Multicycle RISC-V Processor

Learning Goal: Simple multicycle processor architecture.

Requirements: Verilator, GTKWave

1 Introduction

In this lab you will implement a multicycle RISC-V (RV32I) processor. You will implement it step-by-
step beginning with a CPU that executes a few basic instructions and extending it progressively to cover
all the requested functionalities of the RISC-V standard. You will also use some of the components you
built in the previous sessions.

Important! Please read the entire assignment before starting to implement your CPU.

2 32-bit Register File

The primary component you will implement for this CPU lab is the Register File. This is a crucial
element of the CPU architecture. Figure|[I]illustrates the module of the Register File. The Register File
contains 32 registers, each 32 bits wide. It’s important to note that the first register (i.e., the register at
address 0) always maintains a fixed value of 0.

——>»{clk
32

—+4=>|aa .

—4—>{ab Register a4
—~—>law File bt—~—>
——=—»| wren

—~4—»| wrdata

Figure 1: Module of the Register File.

2.1 Reading the Register File

For this Register File, the read process is asynchronous. The inputs aa and ab select which two registers
to read. Their values are sent on the outputs a and b, respectively. The diagram in Figure 2 illustrates a
typical read process.

Version 3.0 of 15th August 2024, EPFL ©2024 1 of

Multicycle RISC-V Processor

aa DX
—!

N G G
ab I =Y
!

b Do) @

Figure 2: A read process of the Register File.

2.2 Writing to the Register File

The write process is synchronous. Input wren enables writing wrdata in the register addressed by aw.
Writing a value in the register at address 0 has no effect - its value is fixed to 0. The diagram of Figure 3]
illustrates a typical write process. It has essentially the same behaviour as flip-flops. The address, the
data and wren are set during cycle 0. At the rising edge of the clock, the data is saved in the Register
File at address aw. A new writing process can start during cycle 1.

cycle# 0 1
ck "\
wren /| __|
aw
wrdata

Figure 3: A write process of the Register File.

2.3 Exercise

Implement the Register File described in Section [2| For that, you can use an array of registers. The
following code gives an example of the Verilog module structure and array declaration.

module register_file (

)i

reg [31:0] reg_array_r [32];

// Rest of the implementation...
endmodule

To read a value from the array, you can use a simple assignment with the index:

assign a_o = reg_array_rlaa_il;
assign b_o = reg_array_rlab_1i];

* Implement the Register File in the file named register_file.v.
- Do not forget that register 0 must have a fixed value of 0.

¢ To simulate the Register File, use Verilator and write your own testbench inside the testbench
directory. Name it tb_register_file.v.

2 of Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

¢ Compile your Verilog code using Verilator:

verilator --binary —--trace -Wno-fatal —--top-module tb_register_file
< -0 Vtb_register_file testbench/tb_register_file.v
— verilog/register_file.v

¢ Run the simulation:

./obj_dir/Vtb_register_file

¢ Use GTKWave to visualize the simulation results:

gtkwave dump/tb_register_file.vcd

3 Multicycle CPU Description

The first implementation of the CPU only executes several ALU operations (e.g., addi, and), one handy
instruction called 1ui and the 1w and sw instructions. A break instruction is also used to stop the
execution of the program.

To execute an instruction, the multicycle CPU needs 4 to 5 cycles, depending on the instruction. Figure
shows the basic state machine of the CPU’s controller, which you will progressively extend. It illustrates
the different steps of the execution of an instruction.

FETCH2 FETCH2 FETCH1 FETCH2 FETCH FETCHI

Figure 4: The state machine of the CPU’s controller.

During FETCH1 and FETCH2, the CPU reads the next instruction to execute. During DECODE, the
CPU identifies the instruction and determines the next state. During the next states, the instruction is
executed. These last states are collectively called Execute states. You will add new Execute states as you
implement new instruction types.

The next subsections describe each state, and progressively introduce the internal units and signals of
the CPU.

Version 3.0 of 15th August 2024, EPFL ©2024 3 of

Multicycle RISC-V Processor

3.1 FETCH1

During this first state of the execution, the address of the next instruction is prepared for reading. The
instruction word will be available during the next cycle (recall that the RAM’s reading process has a
one-cycle latency: FETCH1 prepares the address to be read, and FETCH2 receives the corresponding
instruction during the next cycle). Figure [5|shows the components used for the FETCH1 state.

