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The Composition Theorem for Differential Privacy

Peter Kairouz, Member, IEEE, Sewoong Oh, Member, IEEE, and Pramod Viswanath, Fellow, IEEE

Abstract— Sequential querying of differentially private mecha-
nisms degrades the overall privacy level. In this paper, we answer
the fundamental question of characterizing the level of overall
privacy degradation as a function of the number of queries and
the privacy levels maintained by each privatization mechanism.
Our solution is complete: we prove an upper bound on the
overall privacy level and construct a sequence of privatization
mechanisms that achieves this bound. The key innovation is
the introduction of an operational interpretation of differential
privacy (involving hypothesis testing) and the use of a data
processing inequality along with its converse. Our result improves
over the state of the art, and has immediate connections to several
problems studied in the literature.

Index Terms— Differential privacy, hypothesis testing.

I. INTRODUCTION

IFFERENTIAL privacy is a formal framework to quan-

tify to what extent individual privacy in a statistical data-
base is preserved while releasing useful aggregate information
about the database. It provides strong privacy guarantees
by requiring the indistinguishability of whether or not an
individual is in a database based on the released informa-
tion, regardless of the side information on the other aspects
of the database the adversary may possess. Denoting the
database when the individual is present as D; and as Dy
when the individual is not, a differentially private mechanism
provides indistinguishability guarantees with respect to the
pair (Do, D1). The databases Do and D are referred to as
“neighboring” databases.

Definition 1 (Differential Privacy [10], [12]): A random-
ized mechanism M over a set of databases is (g, 0)-
differentially private if for all pairs of neighboring databases
Doy and D1, and for all sets S in the output space of the
mechanism X,

P(M(Dg) € §) < e P(M(Dy) € S) + 6.
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A basic problem in differential privacy is how privacy of a
fixed pair of neighbors (Dg, D1) degrades under composition
of interactive queries when each query, individually, meets
certain differential privacy guarantees. A routine argument
shows that the composition of k queries, each of which is
(e, 0)-differentially private, is at least (ke, ko)-differentially
private [10]-[12], [16]. A tighter bound of (&3,kd + 0)-
differential privacy under k-fold adaptive composition is pro-
vided, using more sophisticated arguments, in [16] for the
case when each of the individual queries is (¢, d)-differentially

private. Here €5 = O Q:ez—i-g,/k log(l/g)). On the other hand,
it was not known if this bound could be improved until this
work.

Our main result is the exact characterization of the pri-
vacy guarantee under k-fold composition. Any k-fold adap-
tive composition of (g, d)-differentially private mechanisms
satisfies the privacy guarantee stated in Theorem 9. Further,
we demonstrate a specific sequence of (nonadaptive) privacy
mechanisms which when composed, degrade the privacy to
the level guaranteed in Theorem 9. Our result entails a strict
improvement over the state-of-the-art result in [16]. This can
be seen immediately in the following approximation — using
the same notation as above, the value of 55 is now reduced
to &5 = 0(k82 + g\/k log(e + (s\/%/g))). Since a typical
choice of d is = @(kJ), in the regime where ¢ = O (v/kJ),
this improves the existing guarantee by a logarithmic factor.
The gain is especially significant when both ¢ and J are small.

We view differential privacy as a guarantee on the two types
of error (false alarm and missed detection) in a binary hypoth-
esis testing problem involving two neighboring databases. This
approach is similar to the previous work of Wasserman and
Zhou [33]. Our work leverages two benefits of this operational
interpretation of differential privacy.

o The first is conceptual. The operational setting directs
the logic of the steps of the proof, makes the arguments
straightforward, and readily allows for generalizations
such as heterogeneous compositions.

o The second is technical. The operational interpretation of
hypothesis testing brings both the natural data processing
inequality and the strong converse to the data processing
inequality. These inequalities, while simple by them-
selves, lead to surprisingly strong technical results. As an
aside, we mention that there is a strong tradition of
such derivations in the information theory literature:
the Fisher information inequality [5], [34], the entropy
power inequality [5], [31], [32], an extremal inequality
involving mutual informations [28], matrix determinant
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inequalities [7], the Brunn-Minkowski inequality and its
functional analytic variants [9] — [8, ch.17] enumerates
a detailed list — were all derived using operational inter-
pretations of mutual information and corresponding data
processing inequalities.

The optimal composition theorem (Theorem 9) pro-
vides a fundamental limit on how much privacy degrades
under composition. Such a characterization is a basic result
in differential privacy and has been used widely in the
literature [2], [16], [19], [22], [24], [29]. In each of these
instances, the optimal composition theorem derived here
(or the simpler characterization provided in Theorem 10) could
be “cut-and-pasted”, allowing for a corresponding strengthen-
ing of their conclusions. We demonstrate this strengthening for
two instances: (a) the variance of noise adding mechanisms
in Section V-A, and (b) the utility of graph cut and matrix
variance queries in Appendix A. We further show that a variety
of existing noise adding mechanisms ensures the same level
of privacy with similar variances. This implies that there is
nothing special about the popular choice of adding a Gaussian
noise when composing multiple queries, and the same utility
as measured through the noise variance can be obtained
using other known mechanisms. We start our discussions by
operationally introducing differential privacy as a guarantee on
the error probabilities of a binary hypothesis testing problem.

II. DIFFERENTIAL PRIVACY AS HYPOTHESIS TESTING

Given a random output Y of a database access mecha-
nism M, consider the following hypothesis testing experiment.
We choose a null hypothesis as database Dy and alternative
hypothesis as Dj:

HO : Y came from a database Dy,
H1:Y came from a database D;.

For a choice of a rejection region S, the probability of false
alarm (type I error), when the null hypothesis is true but
rejected, is defined as Ppa (Do, D1, M, S) = P(M(Dy) € S),
and the probability of missed detection (type II error),
when the null hypothesis is false but retained, is defined
as Pup(Do, D1, M, S) = P(M(Dl) € S‘) where S is the
complement of S. It turns out that imposing differential privacy
conditions on a mechanism M is equivalent to restricting the
probability of false alarm and missed detection from being
simultaneously small. Wasserman and Zhu proved that (¢, 0)-
differential privacy implies the conditions in Equation (1) for
the special case when ¢ = 0 [33, Theorem 2.4]. The same
proof technique can be used to prove a similar result for
a general 6 € [0,1], and to prove that the conditions in
Equation (1) imply (e, d)-differential privacy as well. We refer
the reader to Section VI-B for a proof.

Theorem 2: For any ¢ > 0 and 6 € [0,1], a database
mechanism M is (g, 0)-differentially private if and only if the
following conditions are satisfied for all pairs of neighboring
databases Do and D1, and all rejection region S C X':

Pea(Do, D1, M, S) + ¢ Pup(Do, D1, M, S) > 1 -9, and
eSPFA(D(),Dl,M,S)+PMD(D0,D],M,S)21—5. (1)
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Fig. 1. Privacy region for (¢, J)-differential privacy. Dotted line represents
the solution of a maximization problem (20). For simplicity, we only show
the privacy region below the line Ppy + Pyvp < 1, since the whole region is
symmetric w.r.t. the line Prp + Pyp = 1.

