
Setting up the work platform
You are expected and encouraged to work on physical machines in INF 3 or remote desktops
through virtual desktop infrastructure (VDI), both of which are equipped with all the necessary
software. You can also work on your own machines, but there is no guarantee that the teaching
staff can help you resolve issues specific to your setup.

Using physical machines in INF 3
1. Make your way to INF 3.

2. Log into any available desktop using your GASPAR credentials.

Using remote desktops through VDI
You can access the VDI service by either the VMware Horizon Client or a web browser. Please note
that the browser version is more limited than the VMware Horizon Client.

VMware Horizon Client

1. Navigate to https://vdi.epfl.ch.

2. Click on the link Click Here to Download VMware Horizon Client at the bottom to

download the installer (this page may vary across operating systems).

af://n2
https://plan.epfl.ch/?room==INF%203
https://vdi.epfl.ch/
af://n4
af://n10
af://n12
https://vdi.epfl.ch/

3. Run the installer to install VMware Horizon Client on your machine.

4. Launch VMware Horizon Client (also named vmware-view in some platforms).

5. Enter https://vdi.epfl.ch as the connection server.

6. Log in with your GASPAR credentials.

7. Select and connect to the IC-CO-IN-SC-INJ-2024-fall or IC-CO-IN-SC-MA-2024-fall
machine.

Web Browser

1. Navigate to https://vdi.epfl.ch.

2. Click on VMware Horizon HTML Access .

3. Log in with your GASPAR credentials.

af://n35
https://vdi.epfl.ch/

4. Select and connect to the IC-CO-IN-SC-INJ-2024-fall or IC-CO-IN-SC-MA-2024-fall

machine.

After you successfully log in to the machine, you will see a desktop similar to the following:

Under the hood, the physical machines in INF 3 are actually connecting to the same remote
desktops as you would via the VDI. Therefore, your files and sessions can be shared, to some
extent, across logins and machines.

However, your files are not automatically persist across sessions or reboots. To avoid losing data,
please always place important files under ~/Desktop/myfiles/ (at the bottom right corner of the
desktop)!

To synchrounize your files between the VDI machines and your own machine, you can either use
online services (e.g., email or cloud storage) or let the VDI machines directly connect to your own
machine (e.g., through ssh). Alternatively, you can also use the system clipboard to copy and

paste small text between the VDI machines and your own machine.

af://n53

Setting up Visual Studio Code
You are encouraged to use Visual Studio Code (VSCode) as the main integrated development
environment (IDE) for the labs. You can open it by first clicking the Show Applications button at

the bottom left corner of the desktop and then searching for vscode or clicking its icon in the last
page.

af://n53
https://code.visualstudio.com/

The main UI of VSCode looks like this:

VSCode is highly extensive -- i.e., it allows you to install various extensions to enhance its
functionality. We encourage you to install the following extensions:

1. Verilog-HDL/SystemVerilog/Bluespec SystemVerilog for Verilog/SystemVerilog support.

2. RISC-V Support for RISC-V assembly support.

3. cs200 for visualizing RTL simulation and RISC-V emulation for this course.

4. MemoryView for visualizing memory contents in RISC-V emulation.

Installing an extension
1. Click on the Extensions button on the left sidebar or press Ctrl + Shift + x .

2. Search for the extension by its name.

af://n70

3. Install the extension by clicking the Install button.

Running RISC-V emulation with cs200
This course introduces the basics of computer architecture with RISC-V as the base instruction set
architecture (ISA). You will learn how to write assembly code for RISC-V, run the code in simulators,
and finally design your own RISC-V-compatible CPU.

You may find the following resources useful while learning the RISC-V ISA:

The latest official specification of the RISC-V ISA can be found here.

The textbook An Introduction to Assembly Programming with RISC-V by Prof. Edson Borin
covers many topics of RISC-V programming in a more introductory fashion. The free online
version of the book can be found here.

The cs200 extension provides a convenient way for you to debug your assembly code (and even
RTL design) with a virtual interface identical to the Gecko 5 board.

To use the cs200 extension, you need to first download a project template from here, which
contains a makefile and a linker script to compile your assembly code, and a pre-compiled RISC-V
model for emulation. You need to extract the files to a directory with the following command and
later put your assembly code (with file extension as .s) there:

A small example
Let's start with a simple example to demonstrate the usage of the cs200 extension. Consider the

following RISC-V assembly code:

tar xf /path/to/project.tar.xz

// test.s

.section ".text"

.global _start

af://n80
https://riscv.org/
https://riscv.org/technical/specifications
https://www.ic.unicamp.br/~edson/riscv-book.html
https://riscv-programming.org/book/riscv-book.html
https://moodle.epfl.ch/mod/resource/view.php?id=1302118
af://n91

where the program uses the sb instruction to set every byte between 0x80001000 to

0x80002000 to 1 and then spins forever.