CPU Controller ok clk

rstn—pf rst_n

clk ck
rst_n | rstn PC

——> we

addr

/£32
» addr

Figure 5: Components used for the FETCH1 state.

The Controller controls the state machine. The input rst_n, synchronous and active low, initializes the
state machine to FETCH1. The PC holds the address of the next instruction. The address is stored in a
32-bit register. The address must always be valid, thus the two least significant bits should remain at ‘0.
* The input clk is the clock signal.
¢ The output addr is the current value of the address that is read from the memory.
* The input rst_n initializes the address register to 0x80000000.
During FETCHI, the memory read operation is implicitly initiated when the we (write enable) signal is

low. The controller ensures that we is set to 0 during this state to initiate the read operation for the next
instruction.

3.2 FETCH2

During the FETCH2 state, the instruction word is read from the input rdata and saved in a register. The
Controller enables the PC, so that it increments the address by 4. Figure|[6|shows the components used
for the FETCH2 state.

4 of Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

P
CPU Controller ae—| cik
clk | clk rstn—p] rst_n
rst_n 3| rstn '—> en PC
- addr
en
rdata 25lp Q
IR
>

Figure 6: Components used for the FETCH2 state.

The Instruction Register (IR) is a 32-bit register that stores the instructions coming from the memory.

¢ The input clk is the clock signal.
* The output q is the current value of the register.

¢ The input en enables to write the input d in the register at the next rising edge of the clock. In
other words, at every rising edge of clk, the value of d is passed over to q if en is enabled.

3.3 DECODE

During the DECODE state, the Controller reads the opcode of the instruction to identify the current
instruction and determines the next Execute state. The RISC-V instructions are progressively described
in the following subsections. Figure|7/|shows the components used for this state.

CPU

clk »| i
rst_n

Controller

Y

en

Q
IR

Figure 7: Components used for the DECODE state.

3.4 LTYPE

The I_TYPE state executes operations between a register and an immediate value that is embedded in the
instruction word, and saves the result in another register. Such instructions with an embedded 12-bit

Version 3.0 of 15th August 2024, EPFL ©2024 5 of

Multicycle RISC-V Processor

immediate value are I-type (Immediate type) instructions in RV32L. Figure [8{shows the general I-type
instruction format in detail.

31 20 19 15 14 12 11 7 6 0
\ imm[11:0] \ rs1 | funct3 | rd | opcode |

Figure 8: The general I-type instruction format in RV32I.

The fields rs1 and rd are register addresses for the source and destination registers, respectively. The
field imm[11:0] is the 12-bit immediate value. The funct3 field provides additional information about
the specific operation, and opcode identifies the instruction type.

It’s important to note that while 1w (load word), jalr (jump and link register) and break (repurposed
ebreak) instructions are I-type instructions, they are handled in separate states due to their unique
behaviors. The I_ TYPE state primarily deals with immediate arithmetic and logical operations.

In RV32], all immediates are sign-extended to 32 bits. This sign extension is handled directly in the Con-
troller. The sign extension is performed by replicating the most significant bit (bit 11) of the immediate
field to fill the upper 20 bits.

During the I TYPE state, the alu_op signal is set by the Controller to perform the required operation
in the ALU. The alu_op signal is derived from the opcode and funct3 fields of the instruction. Figure[9]
shows the components used for this state.

Controller
clk | clk rf we j— rf.we
rst_n
p_alu |8 op al
» en Q 5 , ‘6
IR
> k=] clk a 2 o
2 aa .
a Register » ALU -
5 .
aw File
rf.we—3» wren
’—V wrdata

Figure 9: Components used for the I_TYPE state.

The Register File and the ALU are the same units that you have implemented during the previous labs.
The Controller selects the operation to execute in the ALU with the signal alu_op. The alu_op signal
depends on the current instruction (e.g., an addition for addi, a logical AND for andi, or a logical right
shift for sr1i).

The ALU operation codes are summarized in Table I} which has been updated to reflect the RV32I
instruction set.

