ALU

Learning Goal: Testbenches, Arithmetic operations.

Requirements: Verilator, GTKWave.

1 Introduction

In this lab you will implement a complete Arithmetic-Logic Unit (ALU) and practice writing and using
testbenches, as well as making gate-level simulations.

2 ALU Description

An Arithmetic-Logic Unit (ALU) is a combinatorial circuit that performs arithmetic and logic operations.
It is the central execution unit of a CPU and its complexity can vary.

A simple ALU has two inputs for the operands, one input for a control signal that selects the operation
and one output for the result. Figure|l|shows the common representation of an ALU.

op

A JE—
~>ALU S
Bi

Figure 1: A simple ALU with two inputs, a control signal and an output.

For this lab, you will implement a 32-bit ALU with 4 internal units. The available operations and their
corresponding encoding are listed in Table |1, The 6-bit op control signal selects which operation to
execute. Figure[2|shows the internal architecture of the ALU.

Version 2.0 of 29th July 2024, EPFL ©2024 1 of|§]

ALU

Table 1: ALU operations and their encoding.

Operation Operation Type Opcode
A+ B 000¢pp¢p
A_B Add/Sub 001666
A=B 011000
A#B 011001
A < B (signed) Comparison 011100
A > B (signed) ompariso 011101
A < B (unsigned) 011110
A > B (unsigned) 011111
A ® B (XOR) 100100
AV B (OR) Logical 100110
AN B (AND) 100111
A< B(SLL) 110001
A>; B (SRL) Shift 110101
A >, B (SRA) 111101

¢ =don’t care, 0/1 = special bit

* The two most significant bits (i.e., 0ps..4) select the operation type (e.g., Add/Sub, Comparison,
Logical, Shift).

* The ops bit is the special bit. It activates the subtraction mode of the Add/Sub unit, is always set
for the comparison unit, and determines whether a right shift is arithmetic (SRA) or logical (SRL)
in the shift unit. It is unused (set to 0) for the logical unit.

* The op,_¢ bits select a specific operation within each unit.

6
o
z 3 op3.0 ops.4
A
32 32
B > B add/sub R 7>|° .
op3 — carry _zero ; S
l add/subs: >3
»| A, carry zero diffxs ;
Ba comparator R
N—>] 0p2.0
>[A . . 32
B logical unit R
N>t 0p2.0
5 hift unit R A2
69 snirt uni
N—> Op2.o
;»opz arithmetic ALU

Figure 2: The internal architecture of the ALU.

In the following subsections, each unit is described in more details. For the moment, you can skip these
and start with the exercises of Section Bl

2 of|§| Version 2.0 of 29th July 2024, EPFL ©2024

ALU

2.1 Add/Sub

The Add/Sub unit performs 32-bit additions and subtractions on unsigned and two’s complement
signed numbers.

* Input sub activates the subtraction mode.
* Output carry is the carry out of the internal adder.

¢ Output zero is high when the result equals 0.

Figure 3|shows the internal architecture of the Add/Sub unit.

Add/Sub

32
A > cin
32
+ »R

32

B 9 cout
sub >/)

=0
v \
carry zero

Figure 3: The internal architecture of the Add/Sub unit.

When the subtraction mode is activated, the second operand should become the two’s complement of
B. This conditional inversion of B can be performed with 32 XOR gates: when sub is high, then B is
inverted; otherwise, it keeps its original value. This is shown in Figure 3| where every bit from the B
input is XORed with the sub (you can do this in Verilog by replicating sub 32 times and XORing with
B).

The conditional increment in case of a subtraction mode can be done by connecting the sub signal
directly to the carry in of the adder. As a result we have A 4+ B + 1 which is equivalent to A — B.

Some 4-bit operation examples are illustrated below. The first operand corresponds to A, the second to
the XOR output (i.e., either B or not B) and the third is the carry in input of the adder, which is equal to
the sub input. The result holds the carry out bit in its most significant bit shown in bold.

Finally—if you didn’t already know—to generate the carry from adding up two 32-bit numbers, you
can zero-extend the two operands to 33 bits and then add them in Verilog, the 33rd bit of the result is
the desired carry.

3+3=6 T+(-1)=6 5-4=1 (=5)—0=—5
0011 0111 0101 1011
0011 1111 1011 1111
+ 0 + 0 o+ 1 + 1
00110 10110 10001 11011

Version 2.0 of 29th July 2024, EPFL ©2024 3 of[q]

ALU

2.2 Comparator

The Comparator unit performs six comparison operations: equal, not equal, signed less than, signed greater
or equal, unsigned less than, and unsigned greater or equal. It computes these comparisons using the
result of the subtraction coming from the Add/Sub unit. Thus, the subtraction mode is always set for
comparison operations.

¢ Input op;_ o selects the type of comparison.

* QOutput r is the result of the comparison (O=false, 1=true).

* Inputs zero, carry, as;, bz, and diffs; are used to perform the comparison.
2.2.1 Equal and not equal

The equal (EQ) comparison result is directly driven by the zero input signal: if a equals b, then the
subtraction result is zero. The not equal (NEQ) result is simply the inverse of zero.