This operational perspective relates the privacy parameters
¢ and ¢ to a set of conditions on probability of false alarm and
missed detection. This shows that under differential privacy,
it is impossible for both Pyip and Ppa to be simultaneously
small. This operational interpretation of differential privacy
suggests a graphical representation of differential privacy as
illustrated in Figure 1. We define the privacy region for (¢, d)-
differential privacy as

R(e,0) = {(Pvp, Pra) | Pra + ¢“Pyp > 1 — 6,
and ¢* Pra + Pvp > 1 — 6}. 2

Similarly, we define the privacy region of a database access
mechanism M with respect to two neighboring databases Dy
and D; as

R(M. Do, D1) = conv( {(Pun(S), Pea (5)) | for all § € x}),
(3)

where conv(+) is the convex hull of a set and X is the alphabet
of the privatized output, Pyp(S) = Pvp (Do, D1, M, S), and
Pra(S) = Ppa(Do, D1, M, S)). Operationally, by taking the
convex hull, the region includes the pairs of false alarm and
missed detection probabilities achieved by soft decisions that
might use internal randomness in the hypothesis testing rule.
Precisely, let y : X — {Hp, H1} be any randomized decision.
For example, we can accept the null hypothesis with a certain
probability p; if the output s in a set S; and probability p» if it
is in another set S,. In full generality, a decision rule y can be
fully described by a partition {S;} of the output space X, and
a corresponding accept probabilities {p;}. The probabilities
of false alarm and missed detection for a decision rule y is
defined as Ppa (Do, D1, M,y) = P(y (M(Do)) = H;) and
Pymp (Do, D1, M, y) = P(y (M(D1)) = Ho).

Remark 3: For all neighboring databases Dy and D1 and
a database access mechanism M, the pair of false alarm and
missed detection probabilities achieved by any decision rule
y is included in the privacy region:

(Pmp (Do, D1, M, y), Pra(Do, D1, M, 7)) € R(M, Dy, Dy),

for all decision rules y.
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Let Do ~ D; denote that the two databases are neighbors.
The union over all neighboring databases defines the privacy
region of the mechanism.

R(M) = U R(M, Dy, Dy).
Dy~D

The following corollary, which follows immediately from
Theorem 2, gives a necessary and sufficient condition on the
privacy region for (¢, d)-differential privacy.

Corollary 4: A mechanism M is (¢, d)-differentially private
if and only if R(M) C R(g, 9).
To illustrate the strengths of the graphical representation of
differential privacy, we provide simpler proofs for some well-
known results in differential privacy in Appendix A.

Consider two database access mechanisms M (-) and M'(-).
Let X and Y denote the random outputs of mechanisms M
and M’ respectively. We say that M dominates M’ if M'(D)
is conditionally independent of D given the outcome of M (D).
In other words, the database D, X = M(D) and Y = M'(D)
form the following Markov chain: D-X-Y. We note that this
holds for all distributions on D.

Theorem 5 (Data Processing Inequality for Differential Pri-
vacy): If a mechanism M dominates a mechanism M’', then
for all pairs of neighboring databases Dy and D,

R(M', Dy, D1) € R(M, Dy, D).

We refer the reader to Section VI-A for a proof. Together
with Corollary 4, Theorem 5 recovers a well known
result: differential privacy is preserved by postprocessing the
output [10], [15], [33]. Perhaps surprisingly, the converse is
also true.

Theorem 6 [4, Corollary of Theorem 10]: Fix a pair of
neighboring databases Do and Dy, and let X and Y denote
the random outputs of mechanisms M and M’', respectively.
If M and M’ satisfy

R(M', Dy, D1) € R(M, Dy, Dy),

then there exists a coupling of the random outputs X and
Y such that they form a Markov chain D—X-Y where D €
{Do, D1}.

In other words, when the privacy region of M’ is included
in M, there exists a stochastic transformation 7 that operates
on X to produce a random output that has the same marginal
distribution as Y conditioned on the database D. We can
consider this mechanism 7' as a privatization mechanism that
takes a (privatized) output X and provides even further pri-
vatization. The above theorem was proved in [4, Corollary of
Theorem 10] in the context of comparing two experiments,
where a statistical experiment denotes a mechanism in the
context of differential privacy.

III. COMPOSITION OF DIFFERENTIALLY
PRIVATE MECHANISMS

In this section, we address how differential privacy guar-
antees compose: when accessing databases multiple times via
differentially private mechanisms, each of which having its
own privacy guarantees. Precisely, we address the following
fundamental question: how much privacy can be guaranteed
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after multiple database accesses? To formally define com-
position, we consider the following scenario known as the
‘composition experiment’, proposed in [16].

A composition experiment takes as input a parameter b €
{0, 1}, and an adversary A. From the hypothesis testing per-
spective proposed in the previous section, b can be interpreted
as the hypothesis: null hypothesis for b = 0 and alternative
hypothesis for b = 1. At each time i, a database D"?
is accessed depending on b. For example, one includes a
particular individual and another does not. For example, D'-°
could be medical records including a particular individual and
D1 does not include the person, and D%0 could be voter
registration database with the same person present and D!
with the person absent. An adversary A4 is trying to figure out
whether or not a particular individual is in the database by
testing the hypotheses on the output of k sequential data-
base accesses via differentially private mechanisms. In full
generality, we allow the adversary to have full control over
which pair of databases to access, which query to ask, and
which mechanism to be used at each repeated access. Further,
the adversary is free to make these choices adaptively based
on the previous outcomes. The only restrictions are: (a) the
differentially private mechanisms belong to a family M (e.g.,
the family of all (e, d)-differentially private mechanisms),
(b) the internal randomness of the mechanisms are independent
at each repeated access, and (c) that the hypothesis b is not
known to the adversary.

Algorithm 1 COMPOSE(A, M, k, b)
Input: A, M, k, b
Output: V?
Choose internal randomness R for the adversary A
for i =1tok do
A requests (D9, D" g, M;) for some M; € M;
A receives y; = M;(D"?, g;);
end for
Output the view of the adversary V? = (R, Y7, ..

LYh.

The outcome of this k-fold composition experiment is the
view of the adversary A: VP = (R, Y?, ..., Y,f’), which is the
sequence of random outcomes Y lb ey Y,f’ , and the outcome
R of any internal randomness of .A.

A. Optimal Privacy Region Under Composition

We would like to characterize how much privacy degrades
after a k-fold composition experiment. It is known that the
privacy degrades under composition by at most the ‘sum’ of
the differential privacy parameters of each access.

Theorem 7 ( [10]-[12], [16]): For any ¢ > 0 and ¢ €
[0, 1], the class of (e, d)-differentially private mechanisms
satisfies (ke, ko)-differential privacy under k-fold adaptive
composition.

In general, one can show that if M; is (g;, d;)-differentially
private, then the composition satisfies (¢ &i» 2oicpr) 91)-
differential privacy. If we do not allow for any slack in the
0, this bound cannot be tightened. Precisely, there are exam-
ples of mechanisms which under k-fold composition violate
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(&, 2 jeqx) 91)-differential privacy for any & < >, & We
can prove this by providing a set S such that the privacy con-
dition is met with equality: P(V? € §) = eicw PV € §)
+ Zie[k] 0;. However, if we allow for a slightly larger value
of d, then Dwork et al. showed in [16] that one can gain a
significantly higher privacy guarantee in terms of .

Theorem 8 ( [16, Theorem II1.3]): For any ¢ > 0, § €
[0, 1], and & € (0, 1], the class of (¢, 6)-differentially private
mechanisms satisfies (£5, ko + d)-differential privacy under k-
fold adaptive composition, for

g5 =ke(e® — 1) +&/2k log(1/9). O]

By allowing a slack of 6 > 0, one can get a higher
privacy of &5 = O (ke ++~/ke?), which is significantly smaller
than ke. This is the best known guarantee so far, and has
been used whenever one requires a privacy guarantee under
composition (e.g. [2], [16], [24]). However, the important
question of optimality has remained open. Namely, is there a
composition of mechanisms where the above privacy guarantee
is tight? In other words, is it possible to get a tighter bound
on differential privacy under composition?

