ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EIDGENOSSISCHE TECHNISCHE HOCHSCHULE — LAUSANNE

POLITECNICO FEDERALE — LOSANNA
SWISS FEDERAL INSTITUTE OF TECHNOLOGY — LAUSANNE

Faculté Informatique et Communication

m
U
I

Cours Introduction & la Programmation, (SIN/SSC)
Sam J.

INTRODUCTION A LA PROGRAMMATION

Examen semestriel

Instructions :

Instructions :

— You have two hours to do this exam (10h00 - 12h00).
— Maximum 85 points (+ 20 bonus, free to choose).

— Attention : There are also statements on the back of the pages.

— You must write in black or dark blue ink, not with a pencil and not with
any other color. Do not use an erasable pen (heat might cause part of

your writing to be lost).

— Any paper documentation is allowed ; However, you may not use a personal
computer, cell phone, or other electronic equipment.

— Answer on the sheets given to you and in the places provided. Do not
write your answers in this document.

— Do not attach any additional sheets; only answer sheets that were dis-
tributed to you will be graded.

— You can answer the questions in French or in English.

— The exam consists of 3 independent exercises. You can start with whi-
chever you want

— Exercice 1 : 56 points.
— Exercice 2 : 34 points.

— Exercice 3 : 15 points.

suite au verso =

Exercice 1 : Conception OO [56 points]

It is important to read each question of this exercise in its entirety before answering it. Also,
take the time to read the imposed constraints and to consult the code provided in the appendix
before starting the exercise. This exercise contains 4 questions. Questions 1 and 2 are independent

of question 3.

This exercise focuses on simulating, in a very simplified way, the reproduction of goldfish in an aquarium.

Goldfish in an aquarium that :

— are distinguished as males and fe-
males ;

— feed and reproduce under certain
conditions.

Design Constraints When solving this exercise, the following constraints must be respected :

1. When asked to write the body of a class, do so in Java syntax and include attributes and methods
but without the bodies (except for those explicitly requested).

2. A draft Aquarium class is provided which will need to be completed. You will assume that a main
program exists, that it creates an Aquarium object, adds fish and food sources to it, and calls
their update method in a loop. This method allows the involved entities to evolve over time (using
update methods, as dictated by the Updatable interface).

3. Classes must contain the necessary members to implement all the desired functionalities, whe-
ther they are explicitly requested or suggested by the specifications of the statement
(especially by the implementation of the update methods);

4. For methods that are not trivial, briefly comment on the meaning of the return type and
what they do in broad terms, as well as the functionalities of other classes they use.

Do not neglect constructors, nor access rights.

The protected right must not be used for attributes.

Your design must be well modularized.

® N oo

Propose getters/setters only when they are necessary for the implementation of the simulation
described.

9. It is not necessary to write import directives.

suite =

EXAMEN INTRODUCTION A LA PROGRAMMATION — SIN/SSC
EPFL J. Sam 16 Décembre 2023

Question 1 : Aquarium (11.5 points)

An aquarium is characterized by its volume (a Vec3d giving its length, width, and height), its filling
percentage, its PH, and the temperature of its water. These data are initialized at construction through
parameters. If an aquarium is constructed using only a volume, the other attributes will have specific
default values : 85% for the filling level, 7 for the PH, and 22 for the temperature. These default values
correspond to the ideal living conditions for fish.

The characteristics of the aquarium evolve over time (water evaporates, PH changes, etc.). The precise
modalities of these changes are not of interest to us but are taken care of by the update
method (provided in the appendix).

The following additional functionalities are desired for the aquarium at this stage :
1. access its PH, temperature, and filling level,
2. return the aquarium to ideal living conditions (temperature, PH, and filling level) ;

3. increase or decrease the filling level (this function must return the filling level resulting from this
operation) ;

4. and transfer its fish to another aquarium.

Provide the Java code to add to the Aquarium class to meet this specification. Provide only the
method headers and attributes.

Question 3 : Nutrients (21 points)

It is now about completing the nutrients’ conception (Food). A nutrient for fish can be either one of their
eggs or a flake.

— Each type of nutrient has an energy level and a position (Vec3d). These data are provided at
construction.

— Nutrients are distinguished from each other in their way of being consumed (i.e., losing energy) : for
example, an egg if eaten is gobbled up entirely at once (energy reduced to zero), a flake is nibbled
on little by little. The precise consumption modalities are not of interest to us.

— An egg can be fertilized and it must be possible to inquire whether it is. It is created unfertilized.
At the moment it is fertilized, its incubation begins. The incubation time is a constant common
to all eggs. A new fish will replace the egg once this time has elapsed. We are not interested in
the exact details of how the new fish is created. You will consider that an egg has access to its
aquarium (as an attribute passed at construction). However, it must only be able to access
the addFish and removeFood methods.

