A Game of life in Assembly Language

Learning Goal: Write a complete program in assembly language and run it on a RISC-V processor.

Requirements: Multicycle RISC-V processor, Gecko5 Simulator board (VSCode Extension).

Version 2.0 of 16th September 2024, EPFL ©2024 1 of

A Game of life in Assembly Language

1 Introduction

In this lab, the goal is to implement a simplified version of the Game of Life in assembly language.
At the end of the lab, you should be able to play it on the Gecko5 board.

Figure 1: Gecko5

1.1 General Description

The Game of Life is a cellular automaton devised by British mathematician John Conway in 1970.
The game requires no players: its evolution is determined by its initial state (also called the seed of the
game). The playing field of the game is an infinite two-dimensional grid of cells, where each cell is either
alive or dead. At each time step, the game evolves following this set of rules:

¢ Underpopulation: any living cell dies if it has (strictly) fewer than two live neighbours.
¢ Overpopulation: any living cell dies if it has (strictly) more than three live neighbours.
* Reproduction: any dead cell becomes alive if it has exactly three live neighbours.

* Stasis: Any live cell remains alive if it has two or three live neighbours.

When your game will be complete, you will able to have behaviours similar to the one shown in

fig. 2}

The goal of this lab will be to implement an assembly version of the game of life. In addition to the
previous rules, we will add some control functions to the game, as well as walls, where no cell could
ever be alive in them. We first describe the conventions that your code needs to follow to meet the
grading requirements, then we give a high level description of the code organisation, and finally, detail
the functions you should implement.

2 of Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

Solution (Simulator)

-

Seed 0

- - 5

Seed 1

WE B

Seed 2

Every live cell has two or three
live neighbors

Figure 2: Example of a game iteration from left to right.

1.2 Constants

To improve the readability of your code, you can associate symbols to values with the . equ statement.
The . equ statement takes a symbol and a value as arguments. For example, the line below

.equ LEDS, 0x50000000

will associate value 0x50000000 to symbol LEDS. In the code, whenever you write LEDS, that will have
the same effect as if you write 0x50000000, but your code will be much more readable and easier to
update. Example of use:

1i t1, LEDS
1w t1, 0(tl) /* load the LEDS address in tl =*/

We have prepared for you a list of useful symbol/value pairs in a template file which will be
provided to you. For the correct grading of the game, we strongly advise you to use the list below,
without any modification! If you choose different symbol names or values, the grader may fail and
you may lose points.

/+ Game state memory locations =*/

.equ CURR_STATE, 0x90001000 /+ Current state of the game =*/

.equ GSA_ID, 0x90001004 /+ ID of GSA holding the curr state «/
.equ PAUSE, 0x90001008 /* Is the game paused or running =/
.equ SPEED, 0x9000100C /* Current speed of the game x/

.equ CURR_STEP, 0x90001010 /+ Current step of the game */

Version 2.0 of 16th September 2024, EPFL ©2024 3 of

A Game of life in Assembly Language

.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ

SEED, 0x90001014 / *
GSAO, 0x90001018 / *
GSA1l, 0x90001058 / *
CUSTOM_VAR_START, 0x90001200 /=

CUSTOM_VAR_END, 0x90001300 / *

RANDOM, 0x40000000 / *
LEDS, 0x50000000 / *
SEVEN_SEGS, 0x60000000 / %
BUTTONS, 0x70000004 / *

/x States x/

.equ
.equ
.equ

INIT, O
RAND, 1
RUN, 2

/* Constants =*/

.equ
.equ
.equ
.equ
.equ
.equ
.equ

Seed used to start the game %/

Game State Array 0 starting addr =*/
Game State Array 1 starting addr =/
Start of addresses for custom vars =*/
End of addresses for custom vars =/
Random number generator address =/
LEDs address x/

7-segment display addresses x/
Buttons address =/

N_SEEDS, 4 /* Number of available seeds x/
N_GSA_LINES, 10 /* Number of GSA lines x/
N_GSA_COLUMNS, 12 /* Number of GSA columns =/
MAX_SPEED, 10 /+ Maximum speed =*/

