

Information, Calcul et Communication

Module 2: Information et

Communication

EPFL

Echantillonnage de signaux : rappel

La semaine dernière :

- signaux, fréquences
- filtrage
- échantillonnage

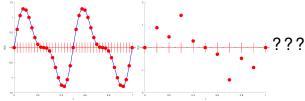
Aujourd'hui:

- reconstruction
- ▶ théorème d'échantillonnage
- sous-échantillonnage

Information, Calcul et Communication Leçon 2.2 : Echantillonnage de signaux (2ème partie)

O. Lévêque - Faculté Informatique et Communications

EPFL

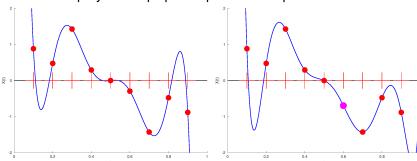

Echantillonnage de signaux : rappel

- ▶ signal $(X(t), t \in \mathbb{R})$; p. ex. : sinusoïde
- « tout signal est une somme finie de sinusoïdes »
- spectre : fréquence(s) présente(s) dans un signal, bande passante : f_{max}
- ► filtre passe-bas idéal
- ▶ signal échantillonné $(X(nT_e), n \in \mathbb{Z})$ $(T_e : \text{période d'échantillonnage}; f_e = 1/T_e : \text{fréquence d'échantillonnage})$
- ightharpoonup condition nécessaire pour pouvoir reconstruire le signal : $f_e > 2f_{max}$
- ▶ sinon $(f_e \le 2f_{max})$: effet stroboscopique

Reconstruction d'un signal

Comment reconstruire un signal $(X(t), t \in \mathbb{R})$ à partir de sa version échantillonnée $(X(nT_e), n \in \mathbb{Z})$?

- ► Dans certains cas, c'est « assez clair »...
- Dans d'autres, ça l'est un peu moins!


EPFL

Reconstruction

3 / 28

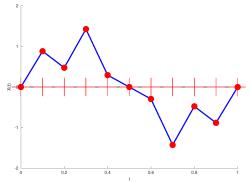
Reconstruction d'un signal

2. Trouver un polynôme qui passe par tous les points.

Trois défauts principaux :

- ► Avec *N* points, il faut trouver un polynôme de degré *N* − 1 : la procédure est **complexe**!
- ► Elle est également instable : si on déplace légèrement ou on ajoute un point, le polynôme peut changer du tout au tout.
- N'est pas borné.

EPFL


Reconstruction

5 / 28

Reconstruction d'un signal

On dispose de plusieurs techniques pour interpoler un signal :

1. « Relier les points » : dans l'exemple précédent, ça donne ceci :

Un défaut principal : la « courbe » obtenue n'est pas régulière (non dérivable en plusieurs points)

EPFL

Reconstruction

4 / 28

Reconstruction d'un signal

3. De manière générale, une formule d'interpolation pour X(t) s'écrit :

$$X_l(t) = \sum_{m \in \mathbb{Z}} X(mT_e) F\left(\frac{t - mT_e}{T_e}\right)$$

(pour prendre vos propres notes)

EPFL

Reconstruction

6 / 28

Reconstruction d'un signal

3. De manière générale, une formule d'interpolation pour X(t) s'écrit :

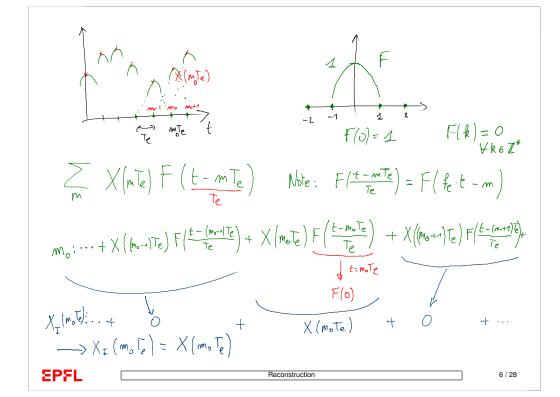
$$X_l(t) = \sum_{m \in \mathbb{Z}} X(mT_e) F\left(\frac{t - mT_e}{T_e}\right)$$