6 of [21] Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

3.5 R.TYPE

Table 1: ALU operations and their encoding.

Operation Operation Type Opcode
A+ B 000p¢p ¢
A-B Add/Sub 001605
A=B 011000
A+#B 011001
A < B (signed) . 011100
A > B (signed) Comparison 19101
A < B (unsigned) 011110
A > B (unsigned) 011111
A ® B (XOR) 100100
AV B (OR) Logical 100110
A A B (AND) 100111
A < B(SLL) 110001
A > B(SRL) Shift 110101
A >, B(SRA) 111101

¢ =don’t care, 0/1 = special bit

The R_TYPE state executes operations between two registers and saves the result in a third register.
Such instructions with three register addresses are R-type (Register type) instructions. Figure [10|shows
the general R-type instruction format in detail.

31

25

24

20 19

15

14 12

11

7

6

0

| funct?

|

rs2

\ rsl

|

funct3

|

rd

|

opcode

|

Figure 10: The general R-type instruction format in RV32L

The fields rs1 and rs2 are source register addresses, and rd is the destination register address. The
funct? and funct3 fields provide additional information to specify the exact operation. The opcode field
identifies the instruction type.

During the R_TYPE state, the alu_op signal is set by the Controller to perform the required operation in
the ALU. The alu_op is determined based on the opcode, funct3, and funct7 fields of the instruction.

Figure[l1{shows the components used for the R_TYPE state.

Version 3.0 of 15th August 2024, EPFL ©2024

7of

Multicycle RISC-V Processor

Controller
clk »| ck rfwe j— rf_we
rst_n »| rsn sel b |— selb
o
p_alu |28 op al
D el Q 32 op_alu
s
IR :
> ak =] clk . »
2 aa .
= >l Register 2
5 » .
aw File N B
f.we—3 wren b
wrdata
’—’ sel_b

Figure 11: Components used for the R_TYPE state.

The Register File reads the values of the two source registers (rs1 and rs2) and writes the result to the
destination register (rd). The ALU performs the operation specified by alu_op on the two source register
values. The result of the ALU operation is then written back to the Register File at the address specified
by rd.

The Controller manages the entire process, interpreting the instruction and generating the appropriate
control signals for the Register File and ALU.

3.6 UTYPE

The U_TYPE state executes the LUI (Load Upper Immediate) instruction, which is a U-type instruction
in RV32I. Figure[12|shows the U-type instruction format in detail.

31 12 11 7 6 0
imm|[31:12] rd opcode
p

Figure 12: The U-type instruction format in RV32L

The LUI instruction loads a 20-bit immediate value into the upper 20 bits of the destination register,
setting the lower 12 bits to zero. This is useful for constructing large constants efficiently.

Table[2] describes the LUI instruction.

Instruction opcode Description
lui rd, imm 0110111 rd=imm <« 12

Table 2: The LUI instruction.

During the U_TYPE state, the following operations occur:

8 of [21] Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

¢ The 20-bit immediate value from the instruction is shifted left by 12 bits, effectively placing it in
the upper 20 bits of a 32-bit word.

* This 32-bit value is then written to the destination register (rd).

* No ALU operation is required for this instruction.

Figure[13|shows the components used for the U_TYPE state.

CPU Controller

clk ak 0
rst_n rstn selb

en

Q
IR

Register = B
File

r.we—3 wren

’—V wrdata

Figure 13: Components used for the U_TYPE state.

The sel_imm signal is set to select the immediate value instead of the ALU result. The rf_we signal
enables writing to the register file, storing the computed immediate value in the destination register
specified by rd.

LUI is often used in conjunction with an ADDI instruction to create arbitrary 32-bit constants or to form
complete addresses for accessing memory. For example:

lui x1, 0x12345 # x1 = 0x12345000

addi x1, x1, 0x678 # x1 = 0x12345678

This combination allows for the efficient creation of any 32-bit constant using just two instructions.

3.7 LOAD

The 1w (load word) instruction is an I-type instruction in RV32I. Figure|14|shows the LOAD instruction
format in detail.

31 20 19 15 14 12 11 7 6 0
] imm[11:0] \ rsl | funct3 | rd | opcode |

Figure 14: The LOAD instruction format in RV32I.

