
Multicycle RISC-V Processor

Learning Goal: Simple multicycle processor architecture.

Requirements: Verilator, GTKWave

1 Introduction

In this lab you will implement a multicycle RISC-V (RV32I) processor. You will implement it step-by-
step beginning with a CPU that executes a few basic instructions and extending it progressively to cover
all the requested functionalities of the RISC-V standard. You will also use some of the components you
built in the previous sessions.

Important! Please read the entire assignment before starting to implement your CPU.

2 32-bit Register File

The primary component you will implement for this CPU lab is the Register File. This is a crucial
element of the CPU architecture. Figure 1 illustrates the module of the Register File. The Register File
contains 32 registers, each 32 bits wide. It’s important to note that the first register (i.e., the register at
address 0) always maintains a fixed value of 0.
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Figure 1: Module of the Register File.

2.1 Reading the Register File

For this Register File, the read process is asynchronous. The inputs aa and ab select which two registers
to read. Their values are sent on the outputs a and b, respectively. The diagram in Figure 2 illustrates a
typical read process.
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Figure 2: A read process of the Register File.

2.2 Writing to the Register File

The write process is synchronous. Input wren enables writing wrdata in the register addressed by aw.
Writing a value in the register at address 0 has no effect – its value is fixed to 0. The diagram of Figure 3
illustrates a typical write process. It has essentially the same behaviour as flip-flops. The address, the
data and wren are set during cycle 0. At the rising edge of the clock, the data is saved in the Register
File at address aw. A new writing process can start during cycle 1.
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Figure 3: A write process of the Register File.

2.3 Exercise

Implement the Register File described in Section 2. For that, you can use an array of registers. The
following code gives an example of the Verilog module structure and array declaration.

module register_file (
...

);
reg [31:0] reg_array_r [32];
// Rest of the implementation...

endmodule

To read a value from the array, you can use a simple assignment with the index:

assign a_o = reg_array_r[aa_i];
assign b_o = reg_array_r[ab_i];

• Implement the Register File in the file named register_file.v.

– Do not forget that register 0 must have a fixed value of 0.

• To simulate the Register File, use Verilator and write your own testbench inside the testbench
directory. Name it tb_register_file.v.
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• Compile your Verilog code using Verilator:

verilator --binary --trace -Wno-fatal --top-module tb_register_file
-o Vtb_register_file testbench/tb_register_file.v
verilog/register_file.v

↪→

↪→

• Run the simulation:

./obj_dir/Vtb_register_file

• Use GTKWave to visualize the simulation results:

gtkwave dump/tb_register_file.vcd

3 Multicycle CPU Description

The first implementation of the CPU only executes several ALU operations (e.g., addi, and), one handy
instruction called lui and the lw and sw instructions. A break instruction is also used to stop the
execution of the program.

To execute an instruction, the multicycle CPU needs 4 to 5 cycles, depending on the instruction. Figure 4
shows the basic state machine of the CPU’s controller, which you will progressively extend. It illustrates
the different steps of the execution of an instruction.

FETCH2
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Figure 4: The state machine of the CPU’s controller.

During FETCH1 and FETCH2, the CPU reads the next instruction to execute. During DECODE, the
CPU identifies the instruction and determines the next state. During the next states, the instruction is
executed. These last states are collectively called Execute states. You will add new Execute states as you
implement new instruction types.

The next subsections describe each state, and progressively introduce the internal units and signals of
the CPU.
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3.1 FETCH1

During this first state of the execution, the address of the next instruction is prepared for reading. The
instruction word will be available during the next cycle (recall that the RAM’s reading process has a
one-cycle latency: FETCH1 prepares the address to be read, and FETCH2 receives the corresponding
instruction during the next cycle). Figure 5 shows the components used for the FETCH1 state.
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Figure 5: Components used for the FETCH1 state.

The Controller controls the state machine. The input rst n, synchronous and active low, initializes the
state machine to FETCH1. The PC holds the address of the next instruction. The address is stored in a
32-bit register. The address must always be valid, thus the two least significant bits should remain at ‘0’.

• The input clk is the clock signal.