MIN_SPEED, 1 /+ Minimum speed =*/

PAUSED, 0x00 /* Game paused value */
RUNNING, 0x01 /* Game running value x/

1.3 Formatting Rules

In the rest of the assignment, you will be asked to write several procedures in assembly language. If you
implement them all correctly, you will be able to play the game using your Gecko5 board. To enable
correct automatic grading of your code, you must follow all the instructions below:

¢ surround every procedure with BEGIN and END commented lines as follows:

/+ BEGIN:procedure_name =*/
procedure_name:

/* your implementation code =/

ret
/* END:procedure_name x/

Of course, replace the procedure_name with the correct name. Please pay attention to spelling
and spacing of the opening and closing macros.

¢ If your procedure makes calls to other, auxiliary procedures, all those auxiliary procedures must
also be entirely enclosed between the same BEGIN and END.

* Please do not modify the provided constants, as they are used for grading. The undefined beha-
vior caused by modifying them is more likely to affect your grade negatively!

* Have all the procedures inside a single . s file.

Our grading system will check each procedure individually and separately from the rest of your
assembly code.

Finally, in order to ensure a correct grading, please respect the coding conventions: especially when
pushing and popping from the stack: it must grow downward.

4of

Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

o

-

© 0o N o o b~ W N

Figure 3: Coordinate system

2 Game mechanics

This section gives a high level description of the different components of the game and their interactions.

2.1 Terminology
The game is displayed on a LED array, where each pixel is a Cell. Each Cell can either be in the dead
state or the alive state. A wall is an always-dead cell.

A seed is an initial state of the game.

A step is the result of applying the game rules from one game state to the next.

2.2 Game representation

The game display is a LED array of 10 x 12 pixels. The top left corner of the array is the coordinate sys-
tem’s origin. The x-axis grows rightward while the y-axis grows downward. An example configuration
can be seen in Fig. |3l The game display is a torus, which means that two cells (z1,y1) and (z2,y2) are
considered neighbours if one of the following conditions is satisfied (symbol == stands for equality):

21+ 1 mod 12, y; +1 mod 10) == (2, y2)

21+ 1 mod 12, y3 mod 10) == (z3,y2)

21 mod 12, y; +1 mod 10) == (2, y2)

(
(
(
* (1 —1 mod 12, y; — 1 mod 10) == (x2,ys)
(r1 —1 mod 12, y; mod 10) == (z2,¥y2)
(1 mod 12, y1 —1 mod 10) == (z2,y2)
(r1 —1 mod 12, y; +1 mod 10) == (x2, y2)
(

z1+1 mod 12, y; — 1 mod 10) == (x9,y2)

Version 2.0 of 16th September 2024, EPFL ©2024 5 of

A Game of life in Assembly Language

Cell x-coordinate

unused 11109 8 7 6 5 4 3 2 1 0

0 0O/1|1|1|0|1|/0|1|0|1|0]|1

31 121110 9 8 7 6 5 4 3 2 1 0
GSA word

Figure 4: GSA element

In order to display elements on the LEDs, we will use two representations. One will be the game
state array (GSA), a convenient representation on which the game operations are easily performed. The
other one will be the display representation, a more compact but directly displayable representation. We
then describe how these two representations work and interact.

221 GSA

The GSA is made of GSA elements. Each GSA element is a horizontal line on the screen and is stored
in a single word in memory. Indeed, a word is 32 bits and there are only 12 cells per line. As each cell
has either the value 0 (dead) or 1 (alive), the cell sate can be stored in a bit. The leftmost cell of a row is
mapped to the least significant bit of the corresponding GSA word, and going rightwards goes to higher
significant bits. This is visualized in Fig.] which shows how a line is represented in the GSA. The bits
having an index higher than 11 are not used and must then be 0. As you are accustomed to, the most
significant bit of a byte bears the highest index, e.g. 0-th bit is the rightmost and 7-th is the leftmost bit.
Bytes are stored in memory in little endian fashion. Finally, the complete GSA is made out of 10 GSA
elements. The GSA element of Fig.[d]is line three in the exemplary GSA of Fig.