où $F: \mathbb{R} \to \mathbb{R}$ est une fonction telle que

$$F(0) = 1$$
 et $F(k) = 0$ pour tout $k \in \mathbb{Z}^*$

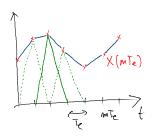
Cette condition implique en particulier que

$$X_l(nT_e) = X(nT_e)$$
 pour tout $n \in \mathbb{Z}$:


$$X_{l}(nT_{e}) = \sum_{m \in \mathbb{Z}} X(mT_{e}) F\left(\frac{nT_{e} - mT_{e}}{T_{e}}\right) = \sum_{m \in \mathbb{Z}} X(mT_{e}) F(n-m) = X(nT_{e})$$

Quelle fonction F choisir?

EPFL


Reconstruction

7 / 28

(pour prendre vos propres notes)

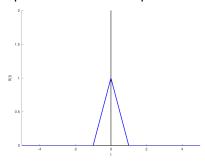
Reconstruction

$$F(0)=1$$

 $F(k)=0, k \in \mathbb{Z}^{k}$

$$X_{I}(t) = \sum_{m \in \mathbb{Z}} X(mT_{e}) \cdot F\left(\frac{t - mT_{e}}{T_{e}}\right)$$

EPFL


Reconstruction

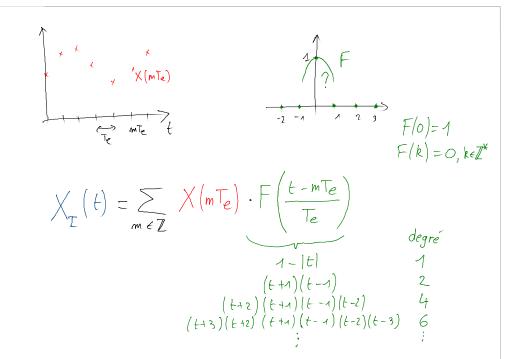
8 / 28

Reconstruction d'un signal

La fonction F qui permet de « relier les points » est donnée par

$$F(t) = \begin{cases} 1 - |t| & \text{si } |t| \le 1 \\ 0 & \text{si } |t| \ge 1 \end{cases}$$

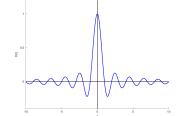
On peut faire mieux en choisissant


$$F(t) = (1-t)(1+t)(1-\frac{t}{2})(1+\frac{t}{2})(1-\frac{t}{3})(1+\frac{t}{3})...$$

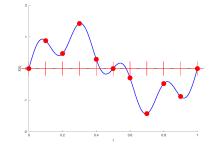
Cette fonction est régulière, et on vérifie que F(0) = 1 et F(k) = 0 pour tout $k \in \mathbb{Z}^*$.

EPFL

Reconstruction


9 / 28

Reconstruction d'un signal : interpolation


Il se trouve que la fonction F du bas de la page précédente est égale à

$$F(t) = \operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}, \quad t \in \mathbb{R}$$

Ce qui donne dans notre exemple :

$$X_l(t) = \sum_{m \in \mathbb{Z}} X(mT_e) \operatorname{sinc}\left(\frac{t - mT_e}{T_e}\right)$$

EPFL

Reconstruction d'un signal : interpolation

Pour retrouver un signal à partir de sa version échantillonnée, on a donc maintenant une formule d'interpolation :

$$X_I(t) = \sum_{m \in \mathbb{Z}} X(mT_e) \operatorname{sinc}\left(\frac{t - mT_e}{T_e}\right)$$

Il nous reste une question cruciale à résoudre : quand est-ce que $X_l(t) = X(t)$ pour tout $t \in \mathbb{R}$?

EPFL

Reconstruction

11 / 28

Le théorème d'échantillonnage

La paternité de ce théorème est attribuée à plusieurs personnes, qui l'ont successivement redécouvert / amélioré au cours des ans...

 Harry Nyquist (1889-1979), ingénieur aux Laboratoires Bell, qui publie en 1928 un article sur « la théorie de la transmission par le télégraphe ».

Le théorème d'échantillonnage

La paternité de ce théorème est attribuée à plusieurs personnes, qui l'ont successivement redécouvert / amélioré au cours des ans...