• The output addr is the current value of the address that is read from the memory.

• The input rst n initializes the address register to 0x80000000.

During FETCH1, the memory read operation is implicitly initiated when the we (write enable) signal is
low. The controller ensures that we is set to 0 during this state to initiate the read operation for the next
instruction.

3.2 FETCH2

During the FETCH2 state, the instruction word is read from the input rdata and saved in a register. The
Controller enables the PC, so that it increments the address by 4. Figure 6 shows the components used
for the FETCH2 state.
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Figure 6: Components used for the FETCH2 state.

The Instruction Register (IR) is a 32-bit register that stores the instructions coming from the memory.

• The input clk is the clock signal.

• The output q is the current value of the register.

• The input en enables to write the input d in the register at the next rising edge of the clock. In
other words, at every rising edge of clk, the value of d is passed over to q if en is enabled.

3.3 DECODE

During the DECODE state, the Controller reads the opcode of the instruction to identify the current
instruction and determines the next Execute state. The RISC-V instructions are progressively described
in the following subsections. Figure 7 shows the components used for this state.
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Figure 7: Components used for the DECODE state.

3.4 I TYPE

The I TYPE state executes operations between a register and an immediate value that is embedded in the
instruction word, and saves the result in another register. Such instructions with an embedded 12-bit
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immediate value are I-type (Immediate type) instructions in RV32I. Figure 8 shows the general I-type
instruction format in detail.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode

Figure 8: The general I-type instruction format in RV32I.

The fields rs1 and rd are register addresses for the source and destination registers, respectively. The
field imm[11:0] is the 12-bit immediate value. The funct3 field provides additional information about
the specific operation, and opcode identifies the instruction type.

It’s important to note that while lw (load word), jalr (jump and link register) and break (repurposed
ebreak) instructions are I-type instructions, they are handled in separate states due to their unique
behaviors. The I TYPE state primarily deals with immediate arithmetic and logical operations.

In RV32I, all immediates are sign-extended to 32 bits. This sign extension is handled directly in the Con-
troller. The sign extension is performed by replicating the most significant bit (bit 11) of the immediate
field to fill the upper 20 bits.

During the I TYPE state, the alu op signal is set by the Controller to perform the required operation
in the ALU. The alu op signal is derived from the opcode and funct3 fields of the instruction. Figure 9
shows the components used for this state.
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Figure 9: Components used for the I TYPE state.

The Register File and the ALU are the same units that you have implemented during the previous labs.
The Controller selects the operation to execute in the ALU with the signal alu op. The alu op signal
depends on the current instruction (e.g., an addition for addi, a logical AND for andi, or a logical right
shift for srli).

The ALU operation codes are summarized in Table 1, which has been updated to reflect the RV32I
instruction set.
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Table 1: ALU operations and their encoding.

Operation Operation Type Opcode

A+B Add/Sub 000ϕϕϕ
A−B 001ϕϕϕ

A = B

Comparison

011000
A ̸= B 011001
A < B (signed) 011100
A ≥ B (signed) 011101
A < B (unsigned) 011110
A ≥ B (unsigned) 011111

A⊕B (XOR)
Logical

100100
A ∨B (OR) 100110
A ∧B (AND) 100111

A≪ B (SLL)
Shift

110001
A≫l B (SRL) 110101
A≫a B (SRA) 111101
ϕ = don’t care, 0/1 = special bit

3.5 R TYPE

The R TYPE state executes operations between two registers and saves the result in a third register.
Such instructions with three register addresses are R-type (Register type) instructions. Figure 10 shows
the general R-type instruction format in detail.

31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode

Figure 10: The general R-type instruction format in RV32I.

The fields rs1 and rs2 are source register addresses, and rd is the destination register address. The
funct7 and funct3 fields provide additional information to specify the exact operation. The opcode field
identifies the instruction type.

During the R TYPE state, the alu op signal is set by the Controller to perform the required operation in
the ALU. The alu op is determined based on the opcode, funct3, and funct7 fields of the instruction.

Figure 11 shows the components used for the R TYPE state.
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Figure 11: Components used for the R TYPE state.