2.2.2 GSA step

The Game of Life rules (presented in section are applied to the GSA. The next state must only
depend on the current one, and hence every cell dying/coming to life must not have any influence on
the current state. An easy way of ensuring this is to have a pair of GSAs. One will hold the current valid
GSA state, and the other one will hold the next value for the GSA. This way, when performing a step,
values are read from the current GSA, and written to the next one. At the end of each update, the GSAs
are inverted: current GSA become the next GSA and next GSA become the current one.

Finally, in order to apply the Game of Life rules, the neighbours of a cell must be known. They
are defined in Fig. 5} considering the target cell, each pixel that is at most 1 jump away from it in either
or both x and y directions. A jump is defined as adding or removing 1 from either x or y coordinate. Of
course, one needs to take into account the torus topology and hence the required modulo.

. Reference cell

Neighbours

Figure 5: Neighbors of a cell.

6 of [25] Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

31 16 10 9 8 7 43 0

value b|{g|r|row| col

Figure 6: Memory map led register.

2.2.3 LED array

The RGB-LED array representation consists of a memory mapped register accessible at address
0x50000000 and depicted in Figure [} Reading it returns 0, as the software should properly track LED
states without depending on the hardware. The meaning of each field is presented in the next table.

Led Control Register
Name Bit Field | Description
col [3:0] Column selection. 4b1111 means all columns are selected.
row [7:4] Row selection. 4b1111 means all rows are selected
r [8] Updating red LEDs
g [9] Updating green LEDs
b [10] Updating blue LEDs
unused [15:11] -
value [31:16] New state of LEDs.

¢ If no column or row is selected, all LEDs change their states to [16]

¢ If a single column (but not row) is selected, all LEDs in that column
change their states to [25:16]

¢ If a single row (but not column) is selected, all LEDs in that row change
their states to [27:16]

e If both column and row are selected, the LED changes its state to [16]

For example, to change the states of all the red LEDs in column 3 to 0001111101 (from row 0 to row
9), one can write the following data to 0x50000000:

data[3:0] = 3 (or 4'0011); // for column 3
data[7:4] = 15 (or 4'1111); // for all rows in columns 3
data[l1l0:8] = 1 (or 3'001); // for red
data[31:11] = 10b'1011111000
2.3 Walls

Finally, let us explain the mechanism behind walls: masking. As the next state depends only on the
current one (Section 2.2.2), one can first apply the Game of Life rules as if there were no walls, and,
before drawing the result back on the screen, set all wall locations to the dead state. Wall pixels on the
alive state would then never be seen nor impact the game. We will also make the walls visible for game
clarity by painting them in BLUE, as seen in Fig. [/

Masking is an easy procedure that complies with our game representation. Masks will have 10
words, similar to a GSA, consisting of 0s and 1s where a 0 bit means a wall is at this location. Applying
the wall mask is then as simple as AND-ing all GSA word with the corresponding in-use mask. An
example of this procedure can be seen in Fig.

Version 2.0 of 16th September 2024, EPFL ©2024 7 of

A Game of life in Assembly Language

123456738

Figure 7: Our walls will be displayed in blue in the simulator

GSA element 0 1/0/1/0j2|0j1|0f2|1(1|0
mask 0 1/1/1/1/1|0(0|0j0|1(1|1
GSA result 0 1/0/1/0(1|0|0|0f0O|1(1|0

Figure 8: GSA masking

2.4 Control extensions

Control extensions are the procedures allowing the user to setup the game parameters, change them
while the game is running. These procedures are the interface to the game and they are accessible
through select buttons on the board. In this part, we describe the action of each button. These actions
depend on the current states of the game which can be:

e INIT: This is the starting state and the game will come back to it after each run or upon reset. In
this state, the seed and the game duration is configured from predefined ones.