We give a complete answer to this fundamental question
in the following theorems. We prove a tighter bound on the
privacy guarantee under composition. Further, we also prove
the achievability of the privacy guarantee: we provide a set
of mechanisms such that the privacy region under k-fold
composition is exactly the region defined by the conditions
in (5). Hence, this bound on the privacy region is tight and
cannot be improved upon.

Theorem 9: For any ¢ > 0 and 6 € [0, 1], the class of
(&, 0)-differentially private mechanisms satisfies

((k —2e, 1 — (1 — 5)k(1 —0;) )—diﬁ‘erential privacy (5)
for

under k-fold adaptive all i =

{0,1,...,1k/2]}, where

5 é;}) (1;) (e(k—f)s _ e(k72i+€)c) .

i = gy (6)

Hence, the privacy region of k-fold composition is an inter-
section of k regions, each of which is ((k —2i)e, 1 — (1 — 9)F
(1 = 8))- dlfferentlally prlvate R{(k — 2i)e, 1 — (1 — o)k

(1 = hiet) = N2y R(k = 20)e,1 = (1 = 9)4(1 = 3).
We prove this result in Section IV by constructing an
explicit mechanism that achieves this region under composi-
tion. Hence, this bound on the privacy region is tight, and
gives the exact description of how privacy degrades under
k-fold adaptive composition. This settles the question that
was left open in [10]-[12], [16] by providing, for the
first time, the fundamental limit of composition and prov-
ing a matching mechanism with the worst-case privacy
degradation.

To prove the optimality of our main result in Theorem 9,
namely that it is impossible to have a privacy worse than (5),
we rely on the operational interpretation of the privacy as
hypothesis testing. To this end, we use the new analysis
tools (Theorem 5 and Theorem 6) provided in the pre-
vious section. Figure 2 illustrates how much the privacy
region of Theorem 9 degrades as we increase the number

composition,
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Fig. 2. Privacy region R({(k — 2i)e, d;}) for the class of (g, 0)-differentially
private mechanisms (top) and (e, d)-differentially private mechanisms (bottom)
under k-fold adaptive composition.
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Fig. 3. Theorem 9 provides the tightest bound (top). Given a mechanism
M, the privacy region can be completely described by its boundary, which
is represented by a set of tangent lines of the form Ppp = —e* Pyp + 1 —
dz(Py, P1) (bottom).

of composition k. Figure 3 provides a comparison of the
three privacy guarantees in Theorems 7, 8 and 9 for 30-fold
composition of (0.1, 0.001)-differentially private mechanisms.
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Smaller region gives a tighter bound, since it guarantees higher
privacy.

B. Simplified Privacy Region Under Composition

In many applications of the composition theorems, a closed
form expression of the composition privacy guarantee is
required. The privacy guarantee in (5) is tight, but can be
difficult to evaluate. The next theorem provides a simpler
expression which is an outer bound on the exact region
described in (5). Compared to (4), the privacy guarantee is

significantly improved from &5 = O(k82 +/ke? log(l/g)) to

=0 (k82 + min {,/ke2 log(1/9), & log(e/g)}), especially

when composing a large number k of interactive queries.
Further, the J-approximate differential privacy degradation of
(1 — (1 =K1 — ) is also strictly smaller than the previous
(ko + 0). We discuss the significance of this improvement in
the next section using examples from the existing differential
privacy literature.

Theorem 10: For any ¢ > 0, 0 € [0, 1], and 6 € [0, 1],
the class of (e, d)-differentially private mechanisms satisfies
(55,1 — (1 =9k - 5))-diﬁ‘erential privacy under k-fold
adaptive composition, for

(ef — 1)ek \/ Vke?
- 2k 1 =
et + 1 te 08 (6 + o ) ’

€Dk ke (1) )

This bound can be further simplified as

é;:min{ke ,

(N

5 <m {ka ke? —i—e\/Zklog (e + (Vke2/3)),

ke? + e/ 2k log(1/5) }

A proof is provided in Section VI-D. This privacy guaran-
tee improves over the existing result of Theorem 8 when
5 = OWke). Typical regime of interest is the high-
privacy regime for composition privacy guarantee, i.e. when
Vke? « 1. The above theorem suggests that we only need
the extra slack of approximate privacy 6 of order Vke2.

C. Composition Theorem for Heterogeneous Mechanisms

So far, we considered homogeneous mechanisms, where
all mechanisms are (g, d)-differentially private. Our analysis
readily extends to heterogeneous mechanisms, where the £-th
query satisfies (e¢, o¢)-differential privacy (we refer to such
mechanisms as (&¢, d¢)-differentially private mechanisms).

Theorem 11: For any ¢ > 0, o¢ € [0,1] for £ €
{1,....,k}, and 6 € [0, 1], the class of (¢, o¢)-differentially
private mechanisms satisfies (55, 1—(1-9) ng:1(l — 55))-
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differential privacy under k-fold adaptive composition, for
k
(eft — l)ag
;8(’,2_: ot 1 2285 log( )
v 25 1‘95)
P

&5 = 1m

(eft — 1)8g
z P 2285 10g(e+

(=1

)

This tells us that the &¢’s sum up under composition:

whenever we have ke or ke in (7) we can replace it by the
summation to get the general result for heterogeneous case.

IV. PROOF OF THEOREM 9

We first propose a simple mechanism and prove that it
dominates over all (g, J)-differentially private mechanisms.
Analyzing the privacy region achieved by the k-fold compo-
sition of the proposed mechanism, we get a bound on the
privacy region under the adaptive composition. This gives
an exact characterization of privacy under composition, since
we show both converse and achievability. We prove that no
other family of mechanisms can achieve ‘more degraded’
privacy (converse), and that there is a mechanism that we
propose which achieves the privacy region (achievability).

A. Achievability

We propose the following simple mechanism M. Under the
null hypothesis (b = 0), the outputs {X* 0 M(D’ » i) Yielk]
are independent and identically distributed to a discrete ran-
dom variable X ~ IN’O(o), where

0 forx =0,

- ~ U= for x = 1

Pox) = PRo=x) = 1 5 7O
I+e? -
0 for x = 3.

Under the alternative hypothesis (b = 1), the outputs {X"! =

M (Di’l, qi)}ielk) are independ~ent anNd identically distributed
to a discrete random variable X| ~ Pj(-), where
0 for x =0,
1-9
- - . forx =1
Pi(x) = P(X; =x Ies e (10
1( ) ( 1 ) (111535 for x = 2, (10)
0 for x = 3.

In particular, the output of this mechanism does not depend
on the database D“* or the query ¢;, and only depends on
the hypothesis b. The privacy region of a single access to this
mechanism is R (g, J) in Figure 1. Hence, by Theorem 6, all
(&, 9)-differentially private mechanisms are dominated by this
mechanism.

In general, the privacy region R(M, Do, D1) of any mech-
anism can be represented by an intersection of multiple
{Ej, 5j)} privacy regions. For a mechanism M, we can
compute the (&;, P ;) pairs representing the privacy region as
follows. Given a null hypothesis database Dy, an alternative
hypothesis database Dj, and a mechanism M whose output
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space is X, let Py and P; denote the probability density
function of the outputs M (Dg) and M (D), respectively. To
simplify notations we assume that Py and P; are symmetric,
i.e. there exists a permutation 7 over X such that Py(x) =
Pi(m(x)) and Pi(x) = Po(x(x)). This ensures that we get a
symmetric privacy region.