The Register File reads the values of the two source registers (rs1 and rs2) and writes the result to the
destination register (rd). The ALU performs the operation specified by alu op on the two source register
values. The result of the ALU operation is then written back to the Register File at the address specified
by rd.

The Controller manages the entire process, interpreting the instruction and generating the appropriate
control signals for the Register File and ALU.

3.6 U TYPE

The U TYPE state executes the LUI (Load Upper Immediate) instruction, which is a U-type instruction
in RV32I. Figure 12 shows the U-type instruction format in detail.

31 12 11 7 6 0
imm[31:12] rd opcode

Figure 12: The U-type instruction format in RV32I.

The LUI instruction loads a 20-bit immediate value into the upper 20 bits of the destination register,
setting the lower 12 bits to zero. This is useful for constructing large constants efficiently.

Table 2 describes the LUI instruction.

Instruction opcode Description

lui rd, imm 0110111 rd = imm≪ 12

Table 2: The LUI instruction.

During the U TYPE state, the following operations occur:
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• The 20-bit immediate value from the instruction is shifted left by 12 bits, effectively placing it in
the upper 20 bits of a 32-bit word.

• This 32-bit value is then written to the destination register (rd).

• No ALU operation is required for this instruction.

Figure 13 shows the components used for the U TYPE state.
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Figure 13: Components used for the U TYPE state.

The sel imm signal is set to select the immediate value instead of the ALU result. The rf we signal
enables writing to the register file, storing the computed immediate value in the destination register
specified by rd.

LUI is often used in conjunction with an ADDI instruction to create arbitrary 32-bit constants or to form
complete addresses for accessing memory. For example:

lui x1, 0x12345 # x1 = 0x12345000
addi x1, x1, 0x678 # x1 = 0x12345678

This combination allows for the efficient creation of any 32-bit constant using just two instructions.

3.7 LOAD

The lw (load word) instruction is an I-type instruction in RV32I. Figure 14 shows the LOAD instruction
format in detail.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode

Figure 14: The LOAD instruction format in RV32I.

The load operation takes 2 cycles to complete due to the memory read latency. This process is divided
into two states: LOAD1 and LOAD2.
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Figure 15 shows the components used for the LOAD1 state.

sel_b

sel_b

24
..2
0

rdata

PC

clk
rst_n

addr

en

rf_we

clk

rst_n
rf_we

32

32

32

5

5

11
..7

Controller

pc_en

rst_n

clk

instruction

rf_we
sel_addr

sel_b

immir_en
op_alu

we

CPU

instr

sel_addr

we

op_alu6

32

Register
File

clk
aa

a

aw
ab

wren b
wrdata

clk

19
..1
5

5
32

op_alu
6

ALU 32

sel_addr

0
1

32 addr

wewe

0
1

32

IR
D Q

en

clk
rst_n

1
0

imm

sel_imm sel_imm

sel_imm

Figure 15: Components used for the LOAD1 state.

During the LOAD1 state:

• The address to read is computed by the ALU (adding the sign-extended immediate value to the
value in rs1).

• The sel addr signal is set to select the ALU result as the memory address.

• The memory read operation is initiated (implicitly, by keeping the we signal low).

Figure 16 shows the components used for the LOAD2 state.
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Figure 16: Components used for the LOAD2 state.
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During the LOAD2 state:

• The signals from LOAD1 are maintained:

– The imm o signal continues to provide the sign-extended immediate value.

– The sel addr signal remains set to select the ALU result as the memory address.

• The data read from memory becomes available on the rdata input.

• The sel mem signal is set to select the memory data.

• The rf we signal is activated to enable writing to the Register File.

• The selected data is written to the Register File at the address specified by rd.

By maintaining the address-related signals from LOAD1, the LOAD2 state ensures that the decoder and
multiplexer continue to select the correct rdata source. This approach guarantees that the memory read
operation initiated in LOAD1 completes successfully in LOAD2, with the correct data being written to
the appropriate register.

The Controller manages the entire process, generating the appropriate control signals for the ALU,
memory interface, and Register File in each state.

3.8 S TYPE

The sw (store word) instruction is an S-type instruction in RV32I. Figure 17 shows the S-type instruction
format in detail.

