord: Ordering[T]): List[T] = ...

Then, calls to sort can omit the ord parameter:

sort(ints)
sort(strings)

The compiler infers the argument value based on its expected type.

Type Inference

We have seen that the compiler is able to infer types from values.

That is, the previous calls to sort are augmented as follows:

sort(ints)
sort(strings)

Type Inference

We have seen that the compiler is able to infer types from values.

That is, the previous calls to sort are augmented as follows:

sort[Int](ints)
sort[String](strings)

Term Inference

The Scala compiler is also able to do the opposite, namely to infer expressions (aka
terms) from types.

When there is exactly one “obvious” value for a type in a using clause, the compiler

can provide that value to us.

sort[Int](ints)
sort[String](strings)

Term Inference

The Scala compiler is also able to do the opposite, namely to infer expressions (aka
terms) from types.

When there is exactly one “obvious” value for a type, the compiler can provide that

value to us.

sort[Int](ints) (using Ordering.Int)
sort[String](strings) (using Ordering.String)

=PrL

Using Clauses and Given Instances

(CS-214 Software Construction

Using Clauses

An implicit parameter is introduced by a using parameter clause:
def sort[T](xs: List[T])(using ord: Ordering[T]): List[T] = ...

A matching explicit argument can be passed in a using argument clause:
sort(strings) (using Ordering.String)

But the argument can also be left out (and it usually is).

If the argument is missing, the compiler will infer one from the parameter type.

sort(strings)

Using Clauses Syntax Reference

Multiple parameters can be in a using clause:

def f(x: Int)(using a: A, b: B) = ...
f(x)(using a, b)

Or, there can be several using clauses in a row:
def f(x: Int)(using a: A)(using b: B) = ...
using clauses can also be freely mixed with regular parameters:

def f(x: Int)(using a: A)(y: Boolean)(using b: B) = ...
f(x)(using a)(y)(using b)

Anonymous Using Clauses
Parameters of a using clause can be anonymous:
def sort[T](xs: List[T])(using Ordering[T]): List[T] =
. merge(sort(fst), sort(snd))

def merge[T]1(xs: List[T], ys: List[T])(using Ordering[T1): List[T] = ...

This is useful if the body of sort does not mention ord at all, but simply passes it on
as an implicit argument to further methods.

Anonymous Using Clauses
Parameters of a using clause can be anonymous:
def sort[T](xs: List[T])(using ord: Ordering[T]): List[T] =
. merge(sort(fst), sort(snd))(using ord)

def merge[T]1(xs: List[T])(using ord: Ordering[T]): List[T] = ...

This is useful if the body of sort does not mention ord at all, but simply passes it on
as an implicit argument to further methods.

Given Instances
For the previous example to work, the Ordering.Int definition must be a given
instance:

object Ordering:

given Int: Ordering[Int] with
def compare(x: Int, y: Int): Int =
if x <y then -1 else if x >y then 1 else 0

This code defines a given instance of type Ordering[Int], named Int.

Anonymous Given Instances

Given instances can be anonymous. Just omit the instance name:

given Ordering[Double] with
def compare(x: Int, y: Int): Int = ...

The compiler will synthesize a name for an anonymous instance:

given given_Ordering_Double: Ordering[Double] with
def compare(x: Int, y: Int): Int = ...

Summoning an Instance

One can refer to a (named or anonymous) instance by its type:

summon[Ordering[Int]]
summon[Ordering[Double]]

These expand to:

Ordering.Int
Ordering.given_Ordering_Double

summon is a predefined method. It can be defined like this:

def summon[T](using x: T) = x

Given Aliases

To do computations in parallel, runtimes need thread schedulers.

There's usually a default scheduler, but it should be possible to override that choice in
parts of the code.

How are references to schedulers propagated?

In Scala, they are embedded in values of types ExecutionContext. The default is:

object ExecutionContext:
given global: ExecutionContext = ForkJoinContext()

This defines the execution context global as an alias of an existing value (i.e. a freshly
created ForkJoinContext)

The evaluation of ForkJoinContext is done lazily: the ForkJoinContext is created the
first time global is used.

Propagating Execution Contexts

Execution contexts rarely change, but they should be changeable everywhere.

This is a poster-child for implicit parameters.

def processItems(...)(using ExecutionContext) = ...

Implicit Parameter Resolution

Say, a function takes an implicit parameter of type T.

The compiler will search a given instance that:

P has a type compatible with T,

P is visible at the point of the function call, or is defined in a companion object
associated with T.

If there is a single (most specific) instance, it will be taken as actual arguments for the
inferred parameter.