 Edmund Taylor Whittaker (1873-1956), mathématicien anglais, qui publie en 1915 la formule d'interpolation qu'on vient de voir.

EPFL

l héorème

12 / 28

Le théorème d'échantillonnage

La paternité de ce théorème est attribuée à plusieurs personnes, qui l'ont successivement redécouvert / amélioré au cours des ans...

3. Vladimir Aleksandrovich Kotelnikov (1908-2005), pionnier de la radio-astronomie, qui découvre ce résultat indépendamment en 1933 en Union Soviétique.

héorème

12 / 2

Théore

Le théorème d'échantillonnage

La paternité de ce théorème est attribuée à plusieurs personnes, qui l'ont successivement redécouvert / amélioré au cours des ans...

4. Herbert Raabe (1909-2004), qui publie sa thèse sur le sujet en 1939 en Allemagne...

EPFL

Théorème

12 / 28

Le théorème d'échantillonnage

Soient:

- ightharpoonup X(t) un signal de bande passante f_{max} ;
- ► $X(nT_e)$, $(n \in \mathbb{Z})$ le même signal échantillonné à une fréquence d'échantillonage f_e ;
- $ightharpoonup X_I(t)$ donné par la formule d'interpolation :

$$X_l(t) = \sum_{m \in \mathbb{Z}} X(mT_e) \operatorname{sinc}\left(\frac{t - mT_e}{T_e}\right)$$

Alors:

Si $f_e > 2 f_{\text{max}}$ alors $X_l(t) = X(t)$ pour tout $t \in \mathbb{R}$

et

Si $X_l(t) = X(t)$ pour tout $t \in \mathbb{R}$ alors $f_e \ge 2f_{\text{max}}$

(c.-à-d. Si $f_e < 2 f_{\text{max}}$ alors il existe $t_0 \in \mathbb{R}$ tel que $X_l(t_0) \neq X(t_0)$)

EPFL

Théorème

13 / 28

Le théorème d'échantillonnage

La paternité de ce théorème est attribuée à plusieurs personnes, qui l'ont successivement redécouvert / amélioré au cours des ans...

 Claude Edwood Shannon (1916-2001), également ingénieur aux Laboratoires Bell, qui publie en 1949 un article sur la « communication en présence de bruit », et que nous allons revoir la semaine prochaine...

EPFL

Théorème

2 / 28

Le théorème d'échantillonnage : illustration

Voyons graphiquement ce que donne la reconstruction d'une sinusoïde pure :

$$X(t) = \sin(2\pi f t)$$

La version échantillonnée de ce signal est : $X(nT_e) = \sin(2\pi f nT_e)$ et la formule d'interpolation devient :

$$X_I(t) = \sum_{m \in \mathbb{Z}} \sin(2\pi f \, m T_e) \operatorname{sinc}\left(rac{t - m T_e}{T_e}
ight)$$

De manière pratique, on se limite à quelques termes de la somme :

$$X_l(t) \simeq \sum_{m=-N}^{N} \sin(2\pi f \, m T_e) \operatorname{sinc}\left(rac{t-m T_e}{T_e}
ight)$$

Théorè

Le théorème d'échantillonnage : illustration

$$X_l(t) \simeq \sum_{m=-N}^N \sin(2\pi f\, m T_e)\, {
m sinc}\left(rac{t-m T_e}{T_e}
ight)$$

Voici ce que donne cette formule d'interpolation pour f=2 Hz et $f_e=5$ Hz (donc $T_e=0.2$ sec) :

avec N = 5, 10, 50. Si $f_e > 2f$, la reconstruction est bonne.

EPFL

Théorème

15 / 28

Le théorème d'échantillonnage : illustration

$$X_l(t) \simeq \sum_{m=-N}^{N} \sin(2\pi f \, m T_e) \, \mathrm{sinc}\left(rac{t-m T_e}{T_e}
ight)$$

Voici ce que donne cette formule d'interpolation pour f=2.5 Hz et $f_e=5$ Hz (donc $T_e=0.2$ sec) :

fonction nulle, pour toute valeur de N! lci aussi, on a un problème....