* RAND: This state is reached from the initial state by pushing jc N times where N is an integer
representing the number of seeds. In this state, the seed and game duration is initialized to a
random seed.

* RUN: In this state, the game runs and the user has a few possibilities to change the way the game
runs.

Each state is explained more in the following:

8 of 25 Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

2.4.1 1INIT state

In the INIT state, the player can select the seed and set the number of steps the game will run for. The
preconfigured seeds are already stored in memory, and should simply be displayed one after the other
when pressing jc.

The button mapping is the following:

* je: By pushing jc, the user will go through the predefined seeds, one after the other. N seed and
mask pairs are available. By default, seed 0 is displayed, and if the game is launched from this
configuration, mask 0 must be used for masking. Pushing jc again selects the next seed mask
pair. When jc has been pushed N times, it triggers a transition to the state RAND.

* jr: Starts the game from the selected initial state for the desired amount of steps.

* buttons 0-1-2: These buttons are used to set the number of steps the game will run for by
configuring the last three digits of the LCD display. The first digit can be initialized to any value,
while button 0 configures the units, button 1 the tens, and button 2 the hundreds. The
number of steps the game will run is in hexadecimal. For example, if the number displayed on
the LCD is 870, this in fact means that the game will run 2160 steps. Moreover, to set the number
to 870 a player would need to push button 2 8 times and button 1 6 times and button 015
times. By default the game runs for 1 step.

2.4.2 RAND state

When the state transitions to the RAND state from the INIT state, a random seed must be generated. A
random seed is defined as each cell being put in the alive or dead state randomly. To avoid meaningless
configurations, the random seed is associated with always the same mask: mask N+1. There are then
N predefined seeds and N+1 predefined masks, counting the one for the random state. As with the
predefined seeds, the random mask must be used for one whole run.

In this state, the button mapping is the following:

* jc: Pushing it again triggers the generation of a new random game state.
* jr: Starts the game from the selected random game state for the amount of steps selected.

* button 0-1-2: These buttons are used to set the number of steps the game will run for by
configuring the last three digits of the LCD display. The first digit can be any value, while button
0 configures the units, button 1 the tens, and button 2 the hundreds. The number of steps the
game will run is in hexadecimal. For example, if the number displayed on the LCD is 870, this in
fact means that the game will run 2160 steps. Moreover, to set the number to 870 a player would
need to push button 2 8 times and button 1 6 times and button 0 15 times. By default the
game runs for 1 step.

2.4.3 RUN state

This state is reached from the INIT or RAND state by pressing jr. When entering this state, the game
will be automatically set to run (Game paused = 1), and will play the game until either the pause button
is pressed or until we play for the selected number of steps. It offers the player a few control elements,
listed bellow:

* jcis the start/pause button. If pressed, the game toggles between play and pause.

* jrincreases the speed of the game.

Version 2.0 of 16th September 2024, EPFL ©2024 9 of

A Game of life in Assembly Language

* jl decreases the speed of the game.
* jbis the reset button. It clears the initial board selection, the number of steps, and stops the game.

* jt replaces the current game state with a new random one

When the game hangs on a configuration where nothing happens anymore or the screen becomes
empty, jt can replace the GSA with a more interesting configuration.

2.4.4 State machine

Fig.[|summarizes the state transition. In this figure, bX shows a button. b0 = N is the event of pushing
button b0 N times in the INIT state, and b0 < N is the reverse (button b0 is pushed less than N times).

jc, b0, b1, b2

()

. RAND |

jc <N, b0, b1, b2 " , in il jc, jt
Jr
jc=N 7
jr
CINIT » RUN

e

jb

Figure 9: State machine

2.5 Memory layout

Table[I|shows the precise RAM memory layout for the game. Please keep exactly this memory layout as
otherwise you will lose points from the automated grading. In Table[I, we have considered a free space,
Custom Variables, for the variables you may define when implementing the game. In Section [3} each
memory location is explained in more details.