Otherwise it's an error.

Given Instances Search Scope

The search for a given instance of type T includes:

» all the given instances that are visible (inherited, imported, or defined in an
enclosing scope),

» the given instances found in a companion object associated with T.
For instance, ExecutionContext.global will always be found when an
ExecutionContext is summoned, even if there is no import.

Given Instances Search Scope

The search for a given instance of type T includes:

» all the given instances that are visible (inherited, imported, or defined in an
enclosing scope),

» the given instances found in a companion object associated with T.
For instance, ExecutionContext.global will always be found when an
ExecutionContext is summoned, even if there is no import.

The definition of associated is quite general. Besides the companion object of a class
itself, the compiler will also consider

» companion objects associated with any of T's inherited types
» companion objects associated with any type argument in T
» if T is an inner class, the outer objects in which it is embedded.

Companion Objects Associated With a Queried Type

If the compiler does not find a given instance matching the queried type T in the lexical
scope, it continues searching in the companion objects associated with T.

Consider the following hierarchy:

trait Foo[T]

trait Bar[T] extends Foo[T]
trait Baz[T] extends Bar[T]
trait X

trait Y extends X

If a given instance of type Bar[Y] is required, the compiler will look into the companion
objects Bar, Y, Foo, and X (but not Baz).

Importing Given Instances

Since given instances can be anonymous, how can they be imported?

In fact, there are three ways to import a given instance.

1. By-name:
import scala.math.Ordering.Int
2. By-type:
import scala.math.Ordering.{given Ordering[Int]}
import scala.math.Ordering.{given Ordering[?]}
3. With a wildcard:

import scala.math.given

Since the names of givens don't really matter, the second form of import is preferred
since it is most informative.

Exercise

val xs = List(3, 1, 2)
sort(xs)

In the above example of the sort method call, where does the compiler find the given
instance of type Ordering[Int]?

o In the enclosing scope
o Via a given import

o In a companion object associated with the type Ordering[Int]

Exercise

val xs = List(3, 1, 2)
sort(xs)

In the above example of the sort method call, where does the compiler find the given
instance of type Ordering[Int]?

o In the enclosing scope
o Via a given import

x In a companion object associated with the type Ordering[Int]

» The given instance is found in the Ordering companion object

No Given Instance Found

If there is no available given instance matching the queried type, an error is reported:

scala> def f(using n: Int) = ()
scala> f

A

error: no implicit argument of type Int was found for parameter n of method f

Ambiguous Given Instances

If more than one given instance is eligible, an ambiguity is reported:

trait C:
val x: Int
given c1: C with
val x =1
given c2: C with
val x = 2

f(using c: C) = O
,F

A

error: ambiguous implicit arguments: both value c1 and value c2 match type C of
parameter c of method f

Priorities

Actually, several given instances matching the same type don't generate an ambiguity
if one is a closer match than the other.
In essence, a definition
given a: A
is a closer match than a definition
given b: B
if:

> ais in a closer lexical scope than b, or

> ais defined in a class or object which is a subclass of the class defining b, or
P> type A is a generic instance of type B, or

> type A is a subtype of type B.

Priorities: Example (1)

Which given instance is summoned here?

class A[T1(x: T)
given universal[T](using x: T): A[T1(x)
given specific: A[Int](2)

summon[A[Int]]

Priorities: Example (1)

Which given instance is summoned here?

class A[T1(x: T)
given universal[T](using x: T): A[T1(x)
given specific: A[Int](2)

summon[A[Int]]

> specific

Priorities: Example (2)

Which given instance is summoned here?

trait A:
given ac: C

trait B extends A:
given bc: C

object O extends B:
val x = summon[C]

Priorities: Example (2)

Which given instance is summoned here?

trait A:
given ac: C

trait B extends A:
given bc: C

object O extends B:
val x = summon[C]

» bc

Priorities: Example (3)

Which given instance is summoned here?

given ac: C

def f() =
given bc: C
def needC(using c: C) = ()
needC

Priorities: Example (3)

Which given instance is summoned here?

given ac: C

def f() =
given bc: C
def needC(using c: C) = ()
needC

> bc

Conditional Instances

Question: How do we define an Ordering instance for lists?

Observation: This can be done only if the list elements have an ordering.

given listOrdering[AJ(using ord: Ordering[A]): Ordering[List[A]] with

Conditional Instances

Question: How do we define an Ordering instance for lists?

