
Understanding Interrupt Mechanisms
Preparing for RISC-V Interrupt Support

Learning Goal: Implement and understand key components for interrupt handling

Requirements: Verilator, GTKWave, CS200 Extension

1 Introduction

In this lab, you will implement and extend key modules that are fundamental to understanding interrupt
mechanisms in RISC-V processors. While we won’t be fully integrating interrupt support into the CPU
in this lab, the work you do here will be crucial for implementing full interrupt support in the next lab.
This lab is structured in three main parts:

1. Extending the Buttons Controller: You will modify the existing buttons controller to add interrupt
generation capability. This will allow you to understand how hardware peripherals can signal the
need for CPU attention.

2. Implementing the CSR Controller: You will create a Control and Status Registers (CSR) controller,
which is essential for managing interrupt-related information in the RISC-V architecture. This
module will help you understand how the CPU keeps track of and controls its interrupt state.

3. Writing a Simple Interrupt Handler: Finally, you will write a basic interrupt handler in assembly.
This will demonstrate how software can respond to hardware interrupts even if the CPU is busy
executing other tasks.

The goal of this lab is to provide you with a deep understanding of the components involved in interrupt
handling, preparing you for full integration in the next lab.

2 Extending the Buttons Controller

2.1 Description

The Button Controller has been extended to support interrupt generation. It now provides an MMIO
interface for software to retrieve the current states of buttons and switches, configure interrupt trigger
modes, and handle interrupts. Figure 1 shows the layout of buttons and switches on the Gecko5 board
that this controller interfaces with.

Version 1.0 of 30th August 2024, EPFL ©2024 1 of 12



Understanding Interrupt Mechanisms

en

switch
push

rst_n
clk

Buttons
Controller

addr

wdata

rdata

irq

we

s
32

s
32

32

10
8

Figure 1: Diagram of new buttons controller

2.1.1 Interface Signals

The extended Button Controller has the following interface signals:

Table 1: Extended Button Controller Interface Signals

Name Direction Width Description
clk Input 1 Clock
rst n Input 1 Reset (active low)
en Input 1 Enable
we Input 1 Write enable
addr Input 32 Address
wdata Input 32 Write data
push Input 10 States of push buttons
switch Input 8 States of switches
rdata Output 32 Read data
irq Output 1 Interrupt request

2.1.2 MMIO Registers

The Button Controller now has four MMIO registers in the region starting at base address 0x70000000
and ending at 0x70000FFF:

Table 2: Extended Button Controller MMIO Registers

Name Offset Access Description
VAL 0x0 Read-only Value register
SRC 0x4 Read/Write Interrupt source register
PTM 0x8 Write-only Push-button trigger mode register
STM 0xC Write-only Switch trigger mode register

2.1.3 Register Descriptions

• VAL Register

The VAL register remains unchanged, containing the current states of push buttons and switches.

2 of 12 Version 1.0 of 30th August 2024, EPFL ©2024



Understanding Interrupt Mechanisms

• SRC Register
The SRC register indicates which buttons or switches have triggered an interrupt. It has the fol-
lowing bit fields:

31 24 23 16 15 10 9 0
Unused Switch Interrupts Unused Push Interrupts

Figure 2: SRC Register Layout

Important: The SRC register should keep the rising edge and falling edge interrupts set until they
are cleared by software.

• PTM Register
The PTM register configures the trigger mode for each push button. It uses 2 bits per button,
allowing for 4 trigger modes.

19 18 17 16 15 14 · · · 1 0
B9 B8 B7 · · · B0

Figure 3: PTM Register Layout

Where B0 is button top, B1 is button bottom, ..., and B9 is joystick pressed.

• STM Register
The STM register configures the trigger mode for each switch. It uses 2 bits per switch, allowing
for 4 trigger modes.

15 14 13 12 11 10 · · · 1 0
S7 S6 S5 · · · S0

Figure 4: STM Register Layout

Where S0 to S7 correspond to the 8 switches on the board.

2.1.4 Trigger Modes

Each button and switch can be configured with one of four trigger modes. These modes determine the
conditions under which an interrupt is generated:

• 00: ACTIVE LOW
In this mode, an interrupt is generated when the button or switch is in a low state (0). The interrupt
remains active as long as the input stays low.

• 01: RISING EDGE
This mode triggers an interrupt on the rising edge of the input signal, i.e., when the button or
switch transitions from a low state (0) to a high state (1). It’s useful for detecting when a button is
pressed.

• 10: FALLING EDGE
Opposite to RISING EDGE, this mode generates an interrupt on the falling edge of the input sig-
nal, i.e., when the button or switch transitions from a high state (1) to a low state (0). It’s typically
used to detect when a button is released.