2.2.2 Unsigned less than and greater or equal

a is less than b in unsigned arithmetic (LTU), iff carry is low and zero is low. Therefore, a is greater or
equal to b (GEU) iff carry is high or zero is high. You can find a proof below to convince yourself.

Proof:
Let n be the bitwidth of the adder inputs, A and B.
Let D be the subtraction output including the carry out. Its bitwidth is n + 1.

If carry is 0 and zero is 0, we have that 0 < D < 2™.
If carry is 1 or zero is 1, we have that D > 2™.
Therefore, we need to prove that
A<B&0<D<2?

(1)D=A+B+1 Definition of D
B=2"-1-B Arithmetic way to find B

M+Q)D=A-B+2"
== A<B&s0<D<2?

2.2.3 Signed less than and greater or equal

For these two signed comparisons (LT and GE), we need to consider the sign bits of the inputs (as; and
bs;) and the sign of the difference (diffs;).

For less than (LT):

* If ais negative and b is positive, a is less than b.

e If a and b have the same sign, we check if the difference is negative.
For greater than or equal (GE):

e If ais positive and b is negative, a is greater than b.

* If aand b have the same sign, we check if the difference is non-negative.

4 of|§] Version 2.0 of 29th July 2024, EPFL ©2024

ALU

2.2.4 Summary of Comparison Operations

The comparator unit supports six comparison operations, each corresponding to a RISC-V branch in-
struction. The logical functions for these operations are summarized in Table

Table 2: Comparison operations and their logical functions.

Operation Opcode Logical Function

A=8B 000 Z€To0

A#B 001 zero

A< B (signed) 100 (@/\ B31> V ((A31@Bgl) A\ diﬁm)
A>B (signed) 101 (A31 AN B31> \Y ((A31@B§1) AN diﬁ31)

A < B (unsigned) 110 carry N Zero
A > B (unsigned) 111 carry \V zero

These operations utilize the zero and carry signals from the subtraction result, as well as the sign bits
of the inputs (A3, and B31) and the sign of the difference (diff3;,) for signed comparisons. The compar-
ator efficiently implements all necessary comparisons for RISC-V branch instructions, supporting both
signed and unsigned integer comparisons.

2.3 Logic Unit

The Logic unit performs @ (XOR), vV (OR), and A (AND) bitwise operations. The 3-bit op signal selects
the operation according to Table

Table 3: Logic operations.

Operation Opcode

A® B 100
AV B 110
ANB 111

The Logic unit supports the basic bitwise operations required by the RISC-V ISA. These operations are
performed on a bit-by-bit basis across the entire 32-bit width of the input operands. The result of the
selected operation is output as a 32-bit value.

2.4 Shift Unit
The Shift unit can shift operand A by B bits.

¢ Input B defines how many positions we should shift A. Only the 5 least significant bits of B are
used, allowing shifts of 0 to 31 bits.

* Input op selects the operation according to Table[d]

¢ The arithmetic input (special bit) determines whether right shifts are logical or arithmetic.

Version 2.0 of 29th July 2024, EPFL ©2024 5 of[q]

ALU

Table 4: Shift operations.

Operation Description Opcode Special Bit
A <« B(SLL) hift Left Logical 001 0
A >; B(SRL) hift Right Logical 101 0
A >, B(SRA) Shift Right Arithmetic 101 1

For all shift operations, A is shifted (moved) to the left or to the right by the number of positions defined
by B. The bits that are shifted out are discarded. The behavior of each shift operation is as follows:

* SLL (Shift Left Logical): Zeros are shifted in from the right.
* SRL (Shift Right Logical): Zeros are shifted in from the left.

* SRA (Shift Right Arithmetic): The sign bit (most significant bit) is replicated and shifted in from
the left, preserving the operand’s sign.

It’s important to note that SRL and SRA share the same opcode (101). The arithmetic input (special bit)
distinguishes between these two operations:

e When the special bit is 0, the operation is SRL (logical right shift).

* When the special bit is 1, the operation is SRA (arithmetic right shift).

3 Exercise

You have to implement the described ALU for the RV32I architecture. Download the project template
and open it in VSCode. The top-level module is defined in the alu. v file, which you should not modify.

Your task is to complete the implementation of the following Verilog files:

* add_sub.v: Implement the Add/Sub unit as described in Section

* comparator.v: Implement the Comparator unit as described in Section 2.2}
* logic_unit.v: Implement the Logic unit as described in Section [2.3]

* mux4x32.v: Implement the 4-to-1 multiplexer as shown in Figure

* shift_unit.v: Implement the Shift unit as described in Section[2.4}

Do not create new files or new Verilog modules. Follow the provided templates for each file and imple-
ment the required functionality within these existing modules.

Note: While there are testbench files provided in the testbench folder, completing these is optional
and not part of the graded assignment. However, we encourage you to use and modify these testbenches
to verify the correctness of your implementations.

3.1 The Logic Unit

* Open the logic_unit.v file.