Over time, nutrients move randomly in the water. The exact modalities of these movements are not of
interest.

— Write the classes and interfaces that can be used to represent the nutrients model.
You can use any values you like for the constants involved. Comment on the role of
the update methods when they are redefined.

— Describe any additions to be made to the Aquarium class.

suite au verso =

EXAMEN INTRODUCTION A LA PROGRAMMATION - SIN/SSC)
EPFL J. Sam 16 Décembre 2023

Question 3 : Fish (13 points)

A fish is endowed with a position (Vec3d) given at construction. At each time step, it moves around the
aquarium (the exact modalities are not of interest to us). Fish are categorized into males and females.
As this simulation is mainly interested in reproduction, these categories represent types (classes). Female
fish randomly lay eggs over time.

If a fish collides with a nutrient, it interacts with it. The modalities of interaction are not of interest to
us for the moment but depend on its type. You will consider that it is the aquarium that tests collisions
and calls up the interaction methods.

Moreover, fish are aware of the aquarium in which they live (attribute transmitted at construction).
However, they should only have access to its PH, and temperature. They must also be able to lay in it
a given number of eggs.

— Write the classes and interfaces allowing to represent the above model. You can use
the values of your choice for the constants involved.

— Describe any additions to be made to the Aquarium class.

Question 4 : Interactions [10.5 points]

The modalities of a fish interaction with a nutrient depend on its type :
— if it is a female, she consumes it.
— if itis s a male : he consumes it if it is a flake and fertilizes it if it is an egg.

We wish that the method of interaction takes place without type testing, by using the mechanism of
method overloading. Indicate the methods to add in the existing hierarchies to code the
interactions. You will also provide the bodies of the methods

EXAMEN INTRODUCTION A LA PROGRAMMATION - SIN/SSC)
EPFL J. Sam 16 Décembre 2023

Exercice 2 : Concepts de base [34 points]

Answer the following questions clearly and concisely :

1. [5 points] The code is as follows :

1 |class A {
2 private String a;
3 public A() { init("better"); }
4 private void init(String a) { this.a = a; }
5 public String toString() { return " a " + a + " " ; }
6 |}
7 |class B extends A {
8 private String b = "day";
9 public B() { }
10 public B(String b) { this(); this.b += " ?"; }
11 public String toString() { return super.toString() + b; }
12 |}
13 | class Pgme {
14 public static void main(Stringl[] args) {
15 B b = new B("");
16 System.out.println(b);
17 }
18 |}
(a) What does it display ?
(b) Can we delete the empty default constructor on line 97
(c) Can we set the method toString as protected in A ?
(d) Can we replace this() with this("day") on line 107
(e) Can we replace this() with super("day") on line 107

Briefly justify each of your answers.

2. [6 points] Consider the following class declarations :

1 1
2 |class A { 2 |class B extends A {
3 void m1 () {} 3 void m2 () {}
4 |} 4 >
(1) (2)
1
2 |class C {
3 void m3(){}
4 |}

3)

For each of these classes, add the missing access rights and package declarations so that the
following constraint is satisfied : m3 is accessible in A but not in B, m1 is accessible in B and C, m2

is accessible nowhere but in B.

EXAMEN INTRODUCTION A LA PROGRAMMATION - SIN/SSC

EPFL J. Sam 16 Décembre 2023

3. [12.5 points] Consider the following two statements :

O Tl W N~

interface I {
default void m() {}
}
abstract class C {
public abstract void m();
}

Indicate for each of the following statements, each taken separately, whether they can be added to
the program without causing a compiler error :

(a)
b

—_

C

)
)
d)
)
)

—_

e
f

g
h

(i
(J

—~

)
)

—

)
)

class D extends C {}

class D extends C extends I {}

class D implements I {}

class D extends I {}

interface F extends I {}

interface F implements I {}

abstract class D extends C { enum E { ONE, TWO } }
abstract class D extends C {}

class D extends C implements I { public void m() {} }
class D implements I { public void m() {I.super.m();} }

(an invalid answer causes a penalty of -0.25, but the mark cannot be below zero for the question)

suite =

=P

F:l. J. Sam

EXAMEN INTRODUCTION A LA PROGRAMMATION — SIN/SSC
16 Décembre 2023

4. [10.5 points] The code is as follows :

1 |class Collector extends ArraylList<Integer> {
2 static int k = O0;

3 boolean add (int i) {

4 ++k;

5 if (i%2 '= 0) {

6 return super.add(i);

7 }

8 return false;

9 }

10 public String print() {

11 String res = "";

12 for (Integer i : this) res+=i + " ";
13 return res;

14 }

15 |}

16 |class Garbage extends Collector {

17 boolean add (int i) {

18 super.add(i);

19 if (i%4 == 0) {

20 return super.add(i+1);

21 }

22 return false;

23 }

24 boolean add (int i, boolean b) { add(i); return b; }
25 |}

26 | class Pgme {

27 public static void main(String[] args) {
28 Collector tray = new Garbage();

29 tray.add(2); tray.add(7); tray.add(4);
30 System.out.println(tray.print());

31 System.out.println(Garbage.k);

32 }

33 |}

(a)

(b) can we put the keyword abstract at the beginning of line 17
(c)

(d)
()
(f
(s

what does it display ?

can we add a String add(int i) method to the Garbage class?

can we add the line System.out.println(tray.k); at the end of main ?
give an example of method («overloading») in the above code.