Version 1.0 of 30th August 2024, EPFL ©2024 3 of 12



Understanding Interrupt Mechanisms

• 11: ACTIVE HIGH (default)

In this mode, an interrupt is generated when the button or switch is in a high state (1). The inter-
rupt remains active as long as the input stays high. This is the default mode for all buttons and
switches upon reset.

Note: The choice of trigger mode depends on the specific requirements of your application. For example:

• Use RISING EDGE or FALLING EDGE when you want to detect the exact moment a button is
pressed or released.

• Use ACTIVE HIGH or ACTIVE LOW when you want to continuously generate interrupts while
a button is held down or a switch remains in a certain position.

Remember that the trigger mode for each button and switch can be configured independently by setting
the appropriate bits in the PTM and STM registers.

2.1.5 Operation

The Button Controller operates with a one-cycle latency for read operations from both the VAL and SRC
registers. The process works as follows:

1. When the controller receives a read operation from either the VAL or SRC register with the enable
(en) signal asserted, it captures the current state of that register.

2. In the next clock cycle, it returns the captured state through the rdata output. This one-cycle
delay ensures synchronous operation and allows time for the controller to properly sample and
prepare the data.

Other operations include:

• Writing all zeros to the SRC register clears all falling and rising edge interrupts.

• Writing to PTM or STM registers configures the trigger modes.

• The controller continuously monitors button and switch states, comparing them with previous
states to detect edges.

• When an interrupt condition is met, the corresponding bit in the SRC register is set.

• The irq o signal is asserted if any bit in the SRC register is set.

Implementation Requirements:

• All unused bits in registers must be maintained at 0.

• The enable (en) signal must be high for any read or write operation to be performed.

• The write enable (we) signal must be high for any write operation to the SRC, PTM, or STM re-
gisters.

• Write operations are ignored if either en or we is low.

• Read operations are ignored if en is low.

4 of 12 Version 1.0 of 30th August 2024, EPFL ©2024



Understanding Interrupt Mechanisms

2.1.6 Example Usage

To configure the first push button for rising edge detection:

1. Write 0x00000001 to address 0x70000008 (PTM register)

To clear all rising/falling edge pending interrupts:

1. Write 0x00000000 to address 0x70000004 (SRC register)

To read the current interrupt status:

1. Perform a read operation from address 0x70000004 (SRC register)

2. The interrupt status will be available in the next clock cycle

2.2 Exercise

• The Buttons Controller structure is already defined in the project’s Verilog files.

• Extend the Buttons Controller in the file named buttons.v to support interrupt generation as
described in this section.

• Implement the SRC, PTM, and STM registers, and add logic for interrupt generation based on
trigger modes.

• Ensure that reading from both VAL and SRC registers has a one-cycle latency.

• When the component is implemented, create a testbench to verify its functionality before proceed-
ing to the next step.

3 CSR Controller

3.1 Description

The Control and Status Registers (CSR) Controller is a crucial component in RISC-V processors for man-
aging system control and status information, particularly for interrupt handling. This controller imple-
ments a subset of the RISC-V CSR registers relevant to basic interrupt handling.

3.1.1 Interface Signals

The CSR Controller has the following interface signals 3:

Version 1.0 of 30th August 2024, EPFL ©2024 5 of 12



Understanding Interrupt Mechanisms

mtvec
mepc

pc

irq

rst_n
clk

CSR
Controller

addr

wdata

write
set
clear
interrupt
mret

rdata

ipending

32

32
32
32

32

12

Figure 5: Diagram of CSR Controller

Table 3: CSR Controller Interface Signals

Name Direction Width Description
clk Input 1 Clock
reset n Input 1 Reset (active low and synchronous)
addr Input 12 CSR address
wdata Input 32 Write data
irq Input 1 Interrupt request
pc Input 32 Current program counter
write Input 1 Write enable
set Input 1 Set bits enable
clear Input 1 Clear bits enable
interrupt Input 1 Interrupt signal
mret Input 1 Return from interrupt
rdata Output 32 Read data
mtvec Output 32 Trap vector base address
mepc Output 32 Exception program counter
ipending Output 1 Interrupt pending

Note: The write, set, and clear signals are mutually exclusive control signals - only one should be
asserted at a time. If multiple signals are asserted simultaneously, the behavior is undefined.

3.1.2 CSR Registers

The CSR Controller implements the following registers:

3.1.3 Register Descriptions

General Register Requirements:

• All unused bits in any register must be maintained at 0

6 of 12 Version 1.0 of 30th August 2024, EPFL ©2024



Understanding Interrupt Mechanisms

Table 4: CSR Registers

Name Address Description
mstatus 0x300 Machine status register

mie 0x304 Machine interrupt-enable register
mtvec 0x305 Machine trap-handler base address
mepc 0x341 Machine exception program counter

mcause 0x342 Machine trap cause
mip 0x344 Machine interrupt pending

• All registers are fully programmable (read/write).