The privacy region R(M, Dy, D1) can be described by its
boundaries. Since it is a convex set, a tangent line on the
boundary with slope —e®/ can be represented by the smallest
b ; such that

Pra > —€% Pyp + 1 =65, (11)

for all rejection sets (cf. Figure 3). Letting S denote the
complement of a rejection set, such that Ppa = 1 — Py(S)
and Pyp = Pi(S), the minimum shift Sj that still ensures
that the privacy region is above the line (11) is defined as
Sj = dz; (P, P1) where

dz (Py, P) = ?éa;’é {PO(S) —ef P1(S)}.

The privacy region of a mechanism is completely described
by the set of slopes and shifts, {(¢;,J;) : &; € E and §; =
dgj(P(), P1)}, where

E={0<& <00 : Py(x)=e® Pi(x) for some x € X}.

Any ¢ ¢ E does not contribute to the boundary of the
prlvacy region. For the above example distributions Py and Py,
= {¢} and dg(PO, P]) = 0.

Remark 12: For a database access mechanism M over a
output space X and a pair of neighboring databases Dy and
D1, let Py and P\ denote the probability density function for
random variables M (Do) and M(Dy) respectively. Assume
there exists a permutation ® over X such that Py(x) =
P (7 (x)). Then, the privacy region is

R(M, Do, D1) = [ R(&,dz(Po, P1)),
eeE
where R(M, D, D) and R(Z, d) are defined as in (3) and (2).

The symmetry assumption is to simplify notations, and the
analysis can be easily generalized to deal with non-symmetric
distributions.

Now consider a k-fold composition experiment, where at
each sequential access M;, we receive a random output X
independent and identically distributed as X;. We can explic-
itly characterize the distribution of k-fold composition of the
outcomes: P(X'"? = xy,..., Xk = x) = Hl;zl Py (x;).
It follows form the structure of these two discrete distributions
that, E = {e®—2lk/2D)e o (k+2=21k/2D)e  o(k=D) oke)  After
some algebra, it also follows that

die—2ire ((Po)*, (P))F)

=1-(01- 5)"
oek—=0) _ e(k=2i+0)
(14 e?)k
for i € {0,...,|k/2]}. From Remark 12, it follows that

the privacy region is R({¢;, di}) = ﬂLkm R( ,-), where
= (k — 2i)e and ¢;’s are defined as in (6). Flgure 2 shows
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this privacy region for k = 1,...,5, ¢ = 0.4, and 6 = 0 and

0=0.1.

B. Converse

We will now prove that this region is the largest region
achievable under k-fold adaptive composition of any (e, d)-
differentially private mechanisms.

From Corollary 4, any mechanism whose privacy region
is included in R({e;, 5;}) satisfies (&, d)-differential privacy.
We are left to prove that for the family of all (e, d)-
differentially private mechanisms, the privacy region of the
k-fold composition experiment is included inside R({&;, d;i}).
To this end, consider the following composition experiment,
which reproduces the view of the adversary from the original
composition experiment.

At each time step i, we generate a random variable X%?
distributed as X, independent of any other random events,
and call this the output of a database access mechanism M;
such that M; (D*?, g;) = X"". Since, X"? only depends on b,
and is independent of the actual database or the query, we use
M; (b) to denote this outcome.

We know that M;(b) has privacy region R(e,d) for any
choices of D0, Di1 and gi. Now consider the mechanism M;
from the original experiment. Since it is (g, d)-differentially
private, we know from Theorem 2 that R(M;, D™V, D) C
R(g, d) for any choice of neighboring databases D*0 D!
Hence, from the converse of data processing inequality (The-
orem 6), we know that there exists a mechanism 7; that takes
as input X" and produces an output Y*? which is distributed
as M;(D"?, ¢;) for all b € {0, 1}. Hence, Y*? is independent
of the past conditioned on X", D®0 D1 g M;. Precisely
we have the following Markov chain:

(b, R, (X", D", D"!, q¢, M) eeli-11)
-(x"", D", D, i, Mi)-Y"?,
where R is any internal randomness of the adversary A. Since,
(X, Y)-Z-W implies X—(Y, Z)-W, we have
b-(R,{X"", D", D", q¢, M) eeip)-Y™
Notice that if we know R and the outcomes {Y“’ }eeri], then
we can reproduce the original experiment until time 7. This is
because the choices of D»9, Di1, qi, M; are exactly specified

by R and {Y©-? }eeli1- Hence, we can simplify the Markov chain

as
b—(R, X"0 (X0, v Py cigy)-Yb. (12)

Further, since X*” is independent of the past conditioned on

b, we have
X5 b—(R, (X5, YOl eqizny). (13)

It follows that

P, r,x1 ..., Xk, Y1s.vvs Vi)
=P, r, X1, Xy Vs oo Yi—1)
X PYKIFy X1y o ooy Xky V1s o v vs Vi—1)
=P, r, X1,y Xk—1, Y15 - - - » Yi—1)P(xk D)
X POklry X1s o ooy Xy V1o o v vy Yi—1)s

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 11,2020 at 13:09:45 UTC from IEEE Xplore. Restrictions apply.



KAIROUZ et al.: THE COMPOSITION THEOREM FOR DIFFERENTIAL PRIVACY

Fig. 4. Bayesian network representation of the composition experiment. The
subset of nodes (Xl’b, Xz’b, X3’b, X4’b) d-separates node b from the rest of
the network.

where we used (12) in the first equality and (13) in the second.
By induction, we get a decomposition

P(bar’xl""9-xk’y1""’yk)

k k
=P®,r) [ [Pilb) [ [PGilr x1s - xi y1, - i)

i=1 i=1

= ]ID(b’ r9x17""'xk)P(y17"‘9yk|r’x17""xk)
=PO|r,xt, . s XK) Py e ooy Yo By X1y o vy Xk).
From the construction of the experiment, it also

follows that the internal randomness R is independent

of the hypothesis b and the outcomes X Lbog.
Pob|r, x1,...,xx) = P(b|xy,...,xt). Then, marginalizing
over R, we get Pb,x1,..., %k Vi, Vk) =
P®lxt, ... xk) PV, e ooy Vi X1y v vy XE).- This implies
the following Markov chain:

b—({X" e (Y " Vi) (14)
and it follows that a set of mechanisms (My,..., M)

dot_ninates (Ml, ... ,Mk) for two databases {Di°0},-€[k] and
{D”l}ie[k]. By the data processing inequality for differential
privacy (Theorem 5), this implies that

R({Mi}ierrr, (D" Yiertr (D" Yiern)
C R({Mi}ici)s (D"*Viety, (D" Vi) = R(lei, 1))

This finishes the proof of the desired claim.

Alternatively, one can prove (14), using the probabilistic
graphical model shown in Figure 4. Precisely, the following
Bayesian network describes the dependencies among various
random quantities of the experiment described above. Since
the set of nodes (Xl’b, x2b x3.b, X4°b) d-separates node b
from the rest of the bayesian network, it follows immediately
from the Markov property of this Bayesian network that (14)
is true (cf. [27]).

V. APPLICATIONS OF THE OPTIMAL
COMPOSITION THEOREM

We now apply the results of the previous section to analyze
the utility of a complex privacy mechanism that is composed
of k sub-mechanisms, each with an (e, dp)-differential privacy
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guarantee. To ensure an overall of (e, J)-differential privacy,
we choose ¢ = ¢/(2/klog(e +¢&/d)) and 6y = J/2k.
The composition theorem presented in the previous section
guarantees the desired overall privacy. For each application we
study, we first fix k differentially private sub-mechanisms, and
then calculate the utility of the complex mechanism. Following
this recipe, we provide a sufficient condition on the variance
of noise adding mechanisms. Our analysis shows that one
requires smaller variance than what was previously believed,
especially in the regime where ¢ = ®(J). Further, we show
that a variety of known mechanisms achieve the desired
privacy under composition with the same level of variance.
Applying this analysis to known mechanisms for cut queries
of a graph, we show that in the regime where ¢ = ©(J),
one can achieve the desired privacy under composition with
improved utility.