The load operation takes 2 cycles to complete due to the memory read latency. This process is divided
into two states: LOAD1 and LOAD2.

Version 3.0 of 15th August 2024, EPFL ©2024 9 of

Multicycle RISC-V Processor

Figure[15|shows the components used for the LOADT1 state.

CPU Controller
clk > i
rstn oo sl — s s
we ——> we
op_alu |28 op aly
l —— addr
el instr 32
b .
IR
> a3 clk
- aa . @
a Register
o File
wren b
wrdata
Figure 15: Components used for the LOAD1 state.
During the LOAD1 state:

* The address to read is computed by the ALU (adding the sign-extended immediate value to the
value in rs1).

¢ The sel_addr signal is set to select the ALU result as the memory address.

¢ The memory read operation is initiated (implicitly, by keeping the we signal low).

Figure[16|shows the components used for the LOAD?2 state.

Controller
sel_imm|
clk »| clk f_we |— rf_we
sel_addr p— sel_addr
rst_n S EX seLb
- sel_mem |— sel_mem
instruction pe_en
we
op_alu |42 op_alu
e imm
—> addr
> en instr
rdata D Qf*
> ak] clk
5 a
aa .
a Register
5 .
> File
f_we—3» wren
|—> wrdata

Figure 16: Components used for the LOAD?2 state.

10 of 21| Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

During the LOAD? state:

¢ The signals from LOAD1 are maintained:

— The imm_o signal continues to provide the sign-extended immediate value.

- The sel_addr signal remains set to select the ALU result as the memory address.

The data read from memory becomes available on the rdata input.

The sel_mem signal is set to select the memory data.

The rf_we signal is activated to enable writing to the Register File.

The selected data is written to the Register File at the address specified by rd.

By maintaining the address-related signals from LOAD1, the LOAD?2 state ensures that the decoder and
multiplexer continue to select the correct rdata source. This approach guarantees that the memory read
operation initiated in LOAD1 completes successfully in LOAD?2, with the correct data being written to
the appropriate register.

The Controller manages the entire process, generating the appropriate control signals for the ALU,
memory interface, and Register File in each state.

3.8 S TYPE

The sw (store word) instruction is an S-type instruction in RV32I. Figure[I7]shows the S-type instruction
format in detail.

31 25 24 20 19 15 14 12 11 7 6 0
| imm[1T:5] | rs2 \ rsl | funct3 | imm[4:0] | opcode |

Figure 17: The S-type instruction format in RV32L

In S-type instructions, the immediate value is split into two parts:

e imm[11:5] occupies bits 31-25 of the instruction

¢ imm[4:0] occupies bits 11-7 of the instruction

To form the full 12-bit immediate, these parts are concatenated as imm[11:5] imm/[4:0]. This imme-

diate is then sign-extended to 32 bits for use in address calculation.
During the S_TYPE state:

* The ALU computes the memory address by adding the sign-extended immediate to the value in
rsi.

¢ The data to be stored (from rs2) is placed on the wdata output.

¢ The Controller activates the we (write enable) output signal to initiate a write operation.

Figure [18|shows the components used for the S_TYPE state.

The Controller manages the process by:

* Forming the correct immediate value from the instruction’s fields

Version 3.0 of 15th August 2024, EPFL ©2024 11 of

Multicycle RISC-V Processor

CPU Controller

clk »| clk rf_wren
sel_addr |— sel_addr

rst_n | rstn “sel b

instruction pcen

—>we

B 22 |——> addr

sel_addr

en

Qe —
IR i
> a3 clk . 2 |
2 aa .
= >l Register »
* File - B
wren b

wrdata

»wdata

Figure 18: Components used for the S_TYPE state.

* Setting sel_addr to select the ALU result as the memory address

* Activating the we signal for the duration of the state

Unlike load operations, store operations complete in a single cycle, as there’s no need to wait for data to
be read from memory.

Reflexion Moment

Consider the sb (store byte) and sh (store halfword) instructions in the RV32I instruction set. If
we were to support these instructions, would it be possible to complete all S-type instructions in
a single cycle as we do now with sw? Why or why not?