• Write, set, and clear operations are mutually exclusive - only one should be asserted at a time

• mstatus Register (0x300)

31 13 12 11 10 8 7 6 4 3 2 0
Unused MPP Unused MPIE Unused MIE Unused

Figure 6: mstatus Register Layout

The mstatus register controls the CPU’s current operating state:

– MPP (Machine Previous Privilege): Indicate the privilege level before entering machine mode.

– MPIE (Machine Previous Interrupt Enable): Stores the value of MIE before an interrupt oc-
curs.

– MIE (Machine Interrupt Enable): When set, interrupts are globally enabled in machine mode.

This register is crucial for interrupt handling. Unlike other registers, mstatus is initialized to
0x1800 on reset, which sets MPP to 3 (indicating machine mode) and all other bits to 0. This
ensures the CPU starts in machine mode with interrupts disabled.

When an interrupt occurs:

– The current MIE value is saved in MPIE

– MIE is cleared, disabling further interrupts

– MPP remains unchanged (always 3 in our implementation)

After handling the interrupt, the mret instruction restores MIE from MPIE, re-enabling interrupts
if they were previously enabled and set the MPIE to 1.

• mie Register (0x304)

31 12 11 10 0
Unused MBIE Unused

Figure 7: mie Register Layout

The mie register controls which interrupts are enabled:

– MBIE: Machine Button Interrupt Enable. When set, button interrupts are enabled.

This register allows selective enabling of interrupt sources, providing fine-grained control over
which events can interrupt the CPU.

Version 1.0 of 30th August 2024, EPFL ©2024 7 of 12



Understanding Interrupt Mechanisms

• mtvec Register (0x305)

31 0
Base Address

Figure 8: mtvec Register Layout

The mtvec register holds the base address of the interrupt handler:

– All 32 bits store the base address for the interrupt handler.

– The mtvec output of the CSR controller always reflects the current value of this register.

When an interrupt occurs, the CPU jumps to this address to begin executing the interrupt service
routine.

• mepc Register (0x341)

31 0
Exception Program Counter

Figure 9: mepc Register Layout

The mepc register stores the program counter when an interrupt occurs:

– All 32 bits hold the address of the instruction that was executing when the interrupt was
taken.

– The mepc output of the CSR controller always reflects the current value of this register.

This allows the CPU to return to the correct instruction after handling the interrupt.

• mcause Register (0x342)

31 30 12 11 10 0
Interrupt Unused Button Unused

Figure 10: mcause Register Layout

The mcause register indicates the cause of an interrupt or exception:

– Interrupt: Set to 1 for interrupts, 0 for exceptions. In our case, it will always be 1 during an
interrupt.

– Button: Set to 1 for button interrupts.

This register helps the interrupt handler determine how to respond to the event.

• mip Register (0x344)

31 12 11 10 0
Unused MBIP Unused

Figure 11: mip Register Layout

The mip register indicates which interrupts are currently pending:

8 of 12 Version 1.0 of 30th August 2024, EPFL ©2024



Understanding Interrupt Mechanisms

– MBIP: Machine Button Interrupt Pending. Set when a button interrupt is pending.

This register allows the CPU to check which interrupts are waiting to be serviced, even if interrupts
are currently disabled.

3.1.4 Operation

CSR (Control and Status Register) operations are designed with asynchronous read and synchronous
write/set/clear functionality, similar to normal registers. This design allows for immediate reading of
the current register value, even when a write, set, or clear operation is being performed. The updated
value will be reflected in the next clock cycle. When a register is updated due to an interrupt handling
process, this update is done synchronously like a normal write/set/clear operation would be.

• Read Operation: Reading a CSR is asynchronous. When addr selects a specific CSR, its current
value is immediately output on rdata.

• Write Operation: Writing to a CSR is synchronous and occurs when write is asserted. The new
value in wdata completely replaces the current register value on the next rising clock edge.

• Set Operation: The set operation performs a bitwise OR between the current register value and
wdata. This operation allows setting specific bits without affecting others. For example, if the
current value is 0x1010 and wdata is 0x0101, the result will be 0x1111.

• Clear Operation: The clear operation performs a bitwise AND between the current register value
and the complement of wdata. This operation allows clearing specific bits without affecting oth-
ers. For example, if the current value is 0x1111 and wdata is 0x0101, the result will be 0x1010.

• Interrupt Request Handling: The irq signal is an external interrupt request. When asserted, it
updates the mip (Machine Interrupt Pending) register by setting the corresponding interrupt bit
(MBIP). The ipending output is asserted if any bit in mip is set, indicating a pending interrupt.