By clicking the Debug File button near the top right corner of the editor or pressing F5 , you

can start the emulation of the code. The cs200 extension will automatically compile the assembly
code into a RISC-V binary and load it into our pre-compiled model. The VSCode UI will also switch
into the debug mode as follows:

_start:

 la a0, 0x80001000

 la a1, 0x80002000

 li a2, 1

1:

 sb a2, 0(a0)

 addi a0, a0, 1

 blt a0, a1, 1b

2:

 j 2b

where on the left panel the registers and call stack are displayed, while on the right panel the
peripherals on the Gecko 5 board, i.e., the seven-segment displays, LEDs, switches, and buttons
are shown. The assembly code is show in the center panel, with the line that contains the
instruction to be executed next highlighted in yellow.

Similar to debugging normal programs, you can press the Step Over button or press F10 to

execute one single instruction. You will observe that the highlighted line moves down as the
program executes, and some registers in the left panel are also highlighted they are modified by
the program.

Setting up memory view
You can also visualize the memory contents and updates with MemoryView . You need to go over

the following steps to enable it:

1. Open the command palatte by pressing Ctrl + P , enter >open settings , and select

Preferences: Open Workspace Settings (JSON) .

af://n101

2. In the opened settings.json file, add the following content to allow the MemoryView
extension interacting with the cs200 debugger:

3. Start the debug by clicking the Debug File button or pressing F5 .

4. Open the command palatte again, type >memoryview , and select MemoryView: Add new
memory view (for debugger) .

5. Enter the base address of the memory you want to visualize. In our case, the updated
memory starts at 0x80001000 .

6. The memory view will be shown as follows:

If there is any error occured, you can try to restart the debug session by clicking the Restart
button or pressing Ctrl + Shift + F5 and then repeat from step 4.

By pressing F10 multiple times, you can observe that bytes starting from 0x80001000 are
grudually updated to 1, corresponding to the program's behavior.

You can also create a breakpoint of an instruction by clicking the leftmost portion of the
corresponding line as shown below:

The breakpoint will be shown as a red dot, and the program will stop executing when it reaches
the breakpoint, i.e., when it is about to execute the corresponding instruction.

After setting the breakpoint, you can resume executing the program and wait for hitting the
breakpoint by clicking the Continue button or pressing F5 . In our case, the execution will stop
after it changes all the bytes from 0x80001000 to 0x80002000 to 1:

The CPU you write can also work with the cs200 extension. However, you need to implement

various SystemVerilog direct programming interface (DPI) functions to interact with the extension
properly.

Simulating and debugging RTL design
In this course, you will also learn how to design and simulate simple CPUs using Verilog, a high-
level hardware description language.

https://en.wikipedia.org/wiki/SystemVerilog_DPI
af://n134
https://en.wikipedia.org/wiki/Verilog
af://n136

A small example
Consider the following Verilog code that implements a module that can perform various logical
operations on two 32-bit inputs and output the result one cycle later:

You are encouraged to stick to the CS-200 Verilog Coding Style Guide when writing Verilog code.
You can also use verible to perform linting on your Verilog code.

You can download verible from here. You need to decompress the downloaded file:

and add the bin directory to your PATH environment variable:

// lu.sv

module lu (

 input clk_i,

 input rst_i,

 input [31:0] a_i,

 input [31:0] b_i,

 input [1:0] sel_i,

 output [31:0] out_o

);

 // decode the `sel_i` signal

 wire sel_and_w = (sel_i == 2'b00);

 wire sel_or_w = (sel_i == 2'b01);

 wire sel_xor_w = (sel_i == 2'b10);

 // perform the logical operations

 wire [31:0] res_and_w = a_i & b_i;

 wire [31:0] res_or_w = a_i | b_i;

 wire [31:0] res_xor_w = a_i ^ b_i;

 // generate the final result according to the selection

 wire [31:0] res_w = {32{sel_and_w}} & res_and_w |

 {32{sel_or_w }} & res_or_w |

 {32{sel_xor_w}} & res_xor_w;

 // delay the output by one cycle

 reg [31:0] out_r;

 always @(posedge clk_i)

 if (rst_i)

 out_r <= 32'b0;

 else

 out_r <= res_w;

 // output

 assign out_o = out_r;

endmodule

tar xf verible-[version]-linux-static-x86_64.tar.gz

af://n136
https://moodle.epfl.ch/mod/resource/view.php?id=1302123
https://chipsalliance.github.io/verible/
https://en.wikipedia.org/wiki/Lint_(software)
https://github.com/chipsalliance/verible/releases

Then, you can lint your Verilog code by running the following command:

where [file] is the Verilog file you want to lint and flags.txt contains the rules you want to

apply with the following content:

Compiling RTL design using verilator
We use verilator to compile the Verilog code into a C++ model, which can later be compiled to an
executable to simulate the design.