12 of Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

3.9 BREAK

The ebreak instruction in our implementation is a repurposed version of the EBREAK (Environment
BREAK) instruction from RV32I. It follows the I-type instruction format, as shown in Figure

31 20 19 15 14 12 11 7 6 0
] imm][11:0] \ sl | funct3 | rd | opcode |

Figure 19: The I-type instruction format used for EBREAK in RV32L

The EBREAK instruction is identified by the following specific field values in Figure

Instruction Immediate funct3 opcode
ebreak 000000000001 000 1110011

Table 3: EBREAK instruction encoding values in RV32L

In a standard RISC-V implementation, EBREAK is used to transfer control to a debugging environment.
It’s typically used for setting breakpoints in code during debugging. However, in our simplified CPU,
we repurpose this instruction to stop the CPU execution entirely.

The BREAK instruction is identified by these specific values in its fields. When the CPU encounters
this instruction, it enters the BREAK state, which serves as a termination point for the program, halting
further execution.

This allows us to have a defined way to stop the CPU at a predetermined point in the code, which can
be useful for testing and demonstration purposes. In our implementation, when the controller detects
these specific field values during the DECODE stage, it transitions to the BREAK state and remains
there, effectively stopping the program execution.

4 Exercise

¢ For this exercise, you will use modules you should have implemented during the previous labs.
Make sure to review, understand, and import these modules before proceeding:

— From the ALU lab:

+ alu.v: The Arithmetic Logic Unit

+ add_sub.v: The adder/subtractor module

+ comparator.v: The comparison module

+ logic_unit.v: The logical operations module
+ shift_unit.v: The shift operations module

+ mux4x32.v: The 4-to-1 multiplexer module

¢ Implement the simple mux2x32 module in the file named mux2x32.v.
e Implement the IR (Instruction Register) in the file named ir.v.

e Implement a first version of the PC (Program Counter) in the file named pc . v. In this first version,
the next address is always the current address incremented by 4. Remember to set the reset value
to 32'h80000000.

Version 3.0 of 15th August 2024, EPFL ©2024 13 of

Multicycle RISC-V Processor

Instruction Type Opcode State Description
and rd, rsl, rs2 R-type 0110011 R.ITYPE rd+< rslAND rs2

srl rd, rsl, rs2 R-type 0110011 R.TYPE rd+ rsl>> rs2[4:0]
addi rd, rsl, imm I-type 0010011 I.TYPE rd <+ rsl+ imm

lui rd, imm U-type 0110111 U.TYPE rd+ imm <12

lw rd, imm(rsl) I-type 0000011 LOAD rd + Mem|[rs1 + imm]

sw rs2, imm(rsl) S—type 0100011 S_TYPE Mem[rsl + imm] < rs2
ebreak I-type 1110011 BREAK Stops the program execution

Table 4: Initial instructions for the RV32I CPU.

* Implement a first version of the Controller in the file named controller.v. In this first version,
it should be able to decode the instructions from Table[d]

* Implement the described state machine, which controls all the control signals except alu_op. The
alu_op signal is independent of the current state (i.e., it should be stateless) and should be gener-
ated in a separate process that depends on the instruction fields. See Section 5.4 for details.

* To test the current (incomplete) Controller, you can create an early version of the testbench that
would test it for the couple instructions from Table

5 Extending the multicycle CPU with flow control

In this section, you will add flow control to the CPU. This enables the CPU to do conditional jumps in
the code using the branch instructions, and to call procedures using the call and ret instructions. To
implement these instructions, you will add five new Execute states (i.e., the states coming from DECODE
and going to FETCH1) to the state machine. These states are described in the following subsections. Do
not forget to update the state transitions in your FSM process!

5.1 B_TYPE

The B_TYPE state executes conditional branch instructions, which are B-type instructions in RV32I. Fig-
ure 20|shows the general branch instruction format in detail.

31 25 24 20 19 15 14 12 11 7 6 0
| imm[12—10:5] | rs2 \ rsl | funct3 [imm[4:1—11] [opcode |

Figure 20: The B-type instruction format in RV32I.

All B-type instructions share the same opcode:

Instruction Type Opcode
B_TYPE 1100011

Table 5: Opcode for B-type instructions in RV32I.