10 of Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

0x40000000 RANDOM
0x50000000 LEDS
0x60000000 SEVEN_SEGS
0x70000004 BUTTONS
0x90001000 Game Current State
0x90001004 GSA ID
0x90001008 Game paused
0x9000100C Game speed
0x90001010 Game current step
0x90001014 Game seed
0x90001018 Game State Array 0 (GSA)
0x9000101cC 10 words (32b each)
0x9000103C

0x90001040 Unused, allows for GSAQ
0x90001044 | and GSALl to be 64 bytes apart
0x90001058 Game State Array 1 (GSA)
0x9000105C 10 words (32b each)
0x90001074

0x90001200 Custom Variables
0x90001300

Table 1: RAM memory organization for keeping the current state of the game.

3 Implementation

We will now present the functions required to run the game, which you should implement.

3.1 Drawing using the LEDs

Your first exercise is to implement the following two procedures for controlling the LEDs, and a proced-
ure to add execution delay:

1. clear_leds, which initializes the display by switching off all the LEDs,

2. set_pixel, which turns on a specific LED using the memory mapped led register. We only use
the red color in this lab.

3. wait, which creates an execution delay.

The LED array has 120 pixels (LEDs).

Version 2.0 of 16th September 2024, EPFL ©2024 11 of

A Game of life in Assembly Language

3.1.1 Procedure clear_leds

The clear_leds procedure initializes all LEDs to 0 (zero). You should call clear_leds before draw-
ing a new GSA on the screen (see the algorithm at the end of this document).

Arguments

e None

Return Values

e None.

3.1.2 Procedure set _pixel

The set_pixel procedure takes two coordinates as arguments and turns on the corresponding pixel
on the LED display in red. When this procedure turns on a pixel, it must keep the state of all the other
pixels unmodified.

Arguments
* register a0: the pixel’s x-coordinate.

* register al: the pixel’s y-coordinate.

Return Values

e None.

3.1.3 Procedure wait

The wait procedure serves to add a delay to the execution of the program. This delay can be created
by initializing a very large counter value in a register and decrementing it in a loop. This way, the
execution time needed to decrement the counter to zero will create a time delay. A good value for the
delay is approximately 1s, and for the Gecko5 board this can be done using an initial counter value of 21°.
You may get a slight difference in this value depending on how you implement the wait loop. However,
the Game speed variable from the RAM has to be taken into account: it specifies how fast the game
executes. This variable can take values between 1 and 10. If 1, the game runs at the regular speed with
the delay of approximately 1 s, while if it is 10, the game runs at the maximum speed. Depending on
the value of the Game speed variable in the RAM, the original game speed is increased Game speed
times.

Beware that when simulating the assembly program in the ¢s200 extension simulator, the wait
procedure can cause the simulation to run too slow. In this case, it is best to significantly reduce the
initial value of the counter for simulation.

Arguments

¢ None.

Return Values

e None.

12 of Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

3.2 GSA handling procedures

Setting and getting a GSA word will be frequent operations, hence, we define two helper procedures
doing the work.

* get_gsa: gets an element from the GSA

® set_gsa: sets an element of the GSA

3.2.1 Procedure get _gsa

This procedure gets as the argument a line location, y, where 0 < y < 9 and returns the GSA element at
the location of y. This procedure must take into account the GSA 1D location in RAM because this flag
indicates which GSA is currently in use. The GSA ID flag should always be either 0 or 1.

Arguments

* register a0: line y-coordinate

Return Value

e register a0: Line at location y in the GSA

3.2.2 Procedure set_gsa

This procedure gets a line as the argument and sets it at the specified location in the GSA. It must also
use the GSA ID flag, similar to the get_gsa function.

Arguments

e register a0: the line

* register al: y-coordinate

Return Values

e None.

Version 2.0 of 16th September 2024, EPFL ©2024 13 of

A Game of life in Assembly Language

3.3 From the GSA to the LEDs

3.3.1 Procedure draw_gsa

The draw_gsa procedure takes the GSA currently in use and reproduce it on the LEDs.