Observation: This can be done only if the list elements have an ordering.

given listOrdering[AJ(using ord: Ordering[A]): Ordering[List[A]] with

def compare(xs: List[A], ys: List[A]) = (xs, ys) match
case (Nil, Nil) => o

case (Nil, _) => -1
case (_, Nil) => 1
case (x :: xs1, y :: ysl) =>

val ¢ = ord.compare(x, y)
if ¢ !'= @ then c else compare(xsl, ys1)

The given instance listOrdering takes type parameters and implicit parameters.

Conditional Instances

Given instances such as listOrdering that take implicit parameters are conditional.
» An ordering for lists with elements of type T exists only if there is an ordering for T.
This sort of conditional behavior is best implemented with givens.

» Normal subtyping and inheritance cannot express this: a class either inherits a
trait or doesn't.

Recursive Implicit Resolution

Given instances with implicit parameters are resolved recursively:

A given instance for the outer type is constructed first and then its implicit parameters
are filled in in turn.

Example:

def sort[Al(xs: List[A])(using Ordering[A]): List[A] = ...
val xss: List[List[Int]] = ...

sort(xss)

Recursive Implicit Resolution

Given instances with implicit parameters are resolved recursively:

A given instance for the outer type is constructed first and then its implicit parameters
are filled in in turn.

Example:

def sort[Al(xs: List[A])(using Ordering[A]): List[A] = ...
val xss: List[List[Int]] = ...

sort[List[Int]](xss)

» by type inference

Recursive Implicit Resolution

Given instances with implicit parameters are resolved recursively:

A given instance for the outer type is constructed first and then its implicit parameters
are filled in in turn.

Example:

def sort[Al(xs: List[A])(using Ordering[A]): List[A] = ...
val xss: List[List[Int]] = ...

sort[List[Int]](xss)(using listOrdering)

» by outer implicit resolution

Recursive Implicit Resolution

Given instances with implicit parameters are resolved recursively:

A given instance for the outer type is constructed first and then its implicit parameters
are filled in in turn.

Example:

def sort[Al(xs: List[A])(using Ordering[A]): List[A] = ...
val xss: List[List[Int]] = ...

sort[List[Int]](xss)(using listOrdering(using Ordering.Int))

» by nested implicit resolution

Exercise

Implement an instance of the Ordering trait for pairs of type (A, B), where A, B have
Ordering instances defined on them.

Example use case: Consider a program for managing an address book. We would like
to sort the addresses by zip codes first and then by street name. Two addresses with
different zip codes are ordered according to their zip code, otherwise (when the zip
codes are the same) the addresses are sorted by street name. E.g.

type Address = (Int, String) // Zipcode, Street Name
val xs: List[Address] = ...
sort(xs)

Exercise

Implement an instance of the Ordering trait for pairs of type (A, B), where A, B have
Ordering instances defined on them.

given pairOrdering[A, B]

Exercise
Implement an instance of the Ordering trait for pairs of type (A, B), where A, B have
Ordering instances defined on them.

given pairOrdering[A, Bl(using orda: Ordering[A], ordb: Ordering[B])
: Ordering[(A, B)]

Exercise

Implement an instance of the Ordering trait for pairs of type (A, B), where A, B have
Ordering instances defined on them.

given pairOrdering[A, Bl(using orda: Ordering[A], ordb: Ordering[B])
: Ordering[(A, B)] with
def compare(x: (A, B), y: (A, B)) =

Exercise

Implement an instance of the Ordering trait for pairs of type (A, B), where A, B have
Ordering instances defined on them.

given pairOrdering[A, Bl(using orda: Ordering[A], ordb: Ordering[B])
: Ordering[(A, B)] with
def compare(x: (A, B), y: (A, B)) =
val ¢ = orda.compare(x._1, y._1)
if ¢ !'= @ then c else ordb.compare(x._2, y._2)

Other Uses of Conditional Givens

Once you look for them, there are a lot.

For instance, serialization/deserialization:

trait Pickler[T]:
def pickle(data: T): Unit // pickle some data

given Pickler[Int] with
def pickle(data: Int) = ... // pickle an Int

given Pickler[A, BI(x: A, y: B)(using pa: Pickler[A], pb: Pickler[B]) with
def pickle(data: (A, B))): Int) = ... // pickle a pair

The scheme also works for deserialization.

Summary

In this lecture we have introduced a way to do type-directed programming, with the
help of a language mechanism that infers values from types.

There has to be a unique (most specific) given instance matching the queried type for
it to be used by the compiler.

Given instances are searched in the enclosing lexical scope (imports, parameters,
inherited members) as well as in the companion objects associated with the queried

type.