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

Figure 17: The S-type instruction format in RV32I.

In S-type instructions, the immediate value is split into two parts:

• imm[11:5] occupies bits 31-25 of the instruction

• imm[4:0] occupies bits 11-7 of the instruction

To form the full 12-bit immediate, these parts are concatenated as imm[11:5] —— imm[4:0]. This imme-
diate is then sign-extended to 32 bits for use in address calculation.

During the S TYPE state:

• The ALU computes the memory address by adding the sign-extended immediate to the value in
rs1.

• The data to be stored (from rs2) is placed on the wdata output.

• The Controller activates the we (write enable) output signal to initiate a write operation.

Figure 18 shows the components used for the S TYPE state.

The Controller manages the process by:

• Forming the correct immediate value from the instruction’s fields
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Figure 18: Components used for the S TYPE state.

• Setting sel addr to select the ALU result as the memory address

• Activating the we signal for the duration of the state

Unlike load operations, store operations complete in a single cycle, as there’s no need to wait for data to
be read from memory.

Reflexion Moment

Consider the sb (store byte) and sh (store halfword) instructions in the RV32I instruction set. If
we were to support these instructions, would it be possible to complete all S-type instructions in
a single cycle as we do now with sw? Why or why not?
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3.9 BREAK

The ebreak instruction in our implementation is a repurposed version of the EBREAK (Environment
BREAK) instruction from RV32I. It follows the I-type instruction format, as shown in Figure 8.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode

Figure 19: The I-type instruction format used for EBREAK in RV32I.

The EBREAK instruction is identified by the following specific field values in Figure 3.

Instruction Immediate funct3 opcode

ebreak 000000000001 000 1110011

Table 3: EBREAK instruction encoding values in RV32I.

In a standard RISC-V implementation, EBREAK is used to transfer control to a debugging environment.
It’s typically used for setting breakpoints in code during debugging. However, in our simplified CPU,
we repurpose this instruction to stop the CPU execution entirely.

The BREAK instruction is identified by these specific values in its fields. When the CPU encounters
this instruction, it enters the BREAK state, which serves as a termination point for the program, halting
further execution.

This allows us to have a defined way to stop the CPU at a predetermined point in the code, which can
be useful for testing and demonstration purposes. In our implementation, when the controller detects
these specific field values during the DECODE stage, it transitions to the BREAK state and remains
there, effectively stopping the program execution.

4 Exercise

• For this exercise, you will use modules you should have implemented during the previous labs.
Make sure to review, understand, and import these modules before proceeding:

– From the ALU lab:

* alu.v: The Arithmetic Logic Unit

* add_sub.v: The adder/subtractor module

* comparator.v: The comparison module

* logic_unit.v: The logical operations module

* shift_unit.v: The shift operations module

* mux4x32.v: The 4-to-1 multiplexer module

• Implement the simple mux2x32 module in the file named mux2x32.v.

• Implement the IR (Instruction Register) in the file named ir.v.

• Implement a first version of the PC (Program Counter) in the file named pc.v. In this first version,
the next address is always the current address incremented by 4. Remember to set the reset value
to 32'h80000000.
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Instruction Type Opcode State Description

and rd, rs1, rs2 R-type 0110011 R TYPE rd← rs1 AND rs2
srl rd, rs1, rs2 R-type 0110011 R TYPE rd← rs1≫ rs2[4:0]
addi rd, rs1, imm I-type 0010011 I TYPE rd← rs1 + imm
lui rd, imm U-type 0110111 U TYPE rd← imm≪ 12
lw rd, imm(rs1) I-type 0000011 LOAD rd←Mem[rs1 + imm]
sw rs2, imm(rs1) S-type 0100011 S TYPE Mem[rs1 + imm]← rs2
ebreak I-type 1110011 BREAK Stops the program execution

Table 4: Initial instructions for the RV32I CPU.

• Implement a first version of the Controller in the file named controller.v. In this first version,
it should be able to decode the instructions from Table 4.