Arguments

® none

Return Value

* None

0 0o/0|0|0]|O ‘ o/0|j0|j0|0 1 1

0 0o/0|0|0|O0 12|0|0|0fO0 1 1

0 0/0|0|0 1 ‘ o/0|j0|0|0|O0]|O draw_gsa
0 0O/0|0|0O 12 1 12|0|0f0Of0O]|O h
0 o/o0o|j0o|j0|0|O0O|O|O|OfO|O|O

0 o/0|0|0O|O0O|O0O|O|O|O|O0 1 T

0 o/o0o|jo|j0|0|0O|0O|O|O|1|0O|O

0 o/o|jo|jo0o|j0|0|0O|O0O|O0|1 1 1

Figure 10: Example of draw_gsa application

14 of

Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

3.4 Using a random GSA
34.1 Procedure random gsa

The random_gsa procedure initialize the current GSA to a random state. Again, this procedure knows
which GSA is currently in use thanks to the GSA ID flag. For each pixel, it must draw a random value
from the RANDOM_NUM location, a random number generator, and convert it to either dead or alive. As
the returned random value is 32 bits, we must convert it to one bit. Many possibilities exist, but here we
will take the modulo 2 operation as it is very easy to perform. If the modulo two value is 0, then the cell
will be dead, otherwise it will be alive.

Arguments

® none

Return Value
e None

To simulate random number generation in the ¢s200 extension simulator, you can read a value from
the RANDOM_NUM. Consequent reads will return the next random value, based on hardcoded seeds. It is
therefore expected that the random number generator will return the same sequence of numbers each
time the program is run.

Version 2.0 of 16th September 2024, EPFL ©2024 15 of

A Game of life in Assembly Language

3.5 Action functions

This section introduces all the control functions of the game.

3.5.1 Procedure change_speed

The change_speed procedure increases or decreases the game speed depending on the argument and
updates the value of the game speed in the RAM. By default this value is 1, and it cannot be smaller.
Each time it is increased, the speed value is incremented by one, up to 10. It cannot be bigger than 10.
Similarly, when the speed is decreased, the game speed value is decremented by 1, down to 1.

Arguments

e register a0: 0 if increment, 1 if decrement.

Return Value

e None

3.5.2 Procedure pause_game

The pause_game procedure pauses or resumes the game depending on the current state by setting the
Game paused variable in RAM. A value of 0 means that the game is paused, and 1 that it is running
(Section[L.2). The pause procedure must invert the currently stored value of Game paused.

Arguments

¢ None

Return Value

e None

3.5.3 Procedure change_steps

The change_steps procedure changes the number of steps that the game will run based on the input
arguments. As discussed in the Section button 2 is for the hundreds, button 1 represents the tens
and button 0 the units. Each digit is represented in hexadecimal base (from 0 to F). Keep in mind that
more than one of the arguments can be set to 1.
Arguments

e register a0: 1if b0 pressed, 0 otherwise

* register al: 1if bl pressed, 0 otherwise

* register a2: 1if b2 pressed, 0 otherwise

Return Value

¢ None

3.5.4 Procedure set_seed

The set_seed procedure uses the input argument (the current Seed ID) to set the current GSA to the
predefined seed state associated with it (check the SEEDS section in the template file).

16 of Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

Arguments

* register a0: the current seed ID value

Return Value

e None

3.5.5 Procedure increment_seed

The increment_seed procedure changes the value of Game seed based on the current state of the
game. If the game state is INIT (or the current seed ID is less than the number of seeds), it increments
the Game seed by one, and copies the new seed in the current GSA. If the game state is RAND (or the
current seed ID is greater or equal to the number of seeds), this procedure must generate a new random
GSA. Please note when starting from a seed, the mask associated to that specific seed needs to be used
for the next steps. In the template file (Section [I.2), you will find 4 seeds and 5 masks. The first seed
will be associated with the first mask, etc.. The last mask is the one associated to the random state.
Return Value

e None

3.5.6 Procedure update_state

The update_state procedure checks if the BUTTONS register, which is given as the input, requires a
change of state, and if necessary performs it. For any change of state from RAND or RUN to INIT, the
reset_game procedure has to be called.