For count queries with sensitivity one, the geometric noise
adding mechanism is known to be universally optimal in a
general cost minimization framework (Bayesian setting in [18]
and worst-case setting in [20]). Here we provide a new
interpretation of the geometric noise adding mechanism as an
optimal mechanism under composition for counting queries.
Indeed, in the course of proving Theorem 9, we show that a
family of mechanisms are optimal under composition, in the
sense that they achieve the largest privacy region among k-fold
compositions of any (g;, J;)-differentially private mechanisms.
Larger region under composition implies that one can achieve
smaller error rates, while ensuring the same level of privacy
at each step of the composition. In section V-B, we show that
the geometric mechanism is one such mechanism, thus pro-
viding a new interpretation to the optimality of the geometric
mechanisms.

A. Variance of Noise Adding Mechanisms Under
Composition

Consider a real-valued database query ¢ : D — R. The
sensitivity of g is defined as the maximum absolute difference
of the output between any two neighboring databases:

A= ma D) — q(D")|,
max |¢(D) — q(D)]

where ~ indicates that the pair of databases are neighbors. The
output of ¢ is usually privatized via the addition of random
noise the variance of which grows with sensitivity of the query
and the desired level of privacy. One of the most popular noise
adding mechanisms is the Laplacian mechanism, which adds
Laplacian noise to real-valued query outputs. When the sen-
sitivity is A, one can achieve (g, 0)-differential privacy with
the choice of the distribution Lap(eg/A) = (e09/2A)e20X1/A,
The resulting variance of the noise is 2A2/ eé. However,
the Laplacian mechanism has been largely ignored in the
context of query compositions. When composing real-valued
queries, the Gaussian mechanism is a popular choice [2], [3],
[13], [14], [24]. To ensure (g, d)-differential privacy under
k-fold composition, it is sufficient to add Gaussian noise with
variance O (kA?log(1/5)/e?) to each query output.

In this section, we show that there is nothing special about
the Gaussian mechanism. Indeed, we prove that the Laplacian
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mechanism or the staircase mechanism (introduced in [20])
can achieve the same level of privacy under composition with
the same variance.

We can use Theorem 10 to find how much noise we need to
add to each query output in order to ensure (¢, d)-differential
privacy under k-fold composition. We know that if each
query output is (&g, dp)-differentially private, then the com-

posed outputs satisfy (keg + 2ke(2) log(e + ke% /0), kdg+9)-

differential privacy. With the choice of dy = d/2k, 6 = d//2,
and eé = ¢2/4klog(e + (g/0)), this ensures that the target
privacy of (g,0) is satisfied under k-fold composition as
described in the following corollary.

Corollary 13: For any ¢ and 6 € (0, 1], if the database
access mechanism satisfies (/€2 )4k log(e + (¢/9)), 0/2k)-
differential privacy on each query output, then it satisfies
(&, 0)-differential privacy under k-fold composition.

The above corollary implies a sufficient condition on the
variance of the Laplacian mechanism to ensure privacy under
composition.

Corollary 14: For real-valued queries with sensitivity
A > 0, the mechanism that adds Laplacian noise with
variance (8kA2 log (e + (8/5)) /82) satisfies (e, 0)-differential
privacy under k-fold adaptive composition for any & and
o€ (0,1].

In terms of variance-privacy trade-off for real-valued
queries, the optimal noise-adding mechanism known as the
staircase mechanism was introduced in [20]. The probability
density function of this noise is piecewise constant, and the
probability density on the pieces decays geometrically. It is
shown in [21] that with variance of O(min{l/&2, 1/6%}),
the staircase mechanism achieves (g, J)-differential privacy.
Corollary 13 implies that with variance O(kAzlog(e +
£/0) /82), the staircase mechanism satisfies (e, d)-differential
privacy under k-fold composition.

Another popular mechanism known as the Gaussian mech-
anism privatizes each query output by adding a Gaussian
noise with variance o2. It is not difficult to show that
when the sensitivity of the query is A, with a choice of
o2 > 2A%log(2/dy) /85, the Gaussian mechanism satis-
fies (&g, dp)-differential privacy (e.g. [10]). The above corol-
lary implies that the Gaussian mechanism with variance
0 (kA2 log(1/0)log(e + (¢/0))/€?) ensures (g, §)-differential
privacy under k-fold composition. However, we can get
a tighter sufficient condition by directly analyzing how
Gaussian mechanisms compose, and the proof is provided in
Appendix A.

Theorem 15: For real-valued queries with sensitivity
A > 0, the mechanism that adds Gaussian noise with variance
(SkAzlog (e + (8/5)) /82) satisfies (e, 0)-differential privacy
under k-fold adaptive composition for any ¢ > 0 and 0 €
O, 1].

It is known that it is sufficient to add i.i.d. Gaussian noise
with variance O (kA% log(1/9)/¢?) to ensure (g, §)-differential
privacy under k-fold composition (e.g. [25, Theorem 2.7]). The
above theorem shows that when 6 = ®(¢), one can achieve
the same privacy with smaller variance by a factor of log(1/9).
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B. Geometric Noise Adding Mechanism Under Composition

In this section, we consider integer valued queries
q : D — 7Z with sensitivity one, also called count queries.
Such queries are common in practice, e.g. “How many
individuals have income less than $100,000?”. The pres-
ence or absence of an individual record changes the output
by at most one. Hence, the sensitivity of such queries is equal
to one. Count queries are well studied in differential privacy
[31, [6], [13], [14] and they provide a primitive for constructing
more complex queries [3].

The geometric mechanism is a discrete variant of the popular
Laplacian mechanism. For integer-valued queries with sensi-
tivity one, the mechanism adds a noise distributed according
to a double-sided geometric distribution: p(k) = ((e‘g - 1)/
(ef + 1))e‘8‘k|. This mechanism is known to be universally
optimal in a general cost minimization framework (Bayesian
setting in [18] and worst-case setting in [20]). In this section,
we show that the geometric noise adding mechanism achieves
the fundamental limit on the privacy region under composition.

Consider the composition experiment for counting queries.
For a pair of neighboring databases Dy and Dj, some of the
query outputs differ by one, since sensitivity is one, and for
other queries the output might be the same. Let k£ denote the
number of queries whose output differs with respect to Dy
and D;. We show, in Appendix A, that the privacy region
achieved by the geometric mechanism, is exactly described
by the optimal composition theorem of (5). Further, since
this is the largest privacy region under composition for the
pair of database Do and D; that differ in k queries, no
other mechanism can achieve a larger privacy region. Since
the geometric mechanism does not depend on the particular
choice of pairs of databases Dy and Dp, nor does it depend
on the specific query being asked, the mechanism achieves
the exact composed privacy region universally for every pair
of neighboring databases simultaneously.

Among the mechanisms guaranteeing the same level of
privacy, the one with larger privacy region under composition
is considered to be better in terms of allowing for smaller
false alarm and missed detection rate in hypothesis testing
whether or not the database contains a particular entry. In this
sense, larger privacy degradation under composition has more
utility. The geometric mechanism has the largest possible
privacy region (or smallest possible privacy degradation) under
composition, stated formally below; the proof is deferred to
Appendix A.

Theorem 16: Under the k-fold composition experiment of
counting queries, the geometric mechanism achieves the
largest privacy region among all (&, 0)-differentially private
mechanisms, universally for every pair of neighboring data-
bases simultaneously.