The immediate value for B-type instructions is formed in a complex manner to allow for a larger branch
offset while maintaining the regular instruction length. The 12-bit immediate is constructed as follows:

14 of Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

e imm[12] is taken from instruction[31]

e imm/[11] is taken from instruction[7]

e imm][10:5] are taken from instruction[30:25]

e imml[4:1] are taken from instruction[11:8]

e imm[0] is always 0

This immediate is then sign-extended to 32 bits, effectively creating a 13-bit signed offset.

Table[6] describes the different branch instructions in RV32I.

Instruction funct3 Branches if:

beq rsl, rs2, offset 000 rsl =rs2

bne rsl, rs2, offset 001 rsl 751'82

blt rsl, rs2, offset 100 rsl < rs2 (signed)
bge rsl, rs2, offset 101 rs1 > rs2 (signed)
bltu rsl, rs2, offset 110 rs1 < rs2 (unsigned)
bgeu rsl, rs2, offset 111 rs1 > rs2 (unsigned)

Table 6: Branch instructions in RV32I.

During the B_TYPE state, the ALU compares the values of the registers rs1 and rs2. If the condition is
met, the PC must be updated with PC < PC + imm. Remember that the PC has already been incre-
mented by 4 during the FETCH2 state, so this needs to be accounted for in the branch offset calculation.

Figure 21|shows the components used for the B_.TYPE state.

clk
rst_n

CPU

Controlle

sel_imm

en

rst_n—p| rst_n
alu_ress en

k=1 clk

PC

»| sel_pc_base

add_imm
imm

addr

Q
IR

clk =1 clk
aa
ab
aw
wren

wrdata

Register
File

Figure 21: Components used for the B_TYPE state.

The branch_op signal and the least significant bit of the ALU result are used to determine if the branch
should be taken. The pc_add_imm signal instructs the PC to add the sign-extended immediate value
instead of 4 for the next instruction address. The pc_sel_pc_base signal in the controller is activated to

Version 3.0 of 15th August 2024, EPFL ©2024

150f

Multicycle RISC-V Processor

indicate that the current instruction address should be used as the base address for the branch calcula-
tion, rather than the next sequential instruction address. This ensures that the branch offset is applied
to the address of the current instruction, allowing for correct relative branching.

5.2 J.TYPE

The J_-TYPE state executes the jal (Jump and Link) instruction, which is a J-type instruction in RV32L
Figure [22|shows the jal instruction format in detail.

31 12 11 7 6 0
| imm[20—10:1—11—19:12] | rd | opcode |

Figure 22: The J-type instruction format in RV321.

The immediate value for J-type instructions is formed in a complex manner to allow for a larger jump
offset. The 20-bit immediate is constructed as follows:

imm][20] is taken from instruction[31]

imm][10:1] are taken from instruction[30:21]

imm][11] is taken from instruction[20]

imm][19:12] are taken from instruction[19:12]

imm][0] is always 0

This immediate is then sign-extended to 32 bits, effectively creating a 21-bit signed offset.

Table[7]describes the jal instruction.

Instruction opcode Description
jal rd, offset 1101111 Jump to PC + offset, save PC + 4 to rd

Table 7: The jal instruction.

During the J_TYPE state, the current PC value plus 4 is saved in the destination register (rd). The next
address of PC is calculated by adding the sign-extended immediate to the current PC.

Figure[23[shows the components used for the J_.TYPE state.

16 of 21| Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

CPU Controller s e
clk o " we stn] rst_n
rst_n rstn |—>§ > o PC
pe_st sel_pc_base
pe_add_imm add_imm
imm
Lpcj— sel_p
op. i addr
ck—] clk a
aa .
» Register B "
. i
o File .
o] wi
‘—b wrdata ‘
|
o

Figure 23: Components used for the J_ TYPE state.

The pc_add_imm signal instructs the PC to add the sign-extended immediate value to the current PC
for the next instruction address. The sel_pc signal selects PC + 4 as the value to be written to the
destination register. The rf_we signal enables writing to the register file, storing the return address (PC
+ 4) in the destination register specified by rd. The pc_sel_pc_base signal in the controller is activated
to use the current PC as the base address for the jump calculation. This ensures that the jump offset is
applied to the address of the current instruction, allowing for correct relative jumping and maintaining
the PC-relative addressing mode of the jal instruction.