Arguments

* register a0: BUTTONS

Return Value

e None

3.5.7 Procedure select_action

The select_action procedure calls the correct action function depending on the button pressed.

Arguments

* register a0: a copy of the BUTTONS register

Return Value

¢ None

Version 2.0 of 16th September 2024, EPFL ©2024 17 of

A Game of life in Assembly Language

3.6 Updating the GSA
3.6.1 Procedure cell fate
The cell_fate procedure returns the next state of a cell depending on the number of living neighbours
which is passed to the procedure as an argument.
Arguments
e register a0: number of live neighbouring cells.

* register al: examined cell state.

Return Value

¢ register a0: 1 if the cell is alive 0 otherwise

3.6.2 Procedure £ind neighbours
The find_neighbours procedure takes a cell location as the argument and returns the number of this
cell’s living neighbours as well as the value of the cell itself.
Arguments
* register a0: x coordinate of examined cell

e register al: y coordinate of examined cell

Return Value
e register a0: number of living neighbours.
* register al: state of the cell at location (x, y),i.e., the cell for which we are counting the living
neighbours.
3.6.3 Procedure update _gsa

The update_gsa procedure updates the next GSA according to the Game of Life rules. When the
update done, this procedure must invert the GSA ID (As explained in Section [2.2.2). If the game is
paused, this procedure should not do anything.

Arguments

¢ None

Return Value

¢ None

3.6.4 Procedure mask

The mask procedure applies the mask corresponding to the selected seed to the current GSA. Please
note that the mask for the configuration with the random seed is the last mask stored in the code, so if
N seeds are predefined, it will be the mask N+1. In our case, it will be mask4.

This procedure should also be in charge of drawing the walls on the screen in blue, in a similar way
to the draw_gsa procedure.

18 of Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

Arguments

e None

Return Value

e None

Version 2.0 of 16th September 2024, EPFL ©2024 19 of

A Game of life in Assembly Language

3.7 Inputs to the Game

Interacting with the game is the responsibility of the get_input procedure, which reads the state of
the push buttons and returns it. This information will be passed to the action functions.

The 10 push buttons of the Gecko5 are read through the Buttons module, which is memory mapped
(see Table[T). Its content is described in Table[2]

Address 31...10 9...0

BUTTONS Reserved State of each button

Table 2: The first word of the Buttons module.

The button register contains the information whether the buttoni (i =0, 1, 2, ..., 9) was pressed. If
the button i changed its state from released to pressed, i.e. a falling edge was detected, the register will
have the bit i set. The bit i stays at 1 until it is explicitly cleared by your program. Mind that when
you attempt to write something in the register, regardless of the value written, the entire register will be
cleared; there is no possibility to clear its individual bits.

In the ¢s200 extension simulator, you can observe the behavior of buttons module by opening click-
ing on the buttons and reading from the BUTTONS memory location. For simplification, we renamed
the useful buttons as per the following figure (Figure[11). You will find equivalent names in the provided
code template as .equ directives.

123456728

Figure 11: Buttons mapping

20 of Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

3.7.1 Procedure get_input

The get_input procedure reads the BUTTONS register and returns its value.

Arguments

e None

Return Value
* register a0: BUTTONS register

In case multiple buttons are pressed simultaneously, you can decide the processing order. One pos-
sible option is to only consider the least significant bit of BUTTONS which is set, while discarding the
others.