VI. PROOFS
A. Proof of Theorem 5

Consider hypothesis testing between D; and D;. If there
is a point (Pup, Ppa) achieved by M’ but not by M, then
we claim that this is a contradiction to the assumption that
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D-X-Y forms a Markov chain. Consider a decision maker
who have only access to the output of M. Under the Markov
chain assumption, he can simulate the output of M’ by gener-
ating a random variable Y conditioned on M (D) and achieve
every point in the privacy region of M’ (cf. Theorem 3). Hence,
the privacy region of M" must be included in the privacy region
of M.

B. Proof of Theorem 2

First we prove that (e, d)-differential privacy implies (1).
From the definition of differential privacy, we know that
for all rejection set S < X, P(M(Dg) € S) <
e“P(M (D) € S)+ . This implies 1 — Pra(Dg, D1, M, S) <
e¢* Pmp (Do, D1, M, S) + J. This implies the first inequality
of (1), and the second one follows similarly.

The converse follows analogously. For any set S, we assume
1 — Ppa(Do, D1, M, S) < €° Pmp(Do, D1, M, S) + 6. Then, it
follows that P(M (Do) € S) < e*P(M(D;) € S) + ¢ for all
choices of § C X. Together with the symmetric condition
P(M(D;) € S) < e*P(M(Dyg) € S) + 6 , this implies (&, d)-
differential privacy.

C. Proof of Remark 3

We have a decision rule y represented by a parti-
tion {S;}ieq1,..,ny and corresponding accept probabilities
{pi}ieq1,...,Ny» such that if the output is in a set S;, we accept
with probability p;. We assume the subsets are sorted such
that 1 > p; > ... > py > 0. Then, the probability of false
alarm is

Pea(Do, D1, M, y)

N
= > piP(M(Dy) € Si)
i=1
N
=pN+ Z(pi—l — pi)P(M(Dy) € U;.;S;).
i=2

and similarly, Pyp (Do, D1, M, ) = (1= p1) + 2L, (pi—1 —
pi)P(M(Dy) ¢ Uj<iS;j). Recall that Pea (Do, D1, M, S) =
P(M (Do) € S) and Pyp (Do, D1, M, S) = P(M(Dy) € S). So
for any decision rule y, we can represent the pair (Pyp, Pra)
as a convex combination:

(Pmp(Do, D1, M, y), Pea(Do, D1, M, 7))

N+1

= Z(pi—l — pi)(Pmp(Uj<iSj), Pea(U;j<iS)) ),

i=1
where  Pwmp(Uj<iS)) = Pyvp (Do, Dy, M, Ui S)),
Pea(Uj<iS;) = Pra(Do, D1, M,U;;S;), and we used
po =1 and py+1 = 0, and hence it is included in the convex
hull of the privacy region achieved by decision rules with
hard thresholding.

D. Proof of Theorem 10

We need to provide an outer bound on the privacy region
achieved by X¢ and X; defined in (9) and (10) under k-fold
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composition. Let Py denote the probability mass function of
f(o and P; denote the PMF of X 1. Also, let Pé‘ and Plk denote
the joint PMF of k i.i.d. copies of Xo and X, respectively.
Also, for a set § € Xk, we let Pé‘(S) = ers Pé‘(x). In our
example, X = {1, 2,3, 4}, and

_[s a=9e 1-¢
Py = _5 1+e€e 1+4e? O] >
_[n 128 a=o)e
p=[o st G ],
2 (1-9)e* (1=9)
0 g 1+e3€ 5 51+e£2 0
5(17(5)& (175)‘e8 17(5‘ e 0
P2 — 1+4-€ 1+4€? 1+4¢? ete
0 510 1-5\2 ¢ 1-5 )2 ol
1+4-e® Tter ) € 1+e®
| 0 0 0 0

We can compute the privacy region from Pé‘ and Plk directly,
by computing the line tangent to the boundary. A tangent line
with slope —e® can be represented as

Pea = —¢* Pup + 1 — d;(P§, P)). (15)

To find the tangent line, we need to maximize the shift, which
is equivalent to moving the line downward until it is tangent
to the boundary of the privacy region (cf. Figure 3).

d;(Py, Pf) = max PG (S) = " P{(S).

Notice that the maximum is achieved by a set B = {x €
X% PE(x) > €® Pf(x)}. Then,

d:(PE, P}y = PE(B) — ¢ PF(B).

For the purpose of proving the bound of the form (7), we
separate the analysis of the above formula into two parts:
one where either Pé‘ (x) or Plk (x) is zero and the other when
both are positive. Effectively, this separation allows us to treat
the effects of (¢, 0)-differential privacy and (0, d)-differential
privacy separately. In previous work [16], they separated the
analysis in a similar way. Here we provide a simpler proof
technique. Further, all the proof techniques we use naturally
generalize to compositions of general (¢, d)-differentially pri-
vate mechanisms other than the specific example of X( and X
we consider in this section.

Let X 16 denote a k-dimensional random vector whose entries
are independent copies of Xo. We partition B into two sets:
B = BoUB) and By(\B) = 0. Let By = {x € X* :
PY(x) = €“Pf(x), and P{(x) = 0} and B; = {x € X* :
Pf(x) > €*P{(x), and Pf(x) > 0}. Then, it is not hard to
see that Pf(Bo) = 1 — P(X§ € {1,2,3}%) = 1 — (1 — 9%,
P{(Bo) = 0, Pj(B1) = Py(BilX; € {1,2})P(Xj e
{1,215 = (1 — o)F PE(B1IXE e {1,2}F), and Pf(B)) =
(1 — o)k PE(B1|X} € {1,2}%). Tt follows that

P (Bo) — ¢ P{ (By)
=1-—(1-06), and
P§(B)) — ¢ P (B))
= (1 — )" (Pf(B11XE e {1,2)%) — & Pf(B11XY € {1,2)5)).
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Let Pf (x) = Pl(xlx € {1,2)%) and P} (x) =
{1, 2}%). Then, we have

dz (P, PY)
= Py (Bo) — ¢° P{ (Bo) + Py (B1) — ¢ P{(B1)
=1-(0-9"+ -0 (PS(B1) — € Pf(B)). (16)
Now, we focus on upper bounding f’é‘(B]) —éf f’lk(Bl), using
a variant of Chernoff’s tail bound. Notice that

PY(By) — " P (B1)

Plk (x|x €

P (X*)
(e 11520 25) B ()
gﬁah
¢ péc()}k))]

= Epl

=]

praky
0
(log ﬁ{(()'(k)zg)

=Ep [H(log(f’o §(XK)/ B (XK))=) (1 B

< E[eﬂzf/uﬂ»/ulogﬂ*(/1+1)10g(/“+l)], 17

where we use a random variable Z = log(ﬁé‘ ()N(’(;)/f’lk (f(’(;))
and the last line follows from I>z(1 — P
ety =)+ Alogi—(A+Dlogl+1) for any A > 0. To show this
inequality, notice that the right-hand side is always non-
negative. So it is sufficient to show that the inequality holds,
without the indicator on the left-hand side. Precisely, let
fx) = er(x—8)+2log i—(A+1) log(2+1) 4 e~* — 1. This is a
convex function with f(x*) = 0 and f'(x*) = 0 at x* =
& + log((A + 1)/2). It follows that this is a non-negative
function.

Next, we give an upper bound on the moment generating
function of Z.