• Implement the described state machine, which controls all the control signals except alu op. The
alu op signal is independent of the current state (i.e., it should be stateless) and should be gener-
ated in a separate process that depends on the instruction fields. See Section 5.4 for details.

• To test the current (incomplete) Controller, you can create an early version of the testbench that
would test it for the couple instructions from Table 4.

5 Extending the multicycle CPU with flow control

In this section, you will add flow control to the CPU. This enables the CPU to do conditional jumps in
the code using the branch instructions, and to call procedures using the call and ret instructions. To
implement these instructions, you will add five new Execute states (i.e., the states coming from DECODE
and going to FETCH1) to the state machine. These states are described in the following subsections. Do
not forget to update the state transitions in your FSM process!

5.1 B TYPE

The B TYPE state executes conditional branch instructions, which are B-type instructions in RV32I. Fig-
ure 20 shows the general branch instruction format in detail.

31 25 24 20 19 15 14 12 11 7 6 0
imm[12—10:5] rs2 rs1 funct3 imm[4:1—11] opcode

Figure 20: The B-type instruction format in RV32I.

All B-type instructions share the same opcode:

Instruction Type Opcode

B TYPE 1100011

Table 5: Opcode for B-type instructions in RV32I.

The immediate value for B-type instructions is formed in a complex manner to allow for a larger branch
offset while maintaining the regular instruction length. The 12-bit immediate is constructed as follows:
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• imm[12] is taken from instruction[31]

• imm[11] is taken from instruction[7]

• imm[10:5] are taken from instruction[30:25]

• imm[4:1] are taken from instruction[11:8]

• imm[0] is always 0

This immediate is then sign-extended to 32 bits, effectively creating a 13-bit signed offset.

Table 6 describes the different branch instructions in RV32I.

Instruction funct3 Branches if:

beq rs1, rs2, offset 000 rs1 = rs2
bne rs1, rs2, offset 001 rs1 ̸= rs2
blt rs1, rs2, offset 100 rs1 < rs2 (signed)
bge rs1, rs2, offset 101 rs1 ≥ rs2 (signed)
bltu rs1, rs2, offset 110 rs1 < rs2 (unsigned)
bgeu rs1, rs2, offset 111 rs1 ≥ rs2 (unsigned)

Table 6: Branch instructions in RV32I.

During the B TYPE state, the ALU compares the values of the registers rs1 and rs2. If the condition is
met, the PC must be updated with PC ← PC + imm. Remember that the PC has already been incre-
mented by 4 during the FETCH2 state, so this needs to be accounted for in the branch offset calculation.

Figure 21 shows the components used for the B TYPE state.
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Figure 21: Components used for the B TYPE state.

The branch op signal and the least significant bit of the ALU result are used to determine if the branch
should be taken. The pc add imm signal instructs the PC to add the sign-extended immediate value
instead of 4 for the next instruction address. The pc sel pc base signal in the controller is activated to
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indicate that the current instruction address should be used as the base address for the branch calcula-
tion, rather than the next sequential instruction address. This ensures that the branch offset is applied
to the address of the current instruction, allowing for correct relative branching.

5.2 J TYPE

The J TYPE state executes the jal (Jump and Link) instruction, which is a J-type instruction in RV32I.
Figure 22 shows the jal instruction format in detail.

31 12 11 7 6 0
imm[20—10:1—11—19:12] rd opcode

Figure 22: The J-type instruction format in RV32I.

The immediate value for J-type instructions is formed in a complex manner to allow for a larger jump
offset. The 20-bit immediate is constructed as follows:

• imm[20] is taken from instruction[31]

• imm[10:1] are taken from instruction[30:21]

• imm[11] is taken from instruction[20]

• imm[19:12] are taken from instruction[19:12]

• imm[0] is always 0

This immediate is then sign-extended to 32 bits, effectively creating a 21-bit signed offset.

Table 7 describes the jal instruction.

Instruction opcode Description

jal rd, offset 1101111 Jump to PC + offset, save PC + 4 to rd

Table 7: The jal instruction.

During the J TYPE state, the current PC value plus 4 is saved in the destination register (rd). The next
address of PC is calculated by adding the sign-extended immediate to the current PC.