5.3 JALR

The JALR state executes the Jump and Link Register instruction, which is an I-type instruction in RV32L.
Figure 24]shows the JALR instruction format in detail.

31 20 19 15 14 12 11 7 6 0
] imm[11:0] \ rsl | funct3 | rd | opcode |

Figure 24: The JALR instruction format in RV32L

Table 8| describes the JALR instruction.

Instruction opcode Description

jalr rd, rsl, imm 1100111 Jump to rsl + imm, save PC + 4 to rd

Table 8: The JALR instruction.

During the JALR state, the following operations occur:

* The address of the next instruction (PC + 4) is saved in the destination register (rd).

* The next PC value is calculated by adding the sign-extended 12-bit immediate to the value in rs1.

Version 3.0 of 15th August 2024, EPFL ©2024 17 of

Multicycle RISC-V Processor

* The two least significant bits of the calculated address are set to zero to ensure word alignment, as
the PC should always contain a word-aligned address.

Note that, unlike the JAL instruction, JALR calculates the jump target address based on a register value
plus an immediate, allowing for more flexible jump targets. The word alignment requirement (setting
the two LSBs to zero) ensures that the jump always targets a valid instruction address.

Figure [25[shows the components used for the JALR state.

clk
rst_n

CPU

Controller

‘‘‘‘‘‘‘‘‘‘‘

k=] clk
rst_n

“ PC

sel_pc_base
add_imm
imm

sel_alu

en

o e
IR :

ak— clk

i Register
2w File

rf.we—3»| Wren

’—P wrdata

Figure 25: Components used for the JALR state.

The pc_sel_alu signal selects the ALU output (which computes rs1 + imm) as the next PC value. The
sel_pc signal selects PC + 4 as the value to be written to the destination register. The rf_we signal enables
writing to the register file, storing the return address (PC + 4) in the destination register specified by rd.

JALR can be used for various purposes, including:
* Implementing function returns (when rd = x0 and rs1 = x1, assuming x1 holds the return address)
e Implementing computed jumps

¢ Implementing more complex control flow by combining register and immediate values

5.4 Hint for the generation of the alu_op signal

The generation of the alu_op signal is crucial for the correct operation of the ALU. Here are some hints
to help you implement this part:

* The alu_op signal is 6 bits wide, allowing for a variety of operations.

* For arithmetic and immediate arithmetic instructions (R-type and I-type), consider how the funct3
field relates to the lower 3 bits of alu_op.

* Pay attention to special cases where the operation might differ between R-type and I-type instruc-
tions with the same funct3 value (e.g., ADD vs SUB).

¢ For shift operations, consider how the funct7 field might influence the operation (e.g., logical vs
arithmetic shift).

18 of

Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

* For comparison operations (SLT, SLTU), think about how these might be implemented using the
ALU and how this affects the alu_op encoding.

¢ For branch instructions, consider how you can use the ALU to perform the necessary comparisons.
How might the funct3 field of branch instructions map to alu_op?

* Remember that some bits of alu_op might have different meanings for different operation types.
The upper bits might control the operation category, while the lower bits specify the exact opera-
tion within that category.

¢ Implement the alu_op generation in a separate, combinational process that depends only on the
instruction fields (opcode, funct3, funct?). This will make your design more modular and easier
to extend.

¢ For instructions that don’t use the ALU, you can set alu_op to a default value, as its result won't
be used.

Remember to refer to the ALU operation codes in Table[]]when designing your alu_op generation logic.
The key is to create a mapping between the instruction fields and the ALU operations that correctly
implements the RV32I instruction set.

5.5 Exercise

* Modify the Verilog files of your Controller (controller.v)and the PC (pc.v) to add flow con-
trol to your CPU.

* Implement the immediate generation logic for B-type and J-type instructions in the Controller.

* Write your own testbenches to verify the correct operation of the new instructions supported by
your CPU.

6 Completing the Multicycle CPU with the Remaining Instructions

In this final section, you will complete your CPU with the remaining operations. Most of the work is to
generate, from the instruction, the correct value of the alu_op signal.