EPFL

Théorème

15 / 28

Le théorème d'échantillonnage : illustration

$$X_l(t) \simeq \sum_{m=-N}^{N} \sin(2\pi f \, m T_e) \, \mathrm{sinc}\left(rac{t-m T_e}{T_e}
ight)$$

Voici ce que donne cette formule d'interpolation pour f=3 Hz et $f_e=5$ Hz (donc $T_e=0.2$ sec) :

avec N = 5, 10, 50. Ici, par contre, $f_e < 2f$: on a un problème... Et si $f_e = 2f$?

EPFL

Théorème

5 / 28

Essayons de mieux comprendre cet exemple

Rappel : la fréquence d'échantillonnage $f_e = 5$ Hz.

- ▶ Quand f = 2 Hz, la reconstruction est bonne.
- ightharpoonup Quand f = 3 Hz, la reconstruction est mauvaise.

- ▶ Retournons le graphe de droite, juste pour voir...
- Les valeurs échantillonnées sont les mêmes à gauche et à droite!

$$\sin(-2\pi \cdot 3 \cdot \frac{m}{5}) = \sin(-\frac{6\pi}{5} \cdot m) = \sin(\frac{4\pi}{5} \cdot m - 2\pi m) = \sin(2\pi \cdot 2 \cdot \frac{m}{5})$$

EPFL

Théorè

Essayons de mieux comprendre cet exemple

Rappel : la fréquence d'échantillonnage $f_e = 5$ Hz.

- ▶ Quand f = 2 Hz, la reconstruction est bonne.
- ▶ Quand f = 3 Hz, la reconstruction est mauvaise.

- ▶ Retournons le graphe de droite, juste pour voir...
- Les valeurs échantillonnées sont les mêmes à gauche et à droite!
- La courbe reconstruite avec la formule d'interpolation est donc aussi la même à gauche et à droite! (mais pas le signal d'origine)

EPFL

Théorème

16 / 28

Le théorème d'échantillonnage

Soient:

- ightharpoonup X(t) un signal de bande passante f_{max} ;
- ► $X(nT_e)$, $(n \in \mathbb{Z})$ le même signal échantillonné à une fréquence d'échantillonage f_e ;
- \triangleright $X_I(t)$ donné par la formule d'interpolation :

$$X_I(t) = \sum_{m \in \mathbb{Z}} X(mT_e) \operatorname{sinc}\left(\frac{t - mT_e}{T_e}\right)$$

Alors:

Si $f_e > 2 f_{\text{max}}$ alors $X_l(t) = X(t)$ pour tout $t \in \mathbb{R}$

et

Si $X_l(t) = X(t)$ pour tout $t \in \mathbb{R}$ alors $f_e \ge 2f_{\text{max}}$

(c.-à-d. Si $f_e < 2 f_{\text{max}}$ alors il existe $t_0 \in \mathbb{R}$ tel que $X_l(t_0) \neq X(t_0)$)

EPFL

Démonstration du théorème

18 / 28

Exemple: conclusion

Rappel : la fréquence d'échantillonnage $f_e = 5$ Hz.

- A partir des seules valeurs échantillonées de la sinusoïde, il n'est pas possible de dire si celle-ci a une fréquence de f = 2 Hz ou de f = 3 Hz (déphasée de π).
- ▶ Dans une telle situation, notre formule d'interpolation « choisit » la fréquence la plus basse, c.-à-d. f = 2 Hz.
- ▶ Donc, si on sait dès le départ que la fréquence f de la sinusoïde d'origine est plus petite que $f_e/2 = 2.5$ Hz, alors on sait aussi que la formule d'interpolation reconstruit la bonne sinusoïde.
- Si par contre la fréquence f est plus grande que $f_e/2 = 2.5$ Hz, alors la formule d'interpolation « choisit » la mauvaise fréquence : $\widetilde{f} = f_e f$, c'est l'effet stroboscopique qu'on a vu la semaine dernière.

EPFL

Théorème

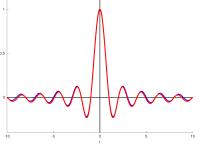
7 / 28

Avant les maths : pourquoi la condition

 $f_e > 2f_{\max}$?