) give an example of method («overriding») in the above code.

) why can’t we add tray.add(2, true); to the end of main. How should this instruction be
changed so that it can be added without causing a compilation error.

Briefly justify your answers to (b), (c), (d) and (g) questions.

EXAMEN INTRODUCTION A LA PROGRAMMATION - SIN/SSC

EPFL J. Sam 16 Décembre 2023

Exercice 3 : Déroulement de programme [15 points]

The following program runs without errors (you’ll assume the import directives are present). What does
it display ? Briefly explain how it works, without rephrasing the code.

© 00 O Ut W~

DO DN DN DN DN = = = e e e e e e
DU R WD FE O OO Utk wNn—OoO

27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45

interface PowerProduct extends BasicProduct {
double POWER = 400;
default double power (double rpm) { return rpm; }
default double power () { return 0; }

}

interface BasicProduct {
default double weight() { return 0; }

b

abstract class Product implements BasicProduct {
public double weight;
public Product (double w) { weight = w; }
public double weight() { return weight; }

}
class GasEngine extends Product implements PowerProduct {
private double maxPower = PowerProduct.POWER*10;
private double rpm;
public GasEngine (double rpm) { this (500,300, rpm); }
public GasEngine(double w, double p, double r) {
super (w); maxPower = p; rpm = r;
}
public String toString() {
return "GasEngine(" + weight() + "," + power() + ")";
}
public double power() { return power(rpm); 1}
public final double power (double rpm) {
return maxPower * PowerProduct.super.power (rpm) /
PowerProduct .POWER;
}
}

class ElectricEngine extends Product implements PowerProduct {
private double maxPower;
public ElectricEngine() {
this (100, 200); maxPower *=2;

}
public ElectricEngine (double w, double p) { super(w); maxPower=p;
}
public String toString() {
return "ElectricEngine(" + weight() + "," + power() + ")";
}
public final double power() { return maxPower; 1}
}
class Car extends Product implements PowerProduct {
private List <PowerProduct> engines = new ArrayList<>();
private Chassis chassis = new Chassis();
private String id;
private double rpm; // SUITE -->>

=P

EXAMEN INTRODUCTION A LA PROGRAMMATION - SIN/SSC

FL J. Sam 16 Décembre 2023

46 public Car(String id, double rpm) {
47 super (0); this.id = id; this.rpm=rpm;
48 }
49 public String getId() { return id; }
50 public String toString() {
51 String str = "Car(" + id + ")\n";
52 for (PowerProduct e : engines) str += e.toString() + "\n";
53 str+= chassis.toString();
54 str+= "performance : " + performance();
55 return str;
56 }
57 public double performance() { return power(rpm) / weight(); 1}
58 public final double weight() {
59 double s = chassis.weight();
60 for (PowerProduct e : engines) s += e.weight();
61 return s;
62 }
63 public double power (double rpm) {
64 double s = 0.0;
65 for (PowerProduct e : engines) s += e.power (rpm);
66 return s;
67 }
68 public void add(PowerProduct p) { engines.add(p); }
69 public void addChassis() { chassis= new Chassis(); }
70 public void addChassis(double w) { chassis= new Chassis(w); }
71
72 private class Chassis extends Product implements BasicProduct {
73 private Chassis(double w) { super(w); }
74 private Chassis() { this(1000); }
75 public double weight() { return weight; }
76 public String toString() {
77 return "Chassis(" + weight() + ")\n";
78 }
79 }
80 |}
81 | class Deroulement {
82 public static void main(Stringl[] args) {
83 double rpm = PowerProduct.POWER*20;
84 Car a = new Car("Alice's car", rpm);
85 a.add (new GasEngine(rpm)); a.addChassis();
86 System.out.println(a); System.out.println();
87 rpm = PowerProduct.POWER*10;
88 Car b = new Car("Bob's car", rpm);
&9 b.add (new GasEngine (400, 200, rpm)); b.addChassis (1500) ;
90 b.add(new ElectricEngine());
91 System.out.println(b);
92 Car faster = (a.performance() > b.performance()) 7 a : b;
93 System.out.println(faster.getId() + " is faster\n");
94 }
95 |}
EXAMEN INTRODUCTION A LA PROGRAMMATION - SIN/SSC
=P J. Sam 16 Décembre 2023