 Complete the code of the Logic unit referring to its description in Subsection 2.3}

6 of[9] Version 2.0 of 29th July 2024, EPFL ©2024

ALU

3.1.1 Testbench as Simulation Input Vector

For the simulation, we will use a Verilog testbench file with Verilator. This particular Verilog file contains
an instantiation of the design unit that you want to simulate and generates the simulation input vector.

Project Structure: The project consists of three main folders:

* dump: Where simulation output files (like VCD files) will be saved
¢ testbench: Contains the testbench files for each module

* verilog: Contains the Verilog source files for each module

All commands should be run from the root directory of the project.

* The testbench folder contains a testbench template for the logic unit simulation. Open the
tb_logic_unit.v file and observe the code. It contains a logic_unit module instance and an
initial block for generating stimuli.

* Complete the initial block for the logic unit verification by providing the missing inputs (values of
op) required to test the logic operations outlined in Table

* Compile the project files using Verilator. Open a terminal and run:

verilator —--binary —--trace -Wno-fatal —--top-module tb_logic_unit -o
< Vtb_logic_unit testbench/tb_logic_unit.v verilog/logic_unit.v

* Run the simulation using;:

./obj_dir/vVtb_logic_unit

¢ This will generate a tb_logic_unit.vcd file in the current directory.

* Open the generated VCD file with GTKWave. If you have GTKWave already opened, you can
drag and drop the file into the GTKWave window to achieve the same result.

gtkwave dump/tb_logic_unit.ved

Note: The ——top-module flag specifies the top-level module for simulation. In this case, it’s the
testbench module tb_logic_unit. The top module is the highest-level module in your design
hierarchy, which instantiates and connects all other modules.

* Add the signals to the wave view in GTKWave as shown in Figure [4}

Version 2.0 of 29th July 2024, EPFL ©2024 7 of|§|

ALU

v SST Signals Waves

Recurse Import Append

Insert

1 ps

» siatb_logic_unit

Replace

Figure 4: Adding signals to the GTKWave interface

e Zoom out to the desired time frame and observe the signals. You should have a similar output
to the one shown in Figure [5| (Note: The image shows a completed testbench, your output will

differ).

Signals Waves
- >
Time

XOR=-4
a[31:0] =FFFFFFFF Frrreeir
b[31:0] =FFFFFFFF ssssssss |
lexpected_r[31:0] =00000000

op[2:0] =100

1[31:0] =00000000 FrrFFeEE

test_case=2 1
test_failed=0
AND=-1 5
0R=-2 2
XOR=-4

a[31:0] =FFFFFFFF A Frrerrir

b[31:0] =FFFFFFFF ssssssss | 3

op[2:0] =100

1[31:0] 00000000 FRFFFFEE

Figure 5: GTKWave interface showing Logic Unit signals

e If you need any additional help with GTKWave, refer to the GTKWave tutorial on the course’s
Moodle page.

For the full ALU simulation later, you'll use a similar process. The Verilator command will be:

verilator —--binary —--trace -Wno-fatal —--top-module tb_alu -o Vtb_alu
< testbench/tb_alu.v verilog/x.v

3.1.2 Testbench for Verification

The testbench can also be used for automated verification. For the verification, we will use $display
statements and conditional checks.

8 of[g] Version 2.0 of 29th July 2024, EPFL ©2024

ALU

// Test XOR operation
a = 32'hAAAAAAAA; b = 32'h55555555; op = XOR;
#20; // wait for circuit to settle
if (r !== 32'hFFFFFFFF) begin
$display ("Error: XOR operation failed");
$display ("Expected: 32'hFFFFFFFF, Got: %h", r);
end else begin
$display ("XOR operation passed");
end

In this example, we verify whether the logic_unit output result is correct. The result of the XOR opera-
tion should be equal to 32 ' hFFFFFFFF. If not, it will display an error message.

To complete the tb_logic_unit.v file, do the following:
* Add similar checks for OR and AND operations.

* Add a check for an undefined operation (should default to all zeros).

¢ Compile and run the simulation again to verify your logic unit.

3.2 The Add/Sub Unit, the Comparator, the Multiplexer, and the Shift Unit

* Referring to the description provided in section 2} complete the Verilog code of the Add/Sub
unit (2.1), the Comparator (2.2), the Multiplexer (Figure[2), and the Shift unit.

¢ Open the testbench in the tb_alu. v file. It is almost complete. You need to add the missing lines
of code to test the comparison operations from Table 2|

¢ Simulate the ALU with this testbench using Verilator and view the results in GTKWave if needed.

We encourage you to write additional testbenches to verify the correctness of your other units as an
additional exercise. Note that you can create a Makefile to automate the compilation and simulation
process if you're comfortable with it.

Version 2.0 of 29th July 2024, EPFL ©2024 9 of|§|

	Introduction
	ALU Description
	Add/Sub
	Comparator
	Equal and not equal
	Unsigned less than and greater or equal
	Signed less than and greater or equal
	Summary of Comparison Operations

	Logic Unit
	Shift Unit

	Exercise
	The Logic Unit
	Testbench as Simulation Input Vector
	Testbench for Verification

	The Add/Sub Unit, the Comparator, the Multiplexer, and the Shift Unit

	Submission