- ▶ Dans tous les exemples vus précédemment, on avait à faire à un signal X(t) avec une seule fréquence f.
- ▶ On a vu dans ce cas que $f_e > 2f$ est une condition suffisante pour une bonne reconstruction du signal.
- ▶ Et si maintenant le signal X(t) contient deux fréquences f_1 et f_2 ?
- ▶ Dans ce cas, il suffira que $f_e > 2f_1$ et $f_e > 2f_2$ pour que le signal soit bien reconstruit, c.-à-d. que $f_e > 2 \max\{f_1, f_2\}$.
- ► En généralisant à un signal quelconque, on arrive donc intuitivement à la condition $f_e > 2f_{\text{max}}$.

Idée de la démonstration : première partie


Dans ce qui suit, nous justifions de manière informelle l'affirmation :

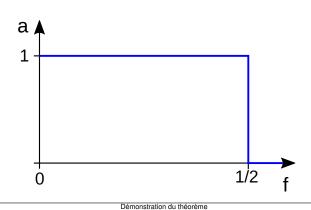
Si
$$f_e > 2 f_{\text{max}}$$
, alors $X_l(t) = X(t)$ pour tout $t \in \mathbb{R}$.

La fonction sinc est le résultat du mélange de plusieurs sinusoïdes :

$$\operatorname{sinc}(t) \simeq \frac{1}{N} \sum_{i=1}^{N} \sin(2\pi f_j \, t + \pi/2)$$
 avec N grand et $f_j = \frac{j}{2N}$

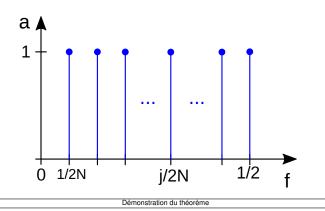
On voit ci-contre (en rouge) ce que vaut cette approximation $^{\$}$ pour N = 50.

EPFL


Démonstration du théorème

20 / 28

Idée de la démonstration : première partie (suite)


Notez que les fréquences $f_j = j/(2N)$ couvrent l'intervalle $[0, \frac{1}{2}]$.

Donc toutes les fréquences comprises dans l'intervalle $[0, \frac{1}{2}]$ sont présentes dans la fonction $\mathrm{sinc}(t)$.

Idée de la démonstration : première partie (suite)

Notez que les fréquences $f_j = j/(2N)$ couvrent l'intervalle $[0, \frac{1}{2}]$.

EPFL

21 / 28

Idée de la démonstration : première partie (suite)

Notez que les fréquences $f_j = j/(2N)$ couvrent l'intervalle $[0, \frac{1}{2}]$.

Donc toutes les fréquences comprises dans l'intervalle $[0, \frac{1}{2}]$ sont présentes dans la fonction sinc(t).

En conséquence, la fonction $\operatorname{sinc}(t/T_e) = \operatorname{sinc}(f_e t)$ contient toutes les fréquences comprises dans l'intervalle $[0, \frac{f_e}{2}]$.

La bande passante du signal $\operatorname{sinc}(f_e t)$ est donc $B = \frac{f_e}{2}$.

Or c'est justement la fonction $\operatorname{sinc}(f_e t)$ qu'on utilise pour reconstruire le signal :

La bande passante du signal interpolé $X_I(t)$ est donc plus petite ou égale à $\frac{f_e}{2}$.

EPFL

Démonstration du théorème

Idée de la démonstration : première partie (suite)

Etant donné l'hypothèse effectuée ($2f_{\text{max}} < f_e$), la bande passante du signal d'origine X(t) est aussi plus petite ou égale à $\frac{f_e}{2}$.

Nous avons vu de plus que $X_l(t)$ et X(t) prennent les mêmes valeurs aux points d'interpolation nT_e , $n \in \mathbb{Z}$.

Or on peut montrer le résultat suivant :

Deux signaux dont la bande passante est plus petite ou égale à $B = \frac{f_e}{2}$ et qui coïncident aux points nT_e , $n \in \mathbb{Z}$, coïncident en fait partout!

En conclusion:

Sous l'hypothèse que $f_e > 2f_{\text{max}}$, on a bien $X_l(t) = X(t)$ pour tout $t \in \mathbb{R}$.