To simulate your design, you need a test bench to generate stimulus to it, i.e., driving the input
signals of your design with desired values. In addition, you can also optionally check the output
signals to see if they are correct. A minimum test bench for the logical unit above can be as
follows:

export PATH=$PATH:/path/to/verible-[version]/bin

verible-verilog-lint [file] --rules_config flags.txt

-always-comb

+port-name-suffix

signal-name-style="style_regex:[a-z_0-9]+"

-explicit-parameter-storage-type

+parameter-name-style="localparam_style:ALL_CAPS;parameter_style:ALL_CAPS"

// tb.sv

module tb ();

 // generate clock and reset

 reg clk_r;

 reg rst_r;

 // period: 1 [time unit]

 always #0.5 clk_r = ~clk_r;

 initial begin

 clk_r = 1'b1;

 rst_r = 1'b1;

 // reset asserts for 20 [time units]

 #20

 rst_r = 1'b0;

 // after 1000 [time units], the simulation stops

 #1000

 $finish();

 end

 // randomized inputs

 reg [31:0] a_r;

 reg [31:0] b_r;

 reg [31:0] sel_r;

af://n148
https://www.veripool.org/wiki/verilator
https://en.wikipedia.org/wiki/Test_bench

Then you can invoke verilator with the following arguments to compile Verilog into C++ and then
build an executable:

which will later generate the executable model as obj_dir/Vtb . You can then start the simulation

by simply running it:

 always @(posedge clk_r) begin

 a_r <= $urandom();

 b_r <= $urandom();

 sel_r <= $urandom();

 end

 // instantiation

 wire [1:0] sel_w = sel_r[1:0];

 wire [31:0] out_w;

 lu lu_0_(

 .clk_i (clk_r),

 .rst_i (rst_r),

 .a_i (a_r),

 .b_i (b_r),

 .sel_i (sel_w),

 .out_o (out_w)

);

 // dump waveform for all signals in `tb`

 initial begin

 $dumpfile("dump.vcd");

 $dumpvars(0, tb);

 end

endmodule

verilator --timescale 1ns/1ns --top-module tb --cc --exe --binary --timing --

trace --trace-underscore -O2 lu.sv tb.sv

You can refer to the Verilator User's Guide for more advanced usage of verilator.

Using GTKWave
The compiled model, when executing, can generate a waveform file that contains the values of all
the signals in the design at each time step. We use GTKWave to visualize the waveform and help
us debug the design.

Under the simulation directory, you can invoke GTKWave as follows:

where dump.vcd is the waveform file generated by the simulation.

The GTKWave GUI looks as follows:

gtkwave dump.vcd

https://verilator.org/guide/latest/
af://n158
https://gtkwave.sourceforge.net/

In the left panel, you can see the signal search tree (SST) that shows the hierarchy of the design.
You can expand each module to see all its submodules. When a module is selected, all its signals
will be shown in the below list:

You can also enter the signal name into the input box at the bottom left corner to filter signals.
Only signals whose name starts with the input string will be shown:

By double clicking on or dragging a signal, you can add it to the waveform view in the right panel,
which shows values of each added signal at each time step:

In the Waves view, you can use the following mouse/keyboard shortcuts to easily browse the
waveform:

ScrollUp : Scroll left (towards smaller simulation time)

ScrollDown : Scroll right (towards larger simulation time)

Shift + ScrollUp : Slowly scroll left

Shift + ScrollDown : Slowly scroll right

Ctrl + ScrollUp : Zoom in the view (with smaller simulation time range)

Ctrl + ScrollDown : Zoom out the view (with larger simulation time range)

For more advanced usage, please refer to the GtkWave documentation.

https://gtkwave.github.io/gtkwave/

	Setting up the work platform
	Using physical machines in INF 3
	Using remote desktops through VDI
	VMware Horizon Client
	Web Browser

	Setting up Visual Studio Code
	Installing an extension

	Running RISC-V emulation with cs200
	A small example
	Setting up memory view

	Simulating and debugging RTL design
	A small example
	Compiling RTL design using verilator
	Using GTKWave