6.1 Immediate Operations

Table[J)lists the immediate arithmetic and logical instructions that can be handled by the I_ TYPE state.

Instruction funct3 Description

addi rd, rsl, imm 000 rd ¢ rsl + imm

slti rd, rsl, imm 010 rd<+ (rsl <imm)?1:0 (signed)
sltiu rd, rsl, imm 011 rd 4+ (rsl < imm)? 1: 0 (unsigned)
xori rd, rsl, imm 100 rd <+ rsl @ imm

ori rd, rsl, imm 110 rd< rslVimm

andi rd, rsl, imm 111 rd<+ rsl A imm

Table 9: Immediate arithmetic and logical instructions in RV32L

Version 3.0 of 15th August 2024, EPFL ©2024 19 of

Multicycle RISC-V Processor

Table [10] lists the immediate shift instructions that are also handled by the I_.TYPE state but require
special attention to the upper bits of the immediate value.

Instruction funct3 imm[11:5] Description

slli rd, rsl, imm 001 0000000 rd < rsl < imm[4:0]

srli rd, rsl, imm 101 0000000 rd < rsl > imm[4:0]
srai rd, rsl, imm 101 0100000 rd < rsl >, imm[4:0]

Table 10: Immediate shift instructions in RV321.

Important

For shift instructions, the controller should preserve all 12 bits of the immediate value (bits 31 to
20 of the instruction). The actual 5-bit shift amount should be extracted in the shifter unit, not in
the controller.

For example, if you have an srai instruction with a shift amount of 2, the immediate output from
the controller will be 0x402. This is because one of the bits in the funct? field (contained within
the immediate value) is set to indicate that the shift is arithmetic.

The shifter unit will then use only the lower 5 bits (0x02 in this case) as the actual shift amount,
while the upper bits will be unused by the shifter inside the ALU.

6.2 Register Operations

Table[11|lists all the register-register instructions that can be handled by the R_TYPE state.

Instruction funct3 funct? Description

add rd, rsl, rs2 000 0000000 rd<rsl -+ rs2

sub rd, rsl, rs2 000 0100000 rd < rsl —rs2

sll rd, rsl, rs2 001 0000000 rd < rsl < rs2[4:0]

slt rd, rsl, rs2 010 0000000 rd < (rsl < rs2)?1:0 (signed)
sltu rd, rsl, rs2 011 0000000 rd < (rsl < rs2)?1:0 (unsigned)
xor rd, rsl, rs2 100 0000000 rd<+ rsl @ rs2

srl rd, rsl, rs2 101 0000000 rd < rsl>; rs2[4:0]

sra rd, rsl, rs2 101 0100000 rd < rsl >, rs2[4:0]

or rd, rsl, rs2 110 0000000 rd<+rslVrs2

and rd, rsl, rs2 111 0000000 rd<+ rsl Ars2

Table 11: Register-register instructions in RV32I.

Note that in RV32I, there are no separate states needed for unsigned operations or for immediate shift
operations, as these are handled within the I-type and R-type instruction formats respectively.

When implementing these instructions, pay careful attention to the funct3 and funct7 fields, as they
determine the specific operation to be performed. The alu_op signal should be generated based on
these fields along with the opcode.

6.3 Exercise

¢ Complete the Controller (controller.v) to implement the remaining instructions.

20 of 1] Version 3.0 of 15th August 2024, EPFL ©2024

Multicycle RISC-V Processor

* Complete your own testbenches to verify the correct operation of the remaining instructions sup-
ported by your CPU.

Version 3.0 of 15th August 2024, EPFL ©2024 21 of

	Introduction
	32-bit Register File
	Reading the Register File
	Writing to the Register File
	Exercise

	Multicycle CPU Description
	FETCH1
	FETCH2
	DECODE
	I_TYPE
	R_TYPE
	U_TYPE
	LOAD
	S_TYPE
	BREAK

	Exercise
	Extending the multicycle CPU with flow control
	B_TYPE
	J_TYPE
	JALR
	Hint for the generation of the alu_op signal
	Exercise

	Completing the Multicycle CPU with the Remaining Instructions
	Immediate Operations
	Register Operations
	Exercise

	Submission