Figure 23 shows the components used for the J TYPE state.
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Figure 23: Components used for the J TYPE state.

The pc add imm signal instructs the PC to add the sign-extended immediate value to the current PC
for the next instruction address. The sel pc signal selects PC + 4 as the value to be written to the
destination register. The rf we signal enables writing to the register file, storing the return address (PC
+ 4) in the destination register specified by rd. The pc sel pc base signal in the controller is activated
to use the current PC as the base address for the jump calculation. This ensures that the jump offset is
applied to the address of the current instruction, allowing for correct relative jumping and maintaining
the PC-relative addressing mode of the jal instruction.

5.3 JALR

The JALR state executes the Jump and Link Register instruction, which is an I-type instruction in RV32I.
Figure 24 shows the JALR instruction format in detail.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode

Figure 24: The JALR instruction format in RV32I.

Table 8 describes the JALR instruction.

Instruction opcode Description

jalr rd, rs1, imm 1100111 Jump to rs1 + imm, save PC + 4 to rd

Table 8: The JALR instruction.

During the JALR state, the following operations occur:

• The address of the next instruction (PC + 4) is saved in the destination register (rd).

• The next PC value is calculated by adding the sign-extended 12-bit immediate to the value in rs1.
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• The two least significant bits of the calculated address are set to zero to ensure word alignment, as
the PC should always contain a word-aligned address.

Note that, unlike the JAL instruction, JALR calculates the jump target address based on a register value
plus an immediate, allowing for more flexible jump targets. The word alignment requirement (setting
the two LSBs to zero) ensures that the jump always targets a valid instruction address.

Figure 25 shows the components used for the JALR state.
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Figure 25: Components used for the JALR state.

The pc sel alu signal selects the ALU output (which computes rs1 + imm) as the next PC value. The
sel pc signal selects PC + 4 as the value to be written to the destination register. The rf we signal enables
writing to the register file, storing the return address (PC + 4) in the destination register specified by rd.

JALR can be used for various purposes, including:

• Implementing function returns (when rd = x0 and rs1 = x1, assuming x1 holds the return address)

• Implementing computed jumps

• Implementing more complex control flow by combining register and immediate values

5.4 Hint for the generation of the alu op signal

The generation of the alu op signal is crucial for the correct operation of the ALU. Here are some hints
to help you implement this part:

• The alu op signal is 6 bits wide, allowing for a variety of operations.

• For arithmetic and immediate arithmetic instructions (R-type and I-type), consider how the funct3
field relates to the lower 3 bits of alu op.

• Pay attention to special cases where the operation might differ between R-type and I-type instruc-
tions with the same funct3 value (e.g., ADD vs SUB).

• For shift operations, consider how the funct7 field might influence the operation (e.g., logical vs
arithmetic shift).
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• For comparison operations (SLT, SLTU), think about how these might be implemented using the
ALU and how this affects the alu op encoding.

• For branch instructions, consider how you can use the ALU to perform the necessary comparisons.
How might the funct3 field of branch instructions map to alu op?

• Remember that some bits of alu op might have different meanings for different operation types.
The upper bits might control the operation category, while the lower bits specify the exact opera-
tion within that category.

• Implement the alu op generation in a separate, combinational process that depends only on the
instruction fields (opcode, funct3, funct7). This will make your design more modular and easier
to extend.

• For instructions that don’t use the ALU, you can set alu op to a default value, as its result won’t
be used.

Remember to refer to the ALU operation codes in Table 1 when designing your alu op generation logic.
The key is to create a mapping between the instruction fields and the ALU operations that correctly
implements the RV32I instruction set.

5.5 Exercise

• Modify the Verilog files of your Controller (controller.v) and the PC (pc.v) to add flow con-
trol to your CPU.

• Implement the immediate generation logic for B-type and J-type instructions in the Controller.

• Write your own testbenches to verify the correct operation of the new instructions supported by
your CPU.

6 Completing the Multicycle CPU with the Remaining Instructions

In this final section, you will complete your CPU with the remaining operations. Most of the work is to
generate, from the instruction, the correct value of the alu op signal.