&
E; [e#102(Po(X)/PIX))] — € e ! o
0 et +1 et +1
< ei ‘T’}/L8+ 22

>

for any A, which follows2 from the fact that pe* +
(1 — p)e™ < e@P=Dx+/2x" for any x € R and p € [0, 1]

[1, Lemma A.1.5]. Substituting this into (17) with a choice of
1= 57kc(e€712)/(e€+1) we get
ke ’

PY(B1) — ¢ P} (B))

L ek+ 12262 k—2E+11og A—(i+1)log(A+1)

< e+l
. 2
~_ ke(e®—1)
(8 ef+1 )
&

2
{,2 ]
_ oSt (ei))
1 et —1\2
Pk )
2]{82(8 geg—i—l

« e/llog m—log(/1+1)
- 1 { 1 .
< = ~ ——exp1 — —(s
s —ke(ef—1 e41 2
1+ g—ke(e kgz)/(e +1) 2 ke
1 1

1+ 2ke? log(e+(vke2/3)) e + F

kZ
1 o
x/l?—l—\/ﬂog(e—i-(\/@/g))«/%—i_l
ke(e® — 1)/(e* + 1) +

e\/2k log(e + (v'ke2/d)). The right-hand side is always less
than 9.

IA

— log(2 + l)}

8_1 2
—ka—e )}
et +1

exp{ -

=

for our choice of & =
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Similarly, one can show that the right-hand side is less than
o for the choice of & = ke(e? — 1)/(e® + 1) + &,/ 2k log(1/9).

We get that the k-fold composition is (8, 1 — (1 —8)* (1 —0))-
differentially private.

E. Proof of Theorem 11

In this section, we closely follow the proof of Theorem 10 in
Section VI-D carefully keeping the dependence on ¢, the index
of the composition step. For brevity, we omit the details which
overlap with the proof of Theorem 10. By the same argument
as in the proof of Theorem 9, we only need to provide an

outer bound on the privacy region achieved by X(() and X, x (0
under k-fold composition, defined as
Op for x =0,
. _ (=dpet oo
PO =x) =00 = { 7 T and
] +e‘§ for x =2,
[ 0 for x =3.
[0 for x =0,
PR =) = AW = |, Y )
= X) = X = SN\ &
! ! U;_ifes; ‘ for x = 2,
| O¢ for x = 3.

Using the similar notations as Section VI-D, it follows that
under k-fold composition,

dz(Py, Pf)
k 5 . k
=1-[]a =60+ (BfB) — & Pf(B)) [0 = 00).
=1 (=1
(18)

Now, we focus on upper bounding 156‘ (B1) — 651511‘ (B1), using
a variant of Chernoff’s tail bound. We know that

PY(By) — " P (By)

] P (XY
B P X y P PE(X%)
0 (tog 3 Pk k) = ‘) o (o ﬁ({)‘ Xk)zg) Py (X%
: P (X5
=EpI (1-==)]
(log(PE (X¥)/ P (X4))=7) PE(XY)
< E[eﬂzfmﬂm 10gz1*(/1+1)10g(ﬂ+1)], (19)

where we use a random variable Z = log(ﬁg (f(’é)/f’f ()N(é))

and the last line follows from the fact that [(y>z (1 —e®™) <
et x—8)Filogi=(+Dlogll+1) for any | > 0.

Next, we give an upper bounds on the moment generating
function of Z. From the deﬁmtlon of P, A0 and P(g) E[e‘z]

p(0) (5 (0) ©) () -
(E o[ 0e P X))/ PO (X »]) CLet o= Yk, (et —

1)8[/(e3{—{—1)+\/2 25:1 eg log (e + ( ZIE:I e?/g)). Next we

show that the k-fold composition is (£, 1 — (1 — J) er[k](l —
o¢) )-differentially private.

>

2,2
Eﬁ(f) [ei1Og(P0([)(X)/P|([)(X))] <e f€+1/13f+ 12eg
0
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for any A. Substituting this into (19) with a choice of 1 =
E= pequ £0(@C 1) /(€"C+1)

Z(E[k] ‘9? » We get
Py (B1) — ¢ P{ (B1)
- _ 1
- 1+ 8= pep 80 —1)/(e*C+1)
Z{E k] 8?
8(’ _ 1
X exp { (8 — ¢ ) }
2 Zfe 0 €7 gez;'] et +1

Substituting &, we get the desired bound.
Similarly, we can prove that with &

= ZI;:I (e —
Deg/(e¥ 4+ 1) +\/2 Sh_ e21og (1/9), the desired bound also
holds.

APPENDIX

Remark 17: The following statements are true.

(a) If a mechanism is (e, 6)-differentially private, then it is
(g, 0)-differentially private for all pairs of ¢ and 6 > 0
satisfying

-0 _1-96

> —.

I+e — 1+ef
For a pair of neighboring databases D and D', and
all (e, 0)-differentially private mechanisms, the total

variation distance defined as |M(D) — M(D)|tv =
maxgcy P(M(D') € §) —P(M(D) € S) is bounded by

(b)

sup IM(D) — M(D')lItv
(&, d)-differentially private M
_, 29

Proof: Proof of (a). ﬁom Figure 1, it is immediate that
R(e, d) € R(Z, 6) when the conditions are satisfied. Then, for
a (g, 6)-private M, it follows from R(M) € R(e, d) € R(Z, d)
that M is (¢, 6)-differentially private.

Proof of (b). By definition, ||[M(D) — M(D)|rv =
maxgcy P(M(D') € S) — P(M(D) € S). Letting S be the
rejection region in our hypothesis testing setting, the total
variation distance is defined by the following optimization
problem:

max 1 — Pmp(S) — Pra(S)
subject to(Pyp (S), Pra(S)) € R(e, d),for all § € X. (20)

From Figure 1 it follows immediately that the total variation
distance cannot be larger than 6 + (1 — d)(e® — 1)/(e* +1). O

Following the analysis in Section VI-D, we know that the
privacy region of a composition of mechanisms is described
by a set of (e, 0) pairs that satisfy the following:

5= ub(B) — ¢ 1k (B),

where ,ug and ,u’l‘ are probability measures of the mechanism
under k-fold composition when the data base is Dy and
D respectively, and the subset B = arg maxgcpk ,u’é(S) —
e ﬂl(S)
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In the case of Gaussian mechanisms, we can assume without
loss of generality that Dg is such that ¢; (Do) = 0 and Dy is
such that g;(D;) = A for all i € {1,...,k}. When adding
Gaussian noises with variances ¢ 2, we want to ask how small
the variance can be and still ensure (&, J)-differential privacy
under k-fold composition.

Let  fyG,... %) = [Ti) fotx) =
(1/v2x 02 ke~ Ziz1 421267 and kflk(xl e XE) =
Mo, i) = (/V2r0d)ke Zim (xi=8)?/20% po  the

probability density functions of Gaussians centered at zero
and A1y respectively. Using a similar technique as in (17),
we know that

ut(B) — e uk(B)
SHEY
=Bl pan \]- "[H ]
#o (log ﬁmzﬂ) ( j(x—kic) f() (Xk)
SHER
_ ~ _ _ €
- Eﬂé[H(log(fguk)/ff(ﬂ»zc)( ¢ fok(;(k))]
< E[eizfizﬂ»ilogif(/@rl)log(/1+l)], Q2D

where X¥ is a random vector distributed according to :“0’ Z=

log(f, (Xk)/fk (X*)), and the last line follows from Iisey(1—
P X) < e/L(x 8)+A10gA (A+1) log(2+1) for any 1> 0.