EPFL

Démonstration du théorème

22 / 28

Sous-échantillonnage d'un signal

Lorsqu'on échantillonne un signal à une fréquence $f_e < 2 f_{\text{max}}$ apparaît l'effet stroboscopique dont nous avons parlé la semaine dernière.

En général, on essaie à tout prix d'éviter cet effet stroboscopique!

Une solution simple, mais coûteuse : augmenter la fréquence d'échantillonnage jusqu'à satisfaire la condition $f_e > 2 f_{\text{max}}$.

Idée de la démonstration : seconde partie

Vérifions maintenant l'affirmation « réciproque » :

Si
$$X_l(t) = X(t)$$
 pour tout $t \in \mathbb{R}$ alors $f_e \ge 2f_{\text{max}}$.

- ▶ Si $X_l(t) = X(t)$ pour tout $t \in \mathbb{R}$, alors...
- …ils ont même bande passante. (forcément : ce sont les mêmes signaux).
- Or on a vu que la bande passante de $X_l(t)$ est inférieure ou égale à $f_e/2$.
- ▶ Donc f_{max} (de X) est inférieure ou égale à $f_e/2$.

QED.

EPFL

émonstration du théorème

23 / 28

Effet stroboscopique : une autre solution

Cependant, certains signaux contiennent, en théorie, des fréquences qui vont jusqu'à l'infini (en pratique : des fréquences très élevées).

Pour ces signaux, $f_{\text{max}} = +\infty$: des tels signaux sont donc *toujours* sous-échantillonnés, quelle que soit la fréquence d'échantillonnage f_e .

Comment éviter l'effet stroboscopique dans ce cas?

Effet stroboscopique : une autre solution

Une solution qui minimise les dégâts consiste à :

filtrer le signal avant de l'échantillonner!

- on filtre le signal avec un filtre passe-bas idéal dont la fréquence de coupure f_c est juste un peu plus petite que $\frac{f_c}{2}$.
- ightharpoonup puis on échantillonne le signal à la fréquence f_e ;
- et pour reconstruire le signal, on utilise la formule d'interpolation.

On perd ainsi quelques hautes fréquences du signal, mais après ça, la reconstruction est parfaite; on n'a donc pas d'effet stroboscopique.

EPFL

Sous-èchantillonnage

26 / 28

Echantillonnage de signaux : 2^e conclusion

L'échantillonnage et la reconstruction de signaux ont permis une transformation profonde des télécommunications :

des signaux analogiques, on est passé aux signaux numériques, qui permettent un transfert bien plus efficace de l'information.

Echantillonnage de signaux : conclusion

- ▶ De façon surprenante, un signal à temps continu $(X(t), t \in \mathbb{R})$ peut sous certaines conditions être **reconstruit parfaitement** à partir de sa version échantillonnée $(X(nT_e), n \in \mathbb{Z})$.
- ► Le théorème d'échantillonnage nous donne le seuil (2 f_{max}) au dessus duquel la fréquence d'échantillonnage f_e est suffisante pour permettre une reconstruction parfaite du signal.
- ► En dessous de ce seuil, l'effet stroboscopique apparaît.
- On peut éviter l'apparition d'un tel phénomène en filtrant le signal avant de l'échantillonner.

EPFL

Conclusion

7 / 28

Annexe : justification de la formule d'approximation du sinc

Pourquoi

$$\operatorname{sinc}(t) \simeq \frac{1}{N} \sum_{j=1}^{N} \sin(2\pi f_j t + \pi/2)$$
 avec $f_j = \frac{j}{2N}$?

Somme de Riemann (de pas $\frac{1}{2N}$):

$$\lim_{N \to \infty} \frac{1}{2N} \sum_{i=1}^{N} \sin(2\pi t \cdot \frac{j}{2N} + \pi/2) = \int_{0}^{\frac{1}{2}} \sin(2\pi t f + \pi/2) df$$

Trigonométrie:

$$\sin(2\pi f t + \pi/2) = \cos(2\pi f t)$$

Primitive du cosinus :

$$\int_{0}^{\frac{1}{2}} \cos(2\pi t f) df = \frac{\sin(2\pi t \frac{1}{2}) - 0}{2\pi t} = \frac{1}{2} \operatorname{sinc}(t)$$

Conclusion

28 / 28

EPFL

Annexe