Version 2.0 of 16th September 2024, EPFL ©2024 21 of

A Game of life in Assembly Language

3.8 Game step handling

3.8.1 Procedure decrement step

The current number of remaining steps in the game is display on a 4 digit 7 segment (7-SEG) display,
depicted in Figure|12| The digits of the 7-SEG display are exposed through a memory mapped register
at address 0x60000000. Each byte of that register configure a different digit. We already give you the
font constants, defined in the lab template through the font_data array, needed to properly display digits

on the 7-SEG.
7-SEG Control Register
Name Bit Field | Description
Digit 0 [7:0] Content of digit 0 of the 7-SEG display.
Digit 1 [15:8] Content of digit 1 of the 7-SEG display.
Digit 2 [23:16] Content of digit 2 of the 7-SEG display.
Digit 3 [24:31] Content of digit 3 of the 7-SEG display.

If game state is RUN and the game is running, the decrement_step procedure checks if the current
step is 0 or not. In case of 0, it returns 1, otherwise, decrements the number of steps, displays it on the
7-SEG display, and returns 0. If the game state is INIT or RAND, it displays the number of steps on the
7-SEG display and returns 0.

Arguments

e None

Return Value

¢ register a0 1 if done 0 otherwise

/* T-segment display =*/
font_data:

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

O0x3F /=*
0x06 /=«
0x5B /=«
0x4F /»*
0x66 /=
0x6D /=*
0x7D /=«
0x07 /=«
Ox7TE /=*
0x6F /=*
0x77 /=«
0x7C /=«
0x39 /«*
0x5E /«*
0x79 /=
0x71 /=

/+ Loads font for
la t0, font_data
1w t0, 36(t0)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

M EOQW® Owo-Jdo o W RO

digit 9 in t0 */

22 of

Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

3.9

Figure 12: 7SEG mapping

Reset

Finally, we need a function that resets the game to its default state: reset_game.

3.9.1 Procedure reset_game

The reset_game procedure puts the game in its default state. The default state is defined as follows:

1.

2
3
4.
5
6

Current step is 1 and displayed as such on the 7-SEG display

. The seed 0 is selected

. Game state 0 is initialized to the seed 0 and displayed on the leds

GSA IDis0

. The game is currently paused

. The game speed is 1 (or, MIN_SPEED)

Arguments

¢ None

Return Value

¢ None

Version 2.0 of 16th September 2024, EPFL ©2024 23 of

A Game of life in Assembly Language

3.10 Putting everything together

The algorithm of the game is:

Algorithm 1: Game of Life

while True do
reset_game()

e < get_input()
done « false
while /done do
select_action(e)
update_state(e)
update_gsa()
mask()

draw _gsa()
wait()

done <« decrement_steps()
e « get_input()
end

end

24 of Version 2.0 of 16th September 2024, EPFL ©2024

A Game of life in Assembly Language

4 Playing the Game

Now that you have implemented all the required core functionality, it is time to test if the game runs
smoothly end to end. You can do this by simulating your program in the ¢s200 extension simulator.
While implementing the Game of Life game, you might have come across design choices that are
not addressed specifically or left unclear in this document. For those cases, you can safely assume that
whichever choice you deem fit will be considered as valid and will not result in loss of points in the final
grading.

Version 2.0 of 16th September 2024, EPFL ©2024 25 of

	Introduction
	General Description
	Constants
	Formatting Rules

	Game mechanics
	Terminology
	Game representation
	GSA
	GSA step
	LED array

	Walls
	Control extensions
	INIT state
	RAND state
	RUN state
	State machine

	Memory layout

	Implementation
	Drawing using the LEDs
	Procedure clear_leds
	Procedure set_pixel
	Procedure wait

	GSA handling procedures
	Procedure get_gsa
	Procedure set_gsa

	From the GSA to the LEDs
	Procedure draw_gsa

	Using a random GSA
	Procedure random_gsa

	Action functions
	Procedure change_speed
	Procedure pause_game
	Procedure change_steps
	Procedure set_seed
	Procedure increment_seed
	Procedure update_state
	Procedure select_action

	Updating the GSA
	Procedure cell_fate
	Procedure find_neighbours
	Procedure update_gsa
	Procedure mask

	Inputs to the Game
	Procedure get_input

	Game step handling
	Procedure decrement_step

	Reset
	Procedure reset_game

	Putting everything together

	Playing the Game
	Submission