Next, we give an upper bound on the moment generating
function of Z.
E [eUOg(fo(X)/fl(X))] — E[e*iAx/Uz]eﬂAz/zU2

< e(A2/2a2)a2+(A2/2az)A,

for any A > 0. Substituting this into (21) with a choice of

A= m(s— ];UAZ) which is positive for ¢ > kAz/Zaz, we get

16 (B) — e ik (B)
< e(kAz/202)12+(kAz/ZUz)ifszlJr/llogif(i+l)log(/1+l)
1 o? kAZ\2
|- 5l 52 )
kA2 2 2
1+kA2( = ) 2k A 20
1 1

2 kA2
1+\/kA210g(e+ ,/kA )e+

1 0

< ,
V& + \/210g(e + (1/0)VkA?[a?) ed\) T + 1

2

IA

IA

for our choice of ¢2 such that ¢ > kA?/(20%) +

\/(ZkAz/az) log(e + (1/6)/kA2/5?). The right-hand side is
always less than 0.

With 62 > (4kA?/e?)log(e + (¢/9)) and 62 > kA?/(4¢),
this ensures that the above condition is satisfied. This implies
that we only need o2 = O((kA2/&2) log(e + (¢/9))).

Theorem 16 follows directly from the proof of Theorem 9,
once the appropriate associations are made. Consider two
databases Do and Dy, and a single query ¢ such that g(D;) =
q(Do) + 1. The geometric mechanism produces two random
outputs g(Do) + Z and ¢g(D1) + Z where Z is distrib-
uted accruing to the geometric distribution. Let Py and P;
denote the distributions of the random output respectively. For
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x < q(Dp), Po(x) = € Py(x), and for x > g(Dyg), e Py(x) =
Pj(x). Then, it is not difficult to see that the privacy region
achieved by the geometric mechanism is equal to the privacy
region achieved by the canonical binary example of X and X
in (9) and (10) with 6 = 0. This follows from the fact there is
a stochastic transition from the pair Xo and X; to g(Dg) + Z
and g(D1) + Z; further, the converse is also true. Hence,
from the perspective of hypothesis testing, those two (pairs
of) outcomes are equivalent.

It now follows from the proof of Theorem 9 that the k-
fold composition privacy region is exactly the optimal privacy
region described in (5) with 6 = 0. We also know that this
is the largest possible privacy region achieved by a class of
(&, 0)-differentially private mechanisms.

A. Cut Queries of a Graph and Variance Queries of a Matrix

Blocki et. al. [2] showed that classical Johnson-
Lindenstrauss transform can be used to produce a differentially
private version of a database. Further, they show that this
achieves the best tradeoff between privacy and utility for two
applications: cut queries of a graph and variance queries of a
matrix. In this section, we show how the best known trade off
can be further improved by applying Theorem 10.

First, Blocki et. al. provide a differentially private mecha-
nism for cut queries ¢ (G, S): the number of edges crossing
a (S, S)-cutina weighted undirected graph G. This mechanism
produces a sanitized graph satisfying (e, d)-differential privacy,
where two graphs are neighbors if they only differ on a single
edge. The utility of the mechanism is measured via the additive
error 7 incurred by the privatization. Precisely, a mechanism
M is said to give a (7, 7, v)-approximation for a single cut
query ¢g(-, -), if for every graph G and every nonempty S it
holds that

P((1-mq(G.$)—1 = M(G.S) =

>1—v.

(1+mq(G.8)+7)
(22)

For the proposed Johnson-Lindenstrauss mechanism satis-
fying (e, o)-differential privacy, it is shown that the additive

error 7¢ incurred by querying the database k times is bounded
by [2, Theorem 3.2]'

\/—
O(|S| log(1/9) log(k/v) log(IOg(k/U))). 23)
€

n*o

0 =

Compared to other state-of-the-art privacy mechanisms such
as the Laplace noise adding mechanism [17], Exponential
mechanism [30], Multiplicative weights [23], and Iterative
Database Construction [19], it is shown in [2] that the Johnson-
Lindenstrauss mechanism achieves the best tradeoff between
the additive error 7o and the privacy €. This tradeoff in (23)
is proved using the existing Theorem 8. We can improve
this analysis using the optimal composition theorem of Theo-
rem 10, which gives

Vlog(e + ¢/0) log(k/v) log(k/v)
0(|S| e 10g< n%o ))

(24)

IThe original theorem is stated for a single query with k = 1. Here we state
it more generally with arbitrary k. This requires scaling v by 1/k to take into
account the union bound over k query outputs in the utility guarantee in (22).
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This is smaller than (23) by (a square root of) a logarithmic
factor when ¢ = ©(J). The proof of the analysis in (24) is
provided below.

A similar technique has been used in [2] to provide a dif-
ferentially private mechanism for variance queries v(A, x) =
xT AT Ax: the variance of a given matrix in a direction x. The
proposed mechanism produces a sanitized covariance matrix
that satisfy (e, o)-differential privacy, where two matrices are
neighbors if they differ only in a single row and the difference
is by Euclidean distance at most one. With the previous
composition theorem in Theorem 8, the authors of [2] get an
error bound 7| = 0( log(l/i)zl:;g(k/v) log? (log”(fgv)) ) Using
our tight composition theorem, this can be improved as © =
O( log(e+8£‘§)1°g(k/v) log? (1og(§gv))2. Again, for ¢ = O(J),
this is an im%rovement of a ;110garit mic factor.

For cut queries, Johnson-Lindenstrauss mechanism proceeds
as follows:

Algorithm 2 JL Mechanism for Cut Queries [2]
Input: A n-node graph G, parameters ¢, J, ;7, v>0
Output: An approximate Laplaman of G:

1: Setr < 8log(2/v)/v?
2: Set w < /32rlog(2/9)log(4r/d)/e
3: For every pair of nodes I # j,
Set new weights w; ; = w/n + (1 — w/n)w; ;

4: Randomly draw a matrix N of size r X (’;)

whose entries are i.i.d. samples of N(0, 1)
5: Output L = (l/r)EgNTNEG, where Eg is

(5) x n matrix whose (i, j)-th row is /w7 (e; — e)

Here ¢; is the standard basis vector with one in the i-th entry.
Given this synopsis of the sanitized graph Laplacian, a cut
query ¢ (G, S) returns 1/(1—w/n)(1l§1:1ls—w|S|(n—|S|)/n),
where 15 € {0, 1}" is the indicator vector for the set S. If the
matrix N is an identity matrix, this returns the correct cut
value of G.

We have the choice of w € R and r € Z to ensure that
the resulting mechanism is (g, d)-differentially private, and
satisfy (7, 7, v)-approximation guarantees of (22). We utilize
the following lemma from [2].

Lemma 18: With the choice of
8log(2/v)

4
w = —1og(2/dy) and r = 5 ,
0] n

each row of NEg satisfy (eq, 0p)-differential privacy, and the
resulting Johnson-Lindenstrauss mechanism satisfy (i, t,v)-
approximation guarantee with

T =2|S|nw,

where |S| is the size of the smaller partition S of the cut (S, S).
The error bound in (23) follows from choosing

& 0
textand oy = —,

~ JArlog(2/5) 2r
and applying Theorem 8 to ensure that the resulting mech-
anism with r-composition of the r rows of MEg is (g, d)-
differentially private. Here it is assumed that ¢ < 1.
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Now, with Theorem 9, we do not require &g to be as small,
which in turn allows us to add smaller noise w, giving us an
improved error bound on 7. Precisely, using Theorem 10 it
follows that a choice of

&

and
JVarlog(e + 2¢/9)

suffices to ensure that after r-composition we get (g, d)-
differential privacy. Resulting noise is bounded by w <
4./4r log(e + 2¢/0) log(4r/d) /e, which gives the error bound
in (24). The proof follows analogously for the matrix variance
queries.

= 5 = —,
0 2r
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