• Interrupt Processing: The interrupt signal, controlled by the CPU Controller, indicates that an
interrupt is being processed. When asserted:

– The current pc is saved to mepc
– mcause is updated to indicate an interrupt (bit 31 set) and the cause (bit 11 for button inter-

rupt)
– mstatus is updated: the current MIE (bit 3) is saved to MPIE (bit 7), and MIE is cleared

• Machine Return: When the mret signal is asserted, indicating a return from an interrupt handler:

– mstatus is updated: MIE (bit 3) is restored from MPIE (bit 7)
– The CPU will use the value in mepc to return to the interrupted instruction

3.2 Exercise

• Implement the CSR Controller in the file named csr.v as described in this section.

• The six registers listed in Table 4 are already declared for you in the template, please use them
without changing their names since they will be used in our testbenches to verify your imple-
mentation.

• Implement read, write, set, and clear operations, as well as interrupt handling logic.

• Ensure that the mtvec and mepc outputs always reflect their respective register values.

• After implementation, create a testbench to thoroughly test all features of the CSR Controller.

Version 1.0 of 30th August 2024, EPFL ©2024 9 of 12



Understanding Interrupt Mechanisms

4 Interrupt Handler

4.1 Description

The interrupt handler is a crucial piece of software that responds to hardware interrupts. It’s written in
assembly language and works in conjunction with the CSR controller to manage interrupt processing.
In this section, you’ll implement a basic interrupt handler for button interrupts as part of a simple game.

4.2 Game Description

The goal is to implement a simple reaction game using interrupts. Here’s how it works:

• The program enters a countdown (wait loop) after initialization.

• If a button is pressed during this countdown, triggering an interrupt, the player ”wins”. In the
interrupt handler, you should set a memory location to 1 to indicate a win.

• If no interrupt occurs during the countdown, the player ”loses”.

• The game result is displayed using the LEDs: green for a win (Figure 13), red for a loss (Figure 12).

Figure 12: Losing state - Red LEDs Figure 13: Winning state - Green LEDs

Figure 14: LED display for game outcomes

4.3 Memory Layout

The program uses the following memory regions:

• Stack: Growing down from 0x9FFFFFC0

• Game state: Stored at 0x90000000 (a single word)

– Value 0: Indicates a loss

– Value 1: Indicates a win

4.4 Interrupt Handler Structure and Key Points

Your interrupt handler should follow this general structure:

10 of 12 Version 1.0 of 30th August 2024, EPFL ©2024



Understanding Interrupt Mechanisms

1. Save the context (registers) of the interrupted program

2. Identify the source of the interrupt (button press)

3. Handle the interrupt (set the win condition)

4. Clear the interrupt source

5. Restore the context

6. Return from the interrupt

When implementing your interrupt handler, keep these key points in mind:

• The interrupt handler address is already set up in the mtvec CSR in the provided template:

lui t0, %hi(interrupt_handler) # Load upper 20 bits of handler address
addi t0, t0, %lo(interrupt_handler) # Add lower 12 bits of handler address
csrrw mtvec, t0 # Set mtvec to handler address

• Initialize the stack pointer and enable interrupts.

• Configure the button controller for rising edge detection on the push buttons and switch buttons.

• In your interrupt handler:

– Save the context by pushing all registers to the stack

– Set the memory location 0x90000000 to 1 to indicate a ”win”

– Clear the interrupt source by writing 0 to the SRC register

– Restore the context by popping all registers from the stack

– Use mret to properly return from the handler

4.5 Exercise

• Complete the implementation of the interrupt handler in the file named program.s.

• Add the necessary interrupt setup code, including initializing the stack pointer and enabling in-
terrupts.

• Implement the interrupt handler to set the win condition and clear the interrupt source.

• The template already includes the main game logic; integrate your interrupt handler with this
existing code.

• Test your implementation by simulating button presses at different times and verifying the correct
LED display for win and lose conditions.

Version 1.0 of 30th August 2024, EPFL ©2024 11 of 12



Understanding Interrupt Mechanisms

5 Submission

Submit the following files for this lab:

• buttons.v: Extended Buttons Controller implementation

• csr.v: CSR Controller implementation

• program.s: Main program with game logic and interrupt handler implementation

Once you submit the files, you will receive a report describing the tests that were applied to your
design and the results of those tests (success or failure). This is a preliminary submission so the
result of the tests will not affect your grade and in case of failure, you will have some additional
infos about what was the first test that failed of every testbench.

12 of 12 Version 1.0 of 30th August 2024, EPFL ©2024


	Introduction
	Extending the Buttons Controller
	Description
	Interface Signals
	MMIO Registers
	Register Descriptions
	Trigger Modes
	Operation
	Example Usage

	Exercise

	CSR Controller
	Description
	Interface Signals
	CSR Registers
	Register Descriptions
	Operation

	Exercise

	Interrupt Handler
	Description
	Game Description
	Memory Layout
	Interrupt Handler Structure and Key Points
	Exercise

	Submission