6.1 Immediate Operations

Table 9 lists the immediate arithmetic and logical instructions that can be handled by the I TYPE state.

Instruction funct3 Description

addi rd, rs1, imm 000 rd← rs1 + imm
slti rd, rs1, imm 010 rd← (rs1 < imm)? 1 : 0 (signed)
sltiu rd, rs1, imm 011 rd← (rs1 < imm)? 1 : 0 (unsigned)
xori rd, rs1, imm 100 rd← rs1 ⊕ imm
ori rd, rs1, imm 110 rd← rs1 ∨ imm
andi rd, rs1, imm 111 rd← rs1 ∧ imm

Table 9: Immediate arithmetic and logical instructions in RV32I.
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Table 10 lists the immediate shift instructions that are also handled by the I TYPE state but require
special attention to the upper bits of the immediate value.

Instruction funct3 imm[11:5] Description

slli rd, rs1, imm 001 0000000 rd← rs1≪ imm[4:0]
srli rd, rs1, imm 101 0000000 rd← rs1≫l imm[4:0]
srai rd, rs1, imm 101 0100000 rd← rs1≫a imm[4:0]

Table 10: Immediate shift instructions in RV32I.

Important

For shift instructions, the controller should preserve all 12 bits of the immediate value (bits 31 to
20 of the instruction). The actual 5-bit shift amount should be extracted in the shifter unit, not in
the controller.
For example, if you have an srai instruction with a shift amount of 2, the immediate output from
the controller will be 0x402. This is because one of the bits in the funct7 field (contained within
the immediate value) is set to indicate that the shift is arithmetic.
The shifter unit will then use only the lower 5 bits (0x02 in this case) as the actual shift amount,
while the upper bits will be unused by the shifter inside the ALU.

6.2 Register Operations

Table 11 lists all the register-register instructions that can be handled by the R TYPE state.

Instruction funct3 funct7 Description

add rd, rs1, rs2 000 0000000 rd← rs1 + rs2
sub rd, rs1, rs2 000 0100000 rd← rs1 − rs2
sll rd, rs1, rs2 001 0000000 rd← rs1≪ rs2[4:0]
slt rd, rs1, rs2 010 0000000 rd← (rs1 < rs2)? 1 : 0 (signed)
sltu rd, rs1, rs2 011 0000000 rd← (rs1 < rs2)? 1 : 0 (unsigned)
xor rd, rs1, rs2 100 0000000 rd← rs1 ⊕ rs2
srl rd, rs1, rs2 101 0000000 rd← rs1≫l rs2[4:0]
sra rd, rs1, rs2 101 0100000 rd← rs1≫a rs2[4:0]
or rd, rs1, rs2 110 0000000 rd← rs1 ∨ rs2
and rd, rs1, rs2 111 0000000 rd← rs1 ∧ rs2

Table 11: Register-register instructions in RV32I.

Note that in RV32I, there are no separate states needed for unsigned operations or for immediate shift
operations, as these are handled within the I-type and R-type instruction formats respectively.

When implementing these instructions, pay careful attention to the funct3 and funct7 fields, as they
determine the specific operation to be performed. The alu op signal should be generated based on
these fields along with the opcode.

6.3 Exercise

• Complete the Controller (controller.v) to implement the remaining instructions.
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• Complete your own testbenches to verify the correct operation of the remaining instructions sup-
ported by your CPU.

7 Submission

Submit all Verilog files related to the exercises in sections 2.3 , 4, 5.5 and 6.3. (register_file.v,
ir.v, pc.v, controller.v and mux2x32.v) and the required files from the previous labs
(add_sub.v, comparator.v, logic_unit.v, mux4x32.v and shift_unit.v). The files from
part 1 are needed to run the testbench of the CPU, so a fail in the testbench can be caused by a
mistake in the files from part 1. The testbenches from part 1 will not be reruned for this submission
and you’ll only get feedback for the files from part 2.

Once you submit the files, you will receive a report describing the tests that were applied to your
design and the results of those tests (success or failure). This is a preliminary submission so the
result of the tests will not affect your grade and in case of failure, you will have some additional
infos about what was the first test that failed of every testbench.
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